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Children orphaned by HIV/AIDS (“AIDS orphans”) suffer numerous early-life adverse

events which have a long-lasting effect on brain function. Although previous studies

found altered electroencephalography (EEG) oscillation during resting state in children

orphaned by HIV/AIDS, data are limited regarding the alterations in connectivity and

microstate. The current study aimed to investigate the functional connectivity (FC) and

microstate in children orphaned by HIV/AIDS with resting-state EEG data. Data were

recorded from 63 children orphaned by HIV/AIDS and 65 non-orphan controls during a

close-eyes resting state. The differences in phase-locking value (PLV) of global average

FC and temporal dynamics of microstate were compared between groups. For functional

connectivity, children orphaned by HIV/AIDS showed decreased connectivity in alpha,

beta, theta, and delta band compared with non-orphan controls. For microstate, EEG

results demonstrated that children orphaned by HIV/AIDS show increased duration

and coverage of microstate C, decreased occurrence and coverage of microstate B,

and decreased occurrence of microstate D than non-orphan controls. These findings

suggest that the microstate and functional connectivity has altered in children orphaned

by HIV/AIDS compared with non-orphan controls and provide additional evidence that

early life stress (ELS) would alter the structure and function of the brain and increase the

risk of psychiatric disorders.

Keywords: children orphaned by HIV/AIDS, early life stress, resting-state, microstate, functional connectivity

INTRODUCTION

Children orphaned by HIV/AIDS (“AIDS orphans”) were defined as children under the age of
18 years who had lost one or both parents to HIV-related illnesses (1). The United Nations
International Children’s Emergency Fund estimated that there were 15.4 million AIDS orphans
worldwide by 2021 (2). The number of AIDS orphans could have reached 260,000–400,000 in
China (3) with an increasing trend. When they grow up, AIDS orphans may suffer numerous
early life stress (ELS) events, such as parental death, poverty, disrupted school attendance, and
stigma. According to previous studies, these ELS events have been associated with changes in brain
structure and function (4–8). Understanding these changes promises fundamental insights into
the underlying pathophysiology and may eventually help establish a much sought-after biomarker
of ELS.

Brain function development after ELS has mostly been assessed using functional magnetic
resonance imaging (fMRI). By assessing brain activity and connectivity, recent fMRI studies have
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found a reduction in the volume of the hippocampus, prefrontal
cortex (PFC), and corpus callosum in children with ELS (9, 10).
Besides the brain structure, the alterations in brain functional
connectivity (FC) have also been found, such as increased
connectivity between the ventral striatum and lateral PFC (11,
12), and decreased amygdala-PFC connectivity (13, 14), or
reduced ventral tegmental area-hippocampal connectivity (15).
While findings from fMRI studies are all in low frequencies, there
is still a lack of knowledge about brain function in a resting state
at higher frequencies. To address this, electroencephalography
(EEG) can provide a new perspective because of its higher
temporal resolution. Mounting evidence indicates that resting-
state EEG activity is related to brain functions (16–18). For
example, in the attentional function, alpha oscillations were
considered to clear sensory information from distractors (19).
The theta/beta ratio had a negative correlation with information
processing speed and attention performance (20). Therefore,
analysis of resting-state EEG characteristics may reveal the
alteration of brain functions in AIDS orphans.

In the commonly resting EEG analysis, a promising approach
is a microstate. EEG microstates are defined as global patterns
of scalp potential topographies which remain stable for a
certain period of time (50–100ms) before rapidly transitioning
to different microstates (21). Most studies demonstrate that
the same four classes of archetypal microstates which were
labeled as A, B, C, and D can explain most of the global
topographic variance (22). According to fMRI-EEG studies,
different microstates correspond to certain specific resting-
state functional networks. Specifically, microstate class A was
associated with the auditory processing, microstate class B
with the visual network, microstate class C with the salience
network (SN), and microstate class D with the attention (23,
24). According to previous studies, the temporal parameters,
such as duration (the mean duration of a microstate class in
milliseconds), occurrence (the mean frequency of observation
of a microstate class per second), and coverage (the proportion
of the total time spent in a microstate class) could reflect the
function of brain networks and these parameters could be altered
by age, pressure, and diseases (22, 25, 26).

Following what was previously reported, there are many
techniques to estimate resting-state EEG FC (27, 28). Among
these techniques, The phase locking value (PLV) is especially
suitable for connectivity analysis because it quantifies coupling
between pairs of electrodes and measures the synchronization
of temporal relationships of neural signals independent of their
signal amplitude (29, 30). PLV has been used in previous
studies to examine FC (31). For instance, a study that measures
FC between default mode networks regions of interest and
the medial prefrontal regions using PLV found decreased
connectivity in the alpha band in older people (32). Rogala et al.
found a positive correlation between resting-state PLV and the
power of the beta-2 band (22–29Hz), demonstrating that beta
band activity plays an important role in the attentional process
(16). In addition, recent studies investigated the correlation
between EEG FC and fMRI FC by using different techniques and
found that PLV is significantly correlated with fMRI networks
compared with other FC methods (33).

FIGURE 1 | Procedures of the experiment.

This study aimed to investigate the large-scale network across
the whole brain in AIDS orphans and compared it to non-orphan
controls. To achieve this, the present research will use FC and
the microstate approach to analyze the EEG data. The temporal
parameters (duration, occurrence, and coverage) will be assessed
for the microstate. For FC, the PLV will be used to calculate the
functional connection.

METHOD

Participants
Data were derived from a larger neurodevelopmental study
in which a total of 91 AIDS orphans and 66 non-orphan
children (controls) were recruited from the local communities
and school systems in central rural China. The study was open
to children at 8–18 years of age who did not have HIV/AIDS-
related illnesses. Age eligibility was verified through the local
community leaders, school records, or caregivers. Among these
participants, 65 AIDS orphans and 66 controls completed the
EEG experiment. All the subjects had a normal or adequately
corrected vision, were right-handed, and reported no history of
mental, medical, or neurological disorders. At the end of the
experiment, they received an age-appropriate gift as a token of
appreciation. Written informed consent was obtained for the
study. Two AIDS orphans and one control child were excluded
from further analysis due to an unfinished EEG experiment. The
study protocol was approved by the Institutional Review Boards
at the University of South Carolina in the United States and
Henan University in China (IRB 00007212).

Measures and Procedures
EEG Recording and Preprocessing
Participants were in the eyes-closed resting state when 4-min
spontaneous EEG data were collected (Figure 1). The EEG
was recorded from a 32-scalp standard channel cap (10/20
system; Brain Products, Munich, Germany) (Figure 2). An
electrooculogram (EOG) was recorded from electrodes placed
at the outer canthi of the right eye. All electrode recordings
were online referenced to FCz. All inter-electrode impedances
were maintained below 5 kΩ . The EEG and EOG signals were
amplified using a 0.01–100Hz bandpass filter and continuously
sampled at 500 Hz/channel for offline analysis.

After data acquisition, offline preprocessing was performed
with EEGLAB (34). The EEG data were re-referenced to the
common average reference. Then, the data were corrected
for artifacts using Independent Component Analysis (ICA).
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FIGURE 2 | Electroencephalography (EEG) cap configuration with

international 10–20 system.

Subsequently, all data were bandpass filtered at 2–20Hz and
segmented in 2 s epochs. Segments were rejected from further
analyses if amplitudes exceeded±100 uV.

EEG Connectivity Analysis
As a measure of synchrony, PLV is used as an indicator of FC
between different brain regions. Compared with other indicators
of FC, PLV does not depend on the spectral power of recorded
signals and is more sensitive for measuring FC (16). In addition,
it has good reliability for all frequency bands.

The current source density (CSD) method was used to
transform EEG data from scalp electrode space into a reference-
free montage (35). The EEG signals of all electrodes from CSD-
converted montage are band-pass filtered into four frequency
bands [delta (2–4Hz), theta (4–8Hz), alpha (8–13Hz), and beta
(13–20Hz)] and transformed into analytical EEG signals using
Hilbert transform (29). For each frequency band, the PLVs were
calculated for all pairs of electrodes and generated an N × N
synchronization matrix with N equal to 29, in which each entry
Ni,j contains the value of the PLV for the channels i and j. The
global mean PLV of each subject was calculated based on theN×

N matrix.

Microstate Analysis
As a method of studying EEG, microstate analysis regards the
EEG signal as a series of quasi-stable microstates and access
the global functional state of the brain by comparing the
characteristic of microstate time series (23).

Microstate analysis was performed with the microstate
analysis plugin (Version 1.2; http://www.thomaskoenig.ch/
Download/EEGLAB_Microstates/) for EEGLAB in Matlab
2018b. The steps were as follows. First, 1,000 global field power

(GFP) peaks were selected randomly and were submitted to
Atomize-Agglomerate Hierarchical Clustering (AAHC) analysis.
Next for each cluster number of microstate maps from 3 to 6
was determined. According to the cross-validation criterion, we
found four microstates could explain the variance of 76.26 and
71.75% for two groups. Then, a similar clustering analysis was
performed at the group level based on the microstate template
maps of all the participants. For the statistical analysis, the three
temporal features of the microstates were extracted (duration,
occurrence, and, coverage).

Statistical Analysis
In this study, the t-test was used to compare the demographic
variables between two groups. All the variables with a significant
difference will be used as covariates in all the subsequent analyses.

The group differences of EEG connectivity analysis were
evaluated separately on each frequency band. A comparison of
the group mean PLVs was conducted using one-way analysis
of variance (ANOVA). For microstate analysis, the repeated-
measures ANOVA was applied with microstate class (A, B, C,
and D) as a within-subject factor, and group (AIDS orphans and
controls) as a between-subject factor. One-way ANOVAwas used
to compare groups for temporal parameters of each microstate
when the main effects or interactions were significant.

A greenhouse-Geisser correction was conducted to adjust
p-values when appropriate. All analyses were calculated by
SPSS 25.0.

RESULTS

In demographic variables, age was found to be a significant
difference between the two groups and included as a covariate
in subsequent analyses.

Global Connectivity
The group difference in mean global PLV was calculated with
one-way ANOVA and age as a covariate. As shown in Figure 3,
the mean PLV was significantly lower in AIDS orphans (alpha:
0.415 ± 0.064; theta: 0.389 ± 0.014; delta: 0.559 ± 0.013; and
beta: 0.263 ± 0.015) than controls (alpha: 0.419 ±0.073; theta:
0.416 ± 0.062; delta: 0.0571 ± 0.410; and beta: 0.293 ± 0.080)
in all frequency bands (alpha: F(1, 128) = 8.446, p = 0.004,
η2 = 0.062; theta: F(1, 128) = 24.337, p < 0.001, η2 = 0.160;
delta: F(1, 128) = 15.395, p < 0.001, η2 = 0.107; and beta:
F(1, 128) = 22.989, p < 0.001, η2 = 0.152) (Table 1).

Microstate Results
The four microstate classes (A, B, C, and D) of orphans
and controls obtained in the whole groups had topographies
comparable with those previously found in most microstate
studies (Figure 4). These microstates accounted for an average
of 76.26% (SD = 5.4%) and 71.75% (SD = 7.6%) of the global
variance in the AIDS orphans and control group, respectively.

We found significant class (A, B, C, and D) × group (AIDS
orphans and controls) interactions for coverage (F(3, 375) = 3.492,
p = 0.020, η2p = 0.027), and occurrence (F(3, 375) = 5.756,
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FIGURE 3 | The mean phase-locking value (PLV) averaged over all pairs of

EEG channels for AIDS orphans and controls in four frequency bands.

TABLE 1 | The mean phase-locking value (PLV) for AIDS orphans and controls at

each frequency.

Alpha Theta Delta Beta

orphans 0.415 ± 0.064 0.389 ± 0.014 0.559 ± 0.013 0.263 ± 0.015

controls 0.419 ± 0.073 0.416 ± 0.062 0.0571 ± 0.410 0.293 ± 0.080

F 8.446 24.337 15.395 22.989

p 0.004 < 0.001 < 0.001 < 0.001

Values are expressed as means ± SD; analysis of variance (ANOVA) test followed by

Greenhouse-Geisser correction.

Significant differences are marked in bold.

Orphans, AIDS orphans.

FIGURE 4 | Spatial configuration of the four microstate classes. Each row

displays the four topographic configurations (A–D) for each group. AIDS

orphans, controls.

p = 0.001, η2p = 0.044). In addition, the main effect of duration

(F(1, 125) = 4.510, p= 0.036, η2p = 0.035) was significant (Table 2).
The group differences were found in specific microstate

classes. Specifically, for microstate coverage, orphans showed a
significant decrease of microstate B (F(1, 125) = 4.234, p = 0.042,
η2 = 0.033), and a significant increase of microstate C
(F(1, 125) = 6.227, p = 0.014, η2 = 0.047) than controls. The
occurrences of microstate B (F(1, 125) = 8.262, p = 0.005,
η2 = 0.062) and D (F(1, 125) = 8.613, p= 0.004, η2 = 0.064) were

TABLE 2 | The results of the 2-way ANOVA for duration, occurrence, and

coverage.

F(df) p η
2
p

Duration

Main effects

Class F(3,375) 0.424 0.709 0.003

Group F(1,125) 4.51 0.036 0.035

Age F(1,125) 9.792 0.002 0.073

2-way interaction

Class * group F(3,375) 2.25 0.091 0.018

Class * age F(3,375) 0.181 0.886 0.001

Occurrence

Main effects

Class F(3,375) 0.963 0.403 0.008

Group F(1,125) 3.243 0.074 0.025

Age F(1,125) 10.549 0.001 0.078

2-way interaction

Class * group F(3,375) 5.756 0.001 0.044

Class * age F(3,375) 1.127 0.335 0.009

Coverage

Main effects

Class F(3,375) 0.616 0.605 0.005

Group F(1,125) 1.609 0.207 0.013

Age F(1,125) 2.685 0.104 0.021

2-way interaction

Class * group F(3,375) 3.492 0.020 0.027

Class * age F(3,375) 0.504 0.658 0.004

F(df), F-test (degrees of freedom); p, p-value; η2p , partial eta square.

Significant results and differences are marked in bold.

Class, microstate class.

higher in controls than in AIDS orphans. AIDS orphans showed
significantly increased microstate C duration (F(1, 125) = 8.028,
p= 0.005, η2 = 0.060) compared with controls (Table 3).

DISCUSSION

The present study aimed to investigate the difference in
brain function between AIDS orphans and controls from the
perspective of whole brain activities. Here, two novel analytical
approaches were used to extract the information from the
resting-state EEG data. First, microstate analysis evaluated the
spontaneous brain activity and temporal dynamics resting-state
networks (RSNs). Second, the altered FC of large-scale brain
networks in AIDS orphans was measured. The result of this study
showed alterations in microstate parameters and lower FC in all
frequency bands for AIDS orphans. These results provide new
insight into the brain development of AIDS orphans.

The results of FC suggest that the brain structure and
function, as well as development, can be altered even damaged
by ELS. This finding is consistent with previous studies that
demonstrated ELS may have a negative effect on brain. A large
body of studies has highlighted the impaired cognitive and
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TABLE 3 | The mean for all microstate parameters of AIDS orphans and controls.

Microstate A Microstate B Microstate C Microstate D

Duration (ms) orphans 67.13 ± 9.95 67.38 ± 10.98 68.65 ± 13.71 64.22 ± 11.59

controls 67.93 ± 10.57 70.19 ± 10.65 63.95 ± 10.33 64.10 ± 7.98

F (p) 1.896 (0.171) 0.028 (0.869) 8.028 (0.005) 1.562 (0.214)

Occurrence (s) orphans 3.78 ± 0.64 3.78 ± 0.73 3.97 ± 0.79 3.77 ± 0.68

controls 3.66 ± 0.59 4.03 ± 0.65 3.61 ± 0.69 3.90 ± 0.78

F (p) 0.002 (0.964) 8.262 (0.005) 1.365 (0.245) 8.613 (0.004)

Coverage (%) orphans 24.76 ± 4.81 24.98 ± 5.54 26.46 ± 6.63 23.81 ± 5.82

controls 24.58 ± 5.75 27.71 ± 5.65 23.02 ± 6.29 24.69 ± 5.84

F (p) 0.432 (0.512) 4.234 (0.042) 6.227 (0.014) 1.952 (0.165)

Values are expressed as means ± SD; analysis of variance (ANOVA) test followed by Greenhouse-Geisser correction.

Significant differences are marked in bold.

Orphans, AIDS orphans.

affective functioning in children who experienced ELS (36–
38). Wang et al. (39)found a decrease FC within prefrontal-
limbic-thalamic-cerebella in major depressive disorder patients
with ELS. In a study of adolescents with post-traumatic stress
disorder, decreased connectivity between the amygdala and
mPFC was observed compared with controls (40). In addition,
the current study investigated the difference of functional
networks between AIDS orphans and controls in four frequency
bands. Oscillations in different frequency bands are often related
to cognitive functions. The relationship between alpha oscillation
and alertness has been reported in several studies (41, 42). Theta
oscillation play an important role in working memory (43).
Activity of the delta band was observed during the feedback and
oscillation of beta related with sensorimotor decision-making
(44–48). Thus, the decrease of FC in all frequency bands indicates
that the defects in the brain function of AIDS orphans.

In this study, we found an increase in duration and coverage
of microstate C in AIDS orphans compared with controls.
This result is consistent with previous studies which found the
sensitivity to perception altered (49) and neural responses to
salient stimuli enhanced in the ELS sample (50). These neural
responses are included in SN, which correspond to microstate C.
Thus, the increase of microstate C may represent the individual
becoming more sensitive to salience events (51). In addition,
the SN connectivity in insula was found to be increased in
trauma-exposed youth (52) and the SN alteration was found in
patients with major depressive disorder (53), posttraumatic stress
disorder (54), and anxiety disorders (55).

In contrast to microstate C, we found a reduction in
occurrence and coverage of microstate B and a reduction in
the occurrence of microstate D in AIDS orphans. According to
previous studies, microstate B and D are related to the visual
network and attention network, respectively. The decrease in
microstate may represent a deficit in attention of AIDS orphans
(56–58), which is consistent with the results of FC. Similar results
were reported in patients with psychiatric disorders. For instance,
studies with schizophrenic found the reduction in microstate B
and D (56, 59, 60). A study on bipolar disorder showed that

patients with bipolar disorder have a significant reduction in
microstate B (61). In combination with the result of microstate
C, this study provided further evidence that individuals who
experience ELS are more likely to develop psychiatric disorders.
Therefore, the altered microstate in AIDS orphans may be a
predictor of mental illness.

It is possible that our results reflect impaired brain function
in AIDS orphans. These findings give further support to the
diatheses-stress hypotheses that the brain adapts to ELS by
releasing mediators which may provoke dendritic stunting and
atrophy (62, 63) and consequently affect the structure and
function of the brain. In addition, previous studies on the effect
of ELS on attention were based on task or certain regionals
(36, 64). However, in this study, two methods based on the large-
scale resting-state EEG data analysis found defects in attention
function, which provided further evidence that ELS has effect
on attention.

CONCLUSION

The present study showed decreased FC and different microstate
dynamics in AIDS orphans. With two independent approaches
to analyze EEG resting-state data, we found alterations in the
brain function in AIDS orphans, and those alterations were
likely to be caused by ELS. These results suggest that functional
imaging may be used to detect latent neurodevelopmental effects
of ELS exposure, facilitating a better understanding of the
pathophysiology and treatment of ELS-related conditions.

Limitations and Future Directions
One limitation of this study is that we only explore the
whole-brain network from two different perspectives. Other
methods, such as graph theory as well as long- and short-
distance FC, have been used to analyze FC in recent studies.
Hence, these methods will be taken into account to investigate
the large-scale brain network in further studies. In addition,
the research is a cross-sectional study. According to previous
studies, ELS has a sustained and life-long impact on the brain.
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The results of this study reveal the development trajectory of
brain with individuals who are preadolescents and undergoing
ELS. Thus, the developmental trajectory throughout puberty
needs to be explored in a longitudinal study in future studies.
Furthermore, this study only explored the characteristics of
large-scale resting-state EEG and found the effect of ELS
on brain function. However, the effect of ELS on specific
cognitive function and its potential neural circuit have not
been explored and analyzed. Therefore, in future studies, we
will focus on the role of the ventral prefrontal cortex in the
acquisition of threat conditions in individuals who experience
ELS and exploring its subregional contributions to fear learning
and extinction.
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