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ABSTRACT

Saccharomyces cerevisiae, i.e. baker’s yeast, is a
widely studied model organism in eukaryote
genetics because of its simple protocols for
genetic manipulation and phenotype profiling. The
high abundance of publicly available data that has
been generated through diverse ‘omics’ approaches
has led to the use of yeast for many systems biology
studies, including large-scale gene network
modeling to better understand the molecular basis
of the cellular phenotype. We have previously de-
veloped a genome-scale gene network for yeast,
YeastNet v2, which has been used for various
genetics and systems biology studies. Here, we
present an updated version, YeastNet v3 (available
at http://www.inetbio.org/yeastnet/), that signifi-
cantly improves the prediction of gene-phenotype
associations. The extended genome in YeastNet v3
covers up to 5818 genes (~99% of the coding
genome) wired by 362512 functional links.
YeastNet v3 provides a new web interface to run
the tools for network-guided hypothesis gener-
ations. YeastNet v3 also provides edge information
for all data-specific networks (~2 million functional
links) as well as the integrated networks. Therefore,
users can construct alternative versions of the
integrated network by applying their own data inte-
gration algorithm to the same data-specific links.

INTRODUCTION

The complete mapping of gene-to-phenotype associations,
which is a fundamental goal in the field of genetics, seems
unconquerable due in part to the complex functional
relationship among genes. However, the relationship
among genes can be used to identify gene-to-phenotype

associations based on the principle of guilt-by-association
(1). Therefore, enormous efforts have been made to con-
struct genome-scale gene networks to enable the effective
prediction of novel gene functions and gene-to-phenotype
associations in various organisms. This task requires the
development of machine learning algorithms to infer and
integrate functional links from a wide variety of biological
data as well as efficient graph analysis algorithms to
generate novel biological hypotheses from gene networks.

Saccharomyces cerevisiae, i.e. baker’s yeast, has been
widely studied for two reasons. First, S. cerevisiae is a
single-cell eukaryote in which many human cellular
machineries have been conserved through evolution.
Second, the genetic manipulation and phenotype profiling
of S. cerevisiae are simple protocols to execute. Therefore,
numerous high-throughput studies have been conducted,
which have resulted in the generation of large data sets
that have been deposited into public databases. Access to
this abundant data, which has been derived from diverse
experimental and informational technologies, provides a
unique opportunity to develop methods in network con-
struction and analysis. Over the past several years, we
have used these data to develop genome-scale gene
networks for yeast in YeastNet (2,3).

YeastNet v2 (3) significantly improved the original
version of YeastNet (2) by removing the functional bias
in the gold-standard links to enable functionally unbiased
network training. YeastNet v2 included 5483 coding genes
with 102 803 cofunctional links and showed high predict-
ive power for independent pathway annotations and
knockout (KO) phenotypes (4). YeastNet v2 proved to
be useful for novel systems biology applications, including
the network-based systematic reconstruction of the Gene
Ontology of yeast genes (5), the prediction of the pheno-
typic effect of personal genome variations in yeast (6) and
the prediction of epistasis (7). The success of YeastNet for
these proof-of-concept novel systems biology studies
has demonstrated the power of genome-scale gene
networks in biological research. In the 5 years since
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the release of YeastNet v2, the availability of large-scale
yeast data in public databases has continued to grow.
The incorporation of these data into the existing
network is expected to further improve the functionality
of YeastNet.

Here, we present an updated version of YeastNet,
YeastNet v3, that substantially improves phenotype pre-
diction via several new approaches: (i) an extended and
less-biased set of gold-standard cofunctional links for
more efficient learning; (ii) the incorporation of a large
number of additional large-scale experimental data; (iii)
improved algorithms to infer functional associations
from each data type; (iv) an improved web interface to
serve various routs of novel hypothesis generation based
on the principle of guilt-by-association; and (v) the avail-
ability of ~2 million data-specific functional links that can
be used to construct alternative integrated networks with
user-defined integration methods.

CONSTRUCTION OF YeastNet v3

The cofunctional links of nine different data types (CC,
co-citation; CX, co-expression; DC, domain co-occur-
rence; GN, gene neighbor; GT, genetic interaction; HT,
high-throughput protein—protein interaction; LC, litera-
ture curated protein—protein interaction; PG, phylogenetic
profiles; TS, tertiary structure of protein) in YeastNet v3
are summarized in Table 1. YeastNet v3 includes 5818
genes (~99% of the yeast coding genome) with 362512
cofunctional links, which is ~3.5 times the number of
cofunctional links that were included in YeastNet v2. A
total of 81996 links (~80% of YeastNet v2 links) were
retained in the new network. The additional cofunctional
links were inferred from new data and algorithms, which
are described in the supplementary online methods.

ASSESSMENT OF YeastNet v3 FOR IMPROVED
PREDICTABILITY

Assessment by pathway annotations

To determine whether the rewired and additional func-
tional links of YeastNet v3 improved the prediction of
pathways and phenotypes in yeast, we assessed the pre-
dictive power of YeastNet v3 on different data sets. First,

Table 1. The cofunctional links of nine data types in YeastNet v3

Number of
functional
associations

Network description Number of proteins
(coverage of

coding genome)

Co-citation (CC) 4355 (74%) 82427
Co-expression (CX) 5730 (97%) 242 504
Domain co-occurrence (DC) 3679 (62%) 29 880
Genomic neighbor (GN) 1863 (32%) 29475
Genetic interaction (GT) 4365 (74%) 149 498
High-throughput PPI* (HT) 5487 (93%) 141347
Literature curated PPI* (LC) 5293 (90%) 54421
Phylogenetic profiles (PG) 2463 (42%) 54496
Tertiary structure of protein (TS) 1101 (19%) 3510
YeastNet v3 5818 (99%) 362512

“PPI: protein—protein interaction.

YeastNet v3 was assessed by pathway annotations in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (8)
database to test whether the measured accuracy of cofunc-
tional links can be generalized. KEGG provides 279 327
positive and 1385073 negative gold-standard links to test.
Only 10064 links in the KEGG database (12.5%) overlap
with the network construction in YeastNet v3, which
guarantees that the validation set is independent from
the training set. Precision-recall curves for the networks
generated from the individual data types and integrated
network are summarized in Figure 1. These curves show a
substantial improvement in YeastNet v3 compared with
the networks constructed by the individual data types as
well as the previous version of YeastNet. Because the same
benchmarking and integration methods were used in the
current and previous versions of YeastNet, the improve-
ments in the performance of YeastNet v3 are likely due to
two important changes in the current version. First, the
method of linkage discovery was changed for the phylo-
genetic profile similarity, genomic neighborhood and
genetic interaction data types, and domain co-occurrence
analysis was incorporated. Second, the amount of input
data has grown significantly since the previous version
release. The number of Medline abstracts that cite yeast
genes grew from 39 135 to 46111, and the number of ref-
erence genomes for the genome context methods grew
from 149 to 2144. We also included six new high-
throughput protein-protein interaction (PPI) data sets in
YeastNet v3, and 1639 microarray samples were used in
the current version of the network compared with the 500
microarray samples incorporated in the earlier version of
the network. Therefore, both the algorithm improvements
and the data expansion have enhanced the quality of the
inferred molecular network.

Assessment by quantitative phenotype profile data

The holy grail of genetics is to understand the genetic or-
ganization of phenotypes. Therefore, we have pursued the
development of gene networks as a platform to dissect the
genetics of complex phenotypes. The previous version of
YeastNet was able to predict the loss-of-function pheno-
type (4). We tested whether the improved quality of the
current version of the network was able to generate a more
sensitive and cost-effective genetic prediction for diverse
phenotypes. First, we compared YeastNet v3 with the
previous version of YeastNet using KO phenotype data.
We used the same set of 100 KO phenotypes collected
from the literature that was used for the previous
network study (4) and assessed the predictive power of
the networks by a receiver operating characteristic
(ROC) curve analysis. Based on the leave-one-out
method of cross-validation, we measured the prioritizing
power of every test gene for each phenotype by the
network links among member genes in the network. The
resultant ROC curves were summarized by area under
the curve (AUC) scores, which are summarized in Figure
2 for 100 tested KO phenotypes. We found that YeastNet
v3 shows significant improvements in the prediction of the
100 KO phenotypes compared with the previous network
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Figure 1. Precision-recall curves for YeastNet v3, YeastNet v2 and incorporated individual functional networks for nine distinct data types (CC,
co-citation; CX, co-expression; DC, domain co-occurrence; GN, gene neighbor; GT, genetic interaction; HT, high-throughput protein—protein
interaction; LC, literature curated protein—protein interaction; PG, phylogenetic profiles; TS, tertiary structure of protein). Precision was calculated
from cofunctional links that were derived from the KEGG pathway annotation database, which were largely independent from the links in the
network training set. Recall was measured as the percentage of coverage of the 5887 validated coding genes in the yeast genome. Gene pairs for each
functional network were ranked by log likelihood scores from the benchmarking process, as described in the text. Precision and recall were calculated
in a cumulative manner in which every consecutive 1000 gene pairs were binned (as indicated by each symbol). The plot shows that YeastNet v3

outperforms all other networks, including YeastNet v2.

(Figure 2a, P<1.17 x 10~°, Wilcoxon signed rank sum
test)

Most, if not all, phenotypes are quantitative such that
the loss of a single gene does not shut down an entire
system but provides some extent of phenotypic influence.
The degree of phenotypic influence varies by gene and
follows an approximately normal distribution. We used
genome-wide high-dimensional morphology (HDM)
profile data (9) and chemical/environmental sensitivity
(CES) profile data (10) to test the predictive power of
the network for quantitative phenotypes. There were 501
different HDM parameters that were profiled for 4718
genes with KO mutants. We generated 1002 test gene
sets using genes with extreme morphological parameter
values from both sides of the distribution (with a
P-value threshold of 10™%). Among these test gene sets,
we used 586 sets that each contained no less than five
member genes to assess the predictive power of the
network. From the CES database, we selected CES pheno-
types that had no less than five sensitive genes with a
P-value of 107 after five generations, for a total of 88
gene sets. For both quantitative phenotype data sets, we
observed a significant improvement in YeastNet v3
compared with the previous network (Figure 2b and c,
P<22x107" for both HDM and CES, Wilcoxon
signed rank sum test). From these results, we conclude
that the improved network quality has enhanced the
effectiveness of YeastNet v3 for predictive genetics
research.

WEB-BASED SERVICES FOR YeastNet v3
Network-guided novel hypothesis generation

The principle of guilt-by-association has been an effective
method to generate novel hypothesis based on molecular
networks. The previous version of YeastNet was used to
successfully identify novel ribosomal biogenesis genes (11)
and shmoo localized proteins (12). Both the quality and
usability of a network are important to promote network-
guided predictive genetics among experimental biologists.
Therefore, we completely re-implemented the web inter-
face for YeastNet v3 to provide three options for hypoth-
esis generation under ‘network search’ (Figure 3): (i) find
new members of a pathway; (i) infer functions from
network neighbors; and (iii) find modulators for a cell
state.

From the ‘Find new members of a pathway’ option,
users can predict novel candidate genes for a query func-
tional concept (e.g. function, pathway or phenotype)
based on the network associations of the user-provided
genes that are known to be related to the query functional
concept. Users can also visualize a network for the user-
provided genes and their neighbors on YeastNet v3 using
Cytoscape web (13). From the ‘Infer functions from
network neighbors’ option, users can also predict novel
functions for uncharacterized genes. If a user submits a
query gene, then YeastNet looks up its network neighbors,
collects their annotated Gene Ontology biological process
terms and lists the 30 most enriched annotations.
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Figure 2. Box-and-whisker plots summarize the predictive power of networks for various phenotype data sets: (a) 100 knockout phenotypes (KO);
(b) 586 high-dimensional morphology parameters (HDM); and (c) 88 types of chemical/environmental sensitivities (CES). The predictive power of the
phenotypes was measured by an ROC curve analysis and summarized as area under the curve (AUC). AUC scores present how well a network
recovers the connectivity among genes for a given phenotype, where an AUC of 0.5 indicates a prediction based on chance and an AUC of 1
indicates a perfect prediction. In the given box-and-whisker plots, the boundaries of the box represent the first and third quartiles, the whiskers
represent the 10th and 90th percentiles, and the black circles represent individual outliers.

YeastNet also provides a tool to predict modulators for
a cell state. Yeast cells change their physiological state in
response to harsh environments or chemical treatments.
Many genetic modulators are involved in the transition
between cell states. Although modulators are often tran-
scriptionally activated, many modulators do not signifi-
cantly alter their transcription levels during cell state
modulation. Therefore, the expression profile may be in-
sufficient to identify the genetic modulators for a cell state.
Our hypothesis is that the cell state modulators are func-
tionally coupled in YeastNet. Therefore, network links
could identify modulators with no transcriptional change
by their connections to genes with transcriptional changes.
For the ‘Find modulators for a cell state’ option, the user
submits a set of differentially expressed genes (DEGs) for
a cell state. YeastNet v3 predefines gene sets for each gene
in the network with their network neighbors such that the
name of the gene set was assigned by the central hub gene.
For the given query DEGs, the network server calculates
the significance of the association between the DEGs and
each gene set by hypergeometric probability. If a gene set
is associated with the DEGs, its central hub gene is a can-
didate modulator for the query cell state. For example, we
submitted 66 DEGs upon the treatment of an antifungal
drug, sampangine (14). Because sampangine perturbs
heme metabolism, the treatment of the drug shows a
similar transcriptional response to hypoxia. The results
showed that many genes that are required for anaerobic
growth were highly ranked. However, many of the top
candidates did not show a transcriptional response to
sampangine, but did show strong associations to the
DEGs by network links. For example, FLR1, a multidrug
transporter, which might modulate drug response state

was highly ranked (sixth) by YeastNet, but did not show
a transcriptional response. Therefore, YeastNet provides a
complement to DEG analysis to find cell state modulators.

Availability of data-specific functional link information

A researcher may want to investigate alternative methods
to integrate networks or perform in-depth analysis for
each type of functional association between genes. To
meet these potential demands, YeastNet v3 releases
network edge information for data-specific networks in
addition to the integrated network. This information can
be downloaded from the ‘Network-download” page.
YeastNet v3 provides networks for all individual data
sets (50 sets for CX, 10 sets for GT and 12 sets for HT),
which include a total of ~2 million edges.

CONCLUSIONS

YeastNet v3 is a freely available database that provides
a comprehensive cofunctional gene network for
S. cerevisiae. This version of YeastNet has been substan-
tially improved from previous versions by including novel
linkage discovery algorithms, additional input data and
versatile web-based analysis tools. YeastNet users will be
able to generate diverse biological hypotheses with higher
accuracy and sensitivity. We also expect that YeastNet v3
will improve other related networks and network con-
struction tools using orthology-based links from
YeastNet (15). We are confident that YeastNet v3 will
provide a significant resource for predictive genetics and
continue to facilitate new challenges in systems biology.
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Figure 3. A schematic figure of the three options for network-guided hypothesis generation that are implemented in the YeastNet v3 web server.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors thank Sunmo Yang for computational
support.

FUNDING

National Research Foundation of Korea [2010-0017649,
2012M3A9B4028641, 2012M3A9C7050151] and the Next-
Generation BioGreen 21 Program [SSAC, PJ009029
to I.LL.]. Funding for open access charge: National
Research Grant.

Conflict of interest statement. None declared.

REFERENCES

1. Lee,I. (2013) Network approaches to the genetic dissection of
phenotypes in animals and humans. Anim. Cells Syst., 17, 75-79.

2. Lee,I., Date,S.V., Adai,A.T. and Marcotte,E.M. (2004) A
probabilistic functional network of yeast genes. Science, 306,
1555-1558.

. Lee,I., Li,Z. and Marcotte,E.M. (2007) An improved, bias-

reduced probabilistic functional gene network of baker’s yeast,
Saccharomyces cerevisiae. PLoS One, 2, €¢988.

. McGary,K.L., Lee,I. and Marcotte,E.M. (2007) Broad network-

based predictability of Saccharomyces cerevisiae gene loss-of-
function phenotypes. Genome Biol., 8, R258.

. Dutkowski,J., Kramer,M., Surma,M.A., Balakrishnan,R.,

Cherry,J.M., Krogan,N.J. and Ideker,T. (2013) A gene
ontology inferred from molecular networks. Nat. Biotechnol., 31,
38-45.

.Jelier,R., Semple,J.I., Garcia-Verdugo,R. and Lehner,B. (2011)

Predicting phenotypic variation in yeast from individual genome
sequences. Nat. Genet., 43, 1270-1274.

. Lee,l., Lehner,B., Vavouri,T., Shin,J., Fraser,A.G. and

Marcotte,E.M. (2010) Predicting genetic modifier loci using
functional gene networks. Genome Res., 20, 1143-1153.

. Kanehisa,M., Goto,S., Sato,Y., Furumichi,M. and Tanabe,M.

(2012) KEGG for integration and interpretation of large-scale
molecular data sets. Nucleic Acids Res., 40, D109-D114.

.Ohya,Y., Sese,J., Yukawa,M., Sano,F., Nakatani,Y., Saito,T.L.,

Saka,A., Fukuda,T., Ishihara,S., Oka,S. et al. (2005) High-
dimensional and large-scale phenotyping of yeast mutants.
Proc. Natl Acad. Sci. USA, 102, 19015-19020.

. Hillenmeyer,M.E., Fung,E., Wildenhain,J., Pierce,S.E., Hoon,S.,

Lee,W., Proctor,M., St Onge,R.P., Tyers,M., Koller,D. et al.
(2008) The chemical genomic portrait of yeast: uncovering a
phenotype for all genes. Science, 320, 362-365.

. Li,Z., Lee,l., Moradi,E., Hung,N.J., Johnson,A.W. and

Marcotte,E.M. (2009) Rational extension of the ribosome
biogenesis pathway using network-guided genetics. PLoS Biol., 7,
€1000213.


http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt981/-/DC1
This work was supported by the 

D736 Nucleic Acids Research, 2014, Vol. 42, Database issue

12. Narayanaswamy,R., Moradi,E.K., Niu,W., Hart,G.T., Davis,M.,

13.

McGary,K.L., Ellington,A.D. and Marcotte,E.M. (2009)
Systematic definition of protein constituents along the major
polarization axis reveals an adaptive reuse of the polarization
machinery in pheromone-treated budding yeast. J. Proteome. Res.,
8, 6-19.

Lopes,C.T., Franz,M., Kazi,F., Donaldson,S.L., Morris,Q. and
Bader,G.D. (2010) Cytoscape Web: an interactive web-based
network browser. Bioinformatics, 26, 2347-2348.

14. AgarwalLA K., Xu,T., Jacob,M.R., Feng,Q., Lorenz,M.C.,
Walker,L.A. and Clark,A.M. (2008) Role of heme in the
antifungal activity of the azaoxoaporphine alkaloid sampangine.
Eukaryot. Cell, 7, 387-400.

15. Kim,E., Kim,H. and Lee,l. (2013) JiffyNet: a web-based instant
protein network modeler for newly sequenced species. Nucleic
Acids Res., 41, W192-W197.



