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Abstract

The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive
drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this
continuum is the alpha oscillation, an 8–13 Hz electroencephalographic rhythm prominent over posterior scalp locations.
The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in
concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins.
Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous
responsiveness to noise—a measure of sleep depth—throughout a night of sleep. By systematically challenging sleep with
realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during
moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition
between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an
empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a
measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep
stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep.
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Introduction

Sleep is not uniform, and certain moments are sounder than

others. Indeed, resistance to acoustic disturbance—a measure of

sleep depth—displays considerable variability throughout a night

of sleep, even within sleep stage [1]. The factors that influence

sleep’s vulnerability to sensory insult have not been fully

illuminated.

The very transition from wake to sleep involves a dissociation

from the external world and a crescendo of internal brain rhythms.

Heralding this transition is attenuation of the alpha rhythm, an

8–13 Hz electroencephalographic (EEG) oscillation prominent

over posterior brain regions, and the signature of relaxed

wakefulness [2]. Diminishing during the descent into sleep, alpha

amplitude shadows the decline in external awareness that accom-

panies sleep onset [3,4]. And while it appears to vanish as sleep

begins, quantitative analysis reveals that power in the alpha band

actually fluctuates dynamically throughout the night (Fig. 1A) [5].

Given alpha activity’s association with wakefulness and sensory

intake, we hypothesized that covert levels of alpha activity would

reveal a sleeper’s instantaneous sensitivity to the environment.

That is, inconspicuous fluctuations in wake-like background brain

activity might correspond to changes in sleep depth, even beyond

sleep stage designation.

To study this question in a realistic setting, we used ecological

noises to probe environmental sensitivity throughout sleep, simul-

taneously monitoring subjects’ brain activity with EEG. The sound

intensity required to disturb subjects provided an empirical

measure of their instantaneous sleep depth. In this paradigm, sleep

stability denotes resistance to disruption, while sleep fragility denotes

vulnerability to disruption. We sought to evaluate whether these

qualities could be predicted using the covert level of waking brain

activity just before each stimulus.

Results

We systematically challenged sleep with auditory stimulation in

thirteen healthy subjects throughout two nights of sleep. Brain

activity was monitored on each night using EEG. Ten-second,

ecological noises (e.g., road and air traffic, a telephone ringing)

were presented during bouts of stable sleep (Fig. 2). Each sound

was initiated at 40 decibels (dB) and replayed every thirty seconds

in 5 dB increments until the EEG signal was perturbed according

to standard guidelines (i.e., an arousal was observed [6]).

We interrogated the relationship between alpha activity and

sleep fragility using Cox regression, a tool from survival analysis

(see Materials and Methods). The output of Cox regression is the

hazard ratio (HR): this number represents the relative hazard of
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disruption in one condition compared to another. For continuous

covariates, the HR represents the relative hazard of disruption

incurred by a one-unit increase of the covariate. Hazard ratios

greater than 1 imply that the covariate is associated with sleep

fragility (vulnerability to disruption), while those less than 1 denote

covariates accompanying sleep stability (resistance to disruption).

We focused our analysis on factors contributing to sleep fragility

during non-rapid-eye-movement (NREM) sleep (stages N2 and

N3, accounting for the majority of sleep [7]), as several difficulties

arise when considering alpha activity during rapid-eye-movement

(REM) sleep (see Discussion). The regression model contained two

covariates, one indicating the visually scored sleep stage designa-

tion [6], the other indicating the spectral content preceding each

stimulus (see Materials and Methods).

When comparing noise sensitivity across sleep stage, Cox

regression yielded a HR of 0.54 (P,0.0001) associated with stage

N3, so-called slow-wave sleep, relative to N2. In line with previous

reports [1,8], this value indicates a suppressed hazard of disruption

in N3 compared with N2 (the probability of tolerating noise at any

loudness in N3 being roughly the square root of that in N2).

We next addressed the influence of occipital alpha activity on

sleep fragility. Figure 1A shows that, on an undisturbed night of

sleep, relative alpha power shadows the trajectory of qualitatively

assessed sleep depth. Like the probability of disruption, alpha

power is generally suppressed in N3 relative to N2 (Fig. 1B).

Although relative alpha power correlates well with sleep stage, a

wide spectrum of variation still exists within each category. We

therefore sought to determine whether fluctuations in this quantity—

even within sleep stage—correspond to concurrent variations in sleep

fragility.

To address this question, we included in the statistical model a

measure of the alpha content during the ten seconds immediately

preceding each sound (Fig. 2, light gray windows). Even

controlling for stage, we observed a highly significant relationship

between alpha power and sleep fragility (HR = 5.74, P,0.001).

This suggests that, well beyond sleep stage designation, latent

alpha content betrays heightened sensitivity to impending sounds.

To investigate the timescale over which alpha power predicts

sleep fragility, we further characterized each sound series by a

single spectral measure derived from a reference window of stable

sleep preceding the sound series (Fig. 2, dark gray windows). This

interval anticipated the eventual disruption by a variable latency of

up to four minutes, as arousal may have occurred as late as 70 dB.

Still, alpha power during this ninety-second baseline period

predicted the probability of disruption in the moments that

followed (HR = 7.33, P,0.001), suggesting that the brain state

disclosed by alpha activity persists for several minutes (see also

Results S1 and Figure S1).

Figure 3 illustrates a summary of our results, rendering the

probability of sleep disruption in the face of noise as a function of

Figure 1. Alpha power fluctuates dynamically throughout the night. A. The trajectory of relative alpha power throughout a quiet night of
sleep is shown from one representative subject. Simultaneous sleep stage designations run beneath the time course of alpha power. Diminishing as
sleep begins, alpha power fluctuates throughout the night, in tandem with sleep depth. For display, the alpha power time-series was approximated
using local linear regression in 4 minute windows, corresponding to the approximate length of each stimulation series (see Materials and Methods).
This procedure removes noise and emphasizes slower fluctuations with fewer distortions than those imposed by simple low-pass filtering [42].
B. These histograms show the distribution of alpha power during NREM sleep, revealing that a range of values can be observed within each of stages
N2 and N3. Power was computed in non-overlapping 10-second bins; epochs containing arousals, which may represent transient departures from
stable sleep, were discarded.
doi:10.1371/journal.pone.0017351.g001

Figure 2. Sleep depth was probed with auditory stimulation. We systematically probed sleep depth with auditory stimulation during bouts of
N2, N3 and REM sleep. Ten-second noises were initiated at 40 decibels (dB) and presented every thirty seconds in 5 dB increments until the EEG signal
was perturbed (arousal, vertical bars on the bottom line). Each color represents a different sound type; a sample of four is shown here. The sound
intensity required to disturb subjects provided an experimental measure of their immediate sleep depth. The gray windows beneath the sound level
delineate periods during which alpha power was measured to predict sleep fragility.
doi:10.1371/journal.pone.0017351.g002
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both stimulus intensity and EEG alpha content. Here we depict a

distinct surface for each NREM sleep stage, in which separate

mechanisms may also regulate sensory perception [9,10]. Just as

the probability of disruption increases monotonically with

loudness, so too is sleep’s vulnerability modulated by coincident

alpha content.

We next explored the relationship between immediate sleep

fragility and the broader EEG power spectrum. Toward this end,

we estimated the power at frequencies between 0.5 and 25 Hz (in

0.5 Hz intervals) expressed over occipital electrodes during the ten

seconds immediately preceding each stimulus (Fig. 2, light gray

windows). To facilitate a meaningful comparison across frequen-

cies, power values were standardized based on their waking levels

and their dynamic ranges observed during NREM sleep (see

Materials and Methods). The power at each frequency was then

analyzed independently using Cox regression.

The resulting spectral portrait shows how power at each

frequency, beyond stage designation, covaries with sleep fragility

(Fig. 4). (For comparison across the entire EEG spectrum,

estimates of the Cox regression coefficients reflect a change of

one standard deviation in the log-power at each frequency.) The

large, sustained contribution throughout the alpha band suggests

that this region of the spectrum indeed contains a meaningful

signal. We moreover observed strong tendencies toward sleep

stability in conjunction with low-frequency power (including slow-

wave, delta, and theta activity) and toward fragility in conjunction

with high-frequency power (beta activity). Nonetheless, the only

power value that achieved significance after a liberal correction for

multiple comparisons (Holm-Bonferroni method) was that at

10.5 Hz (P = 0.025), centrally located within the alpha band.

As the approach just described manages to isolate the power at

different frequencies, we took the opportunity to once more study

Figure 3. Alpha content reveals immediate sleep fragility. Using Cox regression, we found that alpha activity disclosed noise sensitivity during
NREM sleep, even when controlling for stage. Here we reconstruct probability surfaces for sleep stages N2 and N3, rendering sleep fragility as a
function of both stimulus intensity and EEG alpha content.
doi:10.1371/journal.pone.0017351.g003

Figure 4. Alpha band power is a specific marker of sleep depth. We examined the broader relationship between EEG spectral content
(beyond sleep stage designation) and NREM sleep depth. The power expressed over occipital electrodes immediately preceding each stimulus was
standardized using a baseline waking spectrum and the dynamic range observed during sleep at each frequency. The relationship between spectral
power values and sleep fragility was then assessed independently with Cox regression; the resulting regression coefficients (6SE) are shown for each
frequency in 0.5 Hz bins. Coefficients less than zero imply an association with sleep stability (resistance to disruption), whereas coefficients greater
than zero imply an association with sleep fragility (vulnerability to disruption). We observed a strong relationship between heightened sound
sensitivity and spectral power throughout the alpha band. Trends toward sleep stability emerged in conjunction with low frequency (,8 Hz) power
and toward fragility in conjunction with high frequency (.13 Hz) power. *P,0.05 after correction for multiple comparisons.
doi:10.1371/journal.pone.0017351.g004
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the relationship between alpha activity and sleep fragility, this time

including in our statistical model, in place of sleep stage

designation, a measure of low-frequency oscillatory EEG activity

(0.5–4 Hz), which may more faithfully track changes in sleep

depth at the neuronal level [11]. This moreover teases apart the

effects of alpha and delta activity, which may interact in the

relative measure of alpha content employed earlier. In this context,

slow-wave activity was associated with sleep stability (HR = 0.73;

P,10211), and alpha activity again demonstrated a significant

relationship with sleep fragility (HR = 1.13; P = 0.002).

Discussion

The present results show that the soundness of sleep, defined

empirically and with ecological relevance, is revealed in real-time

by EEG spectral content: greater vulnerability to noise-induced

sleep disruption accompanies elevated alpha activity. Such spectral

interrogation of sleep fragility has predictive power on the order of

minutes. Furthermore, this effect transcended traditional sleep

staging, imparting a greater sense of fluidity to what is typically

seen as a rigid process.

From a behavioral perspective, alpha activity has been shown to

resolve fine gradations in the sleep-wake continuum. On visual

and auditory vigilance tasks, reduced alpha activity is associated

with sluggish reaction times and an elevated probability of lapse

[12,13,14,15,16]. Even during wakefulness, immediate levels of

alertness are revealed by ongoing alpha activity: moments of

higher parietal alpha amplitude have been associated with

receptiveness to tactile stimuli and heightened attention [17].

These observations concerning alpha’s relationship to sensory

intake, in conjunction with several others, have emboldened some

investigators to include the alpha oscillation among the neural

correlates of consciousness [18]. Here we extend alpha activity’s

association with environmental awareness beyond wakefulness and

drowsiness, and into NREM sleep.

Though the alpha oscillation was one of the first brain rhythms

to be described in the human EEG [19], little is currently

understood about its underlying generators or functional signifi-

cance. The thalamus, which has been found to influence cortical

alpha synchronization [20], might be the critical link between

alpha activity and the brain’s vulnerability to acoustic disruption.

As the thalamus is involved in relaying sensory information to the

cortex, alpha activity could be a reflection of this region’s

propensity for conveying external stimuli to cortical processing

centers where it is capable of interrupting sleep. Intriguingly, it was

recently shown that global expression of alpha power (and, to a

weaker extent, beta power) is positively correlated with activity in a

‘‘tonic-alertness network,’’ comprised of the dorsal anterior

cingulate cortex, anterior insula, and thalamus [21]. The

constituents of this network, with access to sensory information

and broad projections throughout the cortex [22], are well

positioned to support alerting functions and a ‘‘general readiness

for perception and action’’ [21,23]. At least during wakefulness,

then, elevated alpha activity seems to reflect the engagement of

regions supporting sensory intake and alertness. Future studies

should address the existence of a similar intrinsic connectivity

network during sleep, and its connection with EEG alpha content.

The specificity of alpha power as a maker of NREM sleep
depth

When we broadened the scope of our analysis to include the rest

of the EEG power spectrum during NREM sleep, only an alpha

frequency (10.5 Hz) remained significant after correction for

multiple comparisons. Rather than suggesting that this lone

frequency contains information regarding sleep fragility, we

suspect that inter-individual variability in peak alpha rhythm

frequency [24] undermined the effect when small slivers of the

band were considered alone.

Although large scale associations between EEG power and sleep

depth might be expected based on inherent correlations across

frequencies in the power spectrum of the sleeping brain [5], we

nonetheless observed several trends outside the alpha band that

warrant attention. In particular, we noted a tendency toward sleep

stability in conjunction with increased power in the frequencies

below 8 Hz. This accords well with the view that low-frequency

oscillatory activity (including slow-wave and delta activity)

intensifies with increasing depth of NREM sleep [11]. It should

be noted, however, that our analysis controlled for NREM sleep

stage, so the overall relationship between sleep stability and low-

frequency power, which is enhanced in stage N3 relative to N2,

was necessarily blunted in this context. The association between

reduced sound sensitivity and EEG spectral power in the low

frequencies appeared to extend even to the theta band (4–7 Hz).

In light of this observation, it is interesting to note that during

vigilance tasks, theta-rich EEG has been found to be associated

with reduced arousal [25] and deteriorated stimulus detection

[12,26].

We further observed a tendency for increased vulnerability to

disruption in conjunction with greater EEG power in higher

frequencies, including the beta band (15–25 Hz). As with alpha

activity, previous work has also shown a connection between

variation in beta activity and fluctuations in cortical arousal and

vigilance behavior [27,28]. A similar observation was made in

sleep, with enhanced beta activity now thought to signify heigh-

tened arousal in patients with insomnia [29].

As might be expected, the association between alpha power and

sleep fragility did not yield significance when REM sleep was

considered alone (P = 0.45). During REM, the relative alpha

power is more erratic and this activity may stem from

heterogeneous brain sources. Alpha activity during REM occurs

in at least two forms, conspicuous alpha bursts and background

alpha activity, which are thought to be electrophysiologically

distinct from one another and from that evident during

wakefulness. Further, alpha amplitude may be modulated by

visual imagery in the context of dreaming [2]. While the function

of alpha activity during REM remains hypothetical, the present

results suggest that it does not accompany heightened sensitivity to

one’s environment.

Future directions and applications
Previous electrophysiological studies have demonstrated that

ongoing network activity profoundly influences evoked cortical

responses and explains their dramatic variability [30]. Here we

further emphasize the role of the immediate brain state in modu-

lating perception by showing that beyond sleep stage [8] and the

overt rhythms of sleep [31], inconspicuous background activity

also varies with the soundness of sleep. In this light, alpha activity

provides a potent window onto the instantaneous responsiveness of

the sleeping brain. Future research should investigate the extent to

which other features of EEG dynamics, such as spectral coherence

[32,33], cross-frequency phase synchrony [34,35], or nested

oscillations [36,37] offer useful information about empirical mea-

sures of sleep depth.

Given that real-time fluctuations in EEG parameters provide

immediate information about sleep’s depth and its vulnerability to

disruption, it is enticing to speculate that this kind of information

could be employed by adaptive hypnotic agents guided by direct

feedback from neural activity. Such technology might be capable

Instantaneous Sleep Depth
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of combating the disruptive effects of environmental noise on sleep

and next-day cognitive performance [38,39], while optimally

preserving natural sleep physiology. At present, sleep medications

are a blunt instrument. Administered before bed, conventional

hypnotics last for a rigid duration fixed by their pharmacokinetic

properties. These drugs dominate consciousness, inducing sleep-

like sedation of unclear authenticity [40,41]. A system that allows

for dynamic drug delivery based on instantaneous feedback (using

a metric derived from alpha activity or the broader EEG power

spectrum) could momentarily protect or facilitate sleep when

vulnerable, otherwise letting natural brain rhythms run their

course. Further, such an arrangement might allow for emergency

interruptions or scheduled wake-times; such specificity is prohib-

ited by the crude sleep medications used today. Besides using

smaller doses, then, this system would afford enhanced precision

and flexibility. The present study establishes a conceptual

framework for such research, showing that sleep can be monitored

in real-time and characterized along a rich continuum of depth.

Materials and Methods

The findings described here stem from an experiment

conducted to study the disruptive salience of different sounds in

sleep. Biomarkers for individual noise tolerance (i.e., traits) were

presented in [10], whereas the current analysis seeks to elucidate

moment-to-moment variations in sleep’s vulnerability to disrup-

tion (i.e., states).

Ethics statement
Study procedures were approved by the Human Research

Committees of the Brigham and Women’s Hospital, the

Massachusetts General Hospital (MGH), and the Cambridge

Health Alliance. Written informed consent was obtained for all

participants.

Participants
Thirteen healthy volunteers (9 females and 4 males, age

24.967.3; mean 6 SD) were determined to be free from medical

or psychiatric conditions on the basis of clinical history and a

physical examination. Participants were also screened for drug,

alcohol, or caffeine dependency. Subjects reported taking no

medications that affect sleep or circadian rhythms. All participants

demonstrated normal hearing on the basis of audiometric

screening of each ear (minimum hearing level of 25 decibels

[dB] at 500, 1000, 2000 and 4000 Hz).

Study conditions
Participants slept on a consistent schedule for at least 4 days

prior to the study, as confirmed by wrist actigraphy (AW-64,

Minimitter, Bend, OR). During the study, subjects stayed at the

MGH Sleep Laboratory for 3 consecutive nights. Each night,

subjects were given the opportunity to sleep for 8.5 hours at their

normal bedtime. Research staff monitored the subjects 24 hours a

day to ensure that they did not nap. Light levels were maintained

at approximately 90 lux during waking periods, and ,1 lux

during sleep periods. The first night was used for adaptation;

subjects adjusted to the laboratory environment and were screened

for any sleep disorders visible on the polysomnogram. Acoustic

stimulation was applied only on the second and third nights.

Sleep recordings
Polysomnographic recordings were collected using a Comet XL

system (Grass-Telefactor, West Warwick, RI, USA). Skin surface

electrodes (Beckman Instrument Company, Schiller Park, IL)

captured EEG from frontal (F3 and F4), central (C3 and C4) and

occipital (O1 and O2) positions; electrooculogram (EOG); submen-

tal electromyogram (EMG); and electrocardiogram (ECG). Data

were conditioned by analogue filters (high-pass: 0.3 Hz; low-pass:

70 Hz), and digitally sampled at 200 Hz.

Experimental paradigm
On the second and third nights of the experiment, acoustic

stimulation was applied systematically throughout stages N2, N3

and REM sleep. Once stable sleep was achieved (at least 90

consecutive seconds of the same stage scored in real time), sounds

were initiated at 40 dB and replayed every thirty seconds in 5 dB

increments until an arousal was observed or 70 dB was reached

(Fig. 2). A 70 dB limit was imposed to minimize full awakenings

from sleep and prevent significant disruption of sleep architecture.

Each time an arousal was elicited, sound was withheld until stable

sleep resumed, at which time a new sound was chosen.

Acoustic stimuli were each ten seconds in duration, and drawn

from diverse sources. Noises included a telephone ringing, a toilet

flushing, an IV alarm, a hospital intercom, a door creaking and

slamming, a laundry machine, an ice machine, a towel dispenser,

road traffic, snoring, a jet engine, a helicopter, and two

conversations of positive and negative emotional valence. All

sounds except the jet and helicopter were recorded on site in a

medical unit of Somerville Hospital, Somerville, MA. Stimuli,

which were repeated through each graduated sound series, were

selected at random for each participant on each night.

Sound levels were measured using dBA-Leq-10 s, consistent with

standard methods used to evaluate the clinical effects of noise. ‘‘A’’

refers to the weighting of sounds in ranges audible to humans,

while ‘‘Leq-10 s’’ denotes an average intensity derived from the

10 seconds of the sound’s duration. The sound level in the patient

room was logged with an environmental sound monitor (Rion

Type NL-31, with Type 1 microphone) located 10 inches above

the subject’s head. Stimuli were presented on a measured average

background of 34–35 dB due to continuous ventilation in the

room.

Stimuli were delivered in surround sound using an array of four

studio-monitor loudspeakers (Event, model PS6) placed at the

circumference of a circle centered around the subject’s head. This

arrangement enabled sounds with moving sources (e.g., the

airplane) to be reproduced with apparent motion through space.

Sleep scoring
Sleep stages (in 30-second epochs) and arousals were identified

in adherence with the recommendations of the American

Academy of Sleep Medicine [6]. According to these criteria, an

arousal consists of an abrupt increase in EEG frequency lasting at

least 3 seconds, excluding that caused by a spindle, and preceded

by at least 10 seconds of stable sleep. Sleep scoring was conducted

by a registered polysomnographic technician under the supervi-

sion of the medical director of the MGH Sleep Laboratory.

Spectral estimation
The period preceding sound presentation was used to assay the

electroencephalographic sleep depth associated with each sound.

Power spectra were estimated using the multitaper method [42].

Spectra were derived from occipital electrodes (average of O1 and

O2), as waking alpha tends to predominate over these posterior

regions [43].

For each segment of analysis, alpha activity was computed as

the integral of the power spectrum in the alpha band (8–13 Hz)

divided by the total power generated in that interval. As utilized

elsewhere [4,44,45,46], this metric seeks to eliminate variance
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resulting from non-brain-based factors (e.g., degradation of

electrode contact) that occur during all-night EEG recordings.

Moreover, this process facilitates an aggregate analysis across two

experimental nights in each of thirteen subjects. To control for the

degree to which alpha power signifies wakefulness in each

individual (i.e., the subject’s native alpha generation [47]), this

measure was normalized to the corresponding value derived from

a baseline period of eyes-closed wakefulness on the same night.

When a broader range of EEG oscillatory activity was considered

(Fig. 4), the power at frequencies of 0.5 Hz to 25 Hz (in steps of

0.5 Hz) was estimated using Bartlett’s method (2-second segments)

and the Goertzel algorithm [48]. The quantities derived from

occipital electrodes O1 and O2 were averaged for subsequent

analysis. As before, the power spectral density was normalized to a

baseline waking spectrum. To facilitate meaningful comparison

across frequencies, which have different dynamic ranges, power

values were log-transformed [42] and divided by the standard

deviation of the log-spectrum observed during quiet NREM sleep

(absent sound presentation) on the same night. When the power in

the slow/delta band (0.5–4 Hz) and alpha band (8–13 Hz) were

considered as absolute, as opposed to relative, measures, the Bartlett

spectra were integrated in the corresponding ranges and the resulting

power values were standardized in the manner just described.

Statistical analysis
The influence of EEG spectral content on sleep fragility was

interrogated using survival analysis [49]. Each sound series defined

a distinct risk period (a ‘‘lifetime’’) during which sleep could be

disrupted—maintenance of sleep constitutes survival, disruption of

sleep, a failure.

Only sound series that were preceded by three contiguous 30-

second epochs of the same sleep stage and terminated in a sound-

induced arousal were used for analysis. (An arousal was judged to

be evoked from stimulation if the arousal occurred during the

sound or within 5 seconds from its conclusion.) Among these

sound series, 109 out of 724 in NREM and 45 out of 267 in REM

were right-censored, meaning that sound presentation ended

before arousal occurred.

In this paradigm, sleep stability, a function of loudness, describes

the probability of tolerating sounds of any given intensity. Sleep

fragility, the stability curve’s complement, describes the probability

of disruption due to sounds of any given intensity.

The effect of EEG spectral features on sleep fragility was evaluated

with a Cox proportional hazards regression model. The model was

stratified across subjects in order to account for individual differences

in noise tolerance. Since our loudness scale grew in discrete, 5 dB

increments, we employ the exact-partial likelihood method to handle

multiple arousals at each sound intensity [50]. A categorical ‘‘stage’’

covariate was also included to control for the conventional measures

available to characterize sleep depth.

When the power at distinct frequencies through 25 Hz were

tested independently, p-values for each frequency were adjusted

using the Holm-Bonferroni method for multiple comparisons [51].

Supporting Information

Figure S1 Alpha power is stable for minutes. This plot

shows an unbiased estimate of the autocorrelation function of relative

spectral content in the alpha band (8–13 Hz) measured in 10-second

intervals (depicted smoothed in Figure 1A). The autocorrelogram

portrays the correlation of alpha content with its subsequent values

for a range of lags. The trajectory used for this figure transcended

multiple sleep stages, thus portraying the global stability of alpha

content that might be observed at an arbitrary time of night.

(PDF)

Results S1 Supplementary Results.

(PDF)
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