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1 |  INTRODUCTION

Pulmonary arterial hypertension (PAH) or Group I Pulmonary 
Hypertension is a severe debilitating syndrome of multiple 
etiologies including connective tissue disorders, drugs, tox-
ins, and heritable causes with a 5-year overall survival rate 
of 65% of the affected individuals in spite of advanced thera-
pies (Farber et al., 2015).The prevalence of PAH worldwide is 

estimated to be between 6.6 and 26 cases per million individ-
uals (Hoeper et al., 2016) and the incidence of PAH according 
to the Registry to Evaluate Early and Long-Term Pulmonary 
Arterial Hypertension Disease Management (REVEAL) reg-
istry is 2.4 per million of the adult population in the United 
States (Frost et al., 2011). PAH affects people of all geographic 
locations, ages, races, and sex (Brown et al., 2011), although fe-
males are ~ 2 to 3 times more likely to develop PAH compared 
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Abstract
Pulmonary arterial hypertension (PAH) is a syndrome diagnosed by increased mean 
pulmonary artery (PA) pressure and resistance and normal pulmonary capillary 
wedge pressure. PAH is characterized pathologically by distal pulmonary artery 
remodeling, increased pulmonary vascular resistance, and plexiform lesions (PLs). 
Right ventricular fibrosis and hypertrophy, leading to right ventricular failure, are the 
main determinants of mortality in PAH. Recent work suggests that right ventricular 
fibrosis results from resident cardiac fibroblast activation and conversion to myofi-
broblasts, leading to replacement of contractile cardiomyocytes with nondistensible 
tissue incapable of conductivity or contractility. However, the origins, triggers, and 
consequences of myofibroblast expansion and its pathophysiological relationship 
with PAH are unclear. Recent advances indicate that signals generated by adaptive 
and innate immune cells may play a role in right ventricular fibrosis and remodeling. 
This review summarizes recent insights into the mechanisms by which adaptive and 
innate immune signals participate in the transition of cardiac fibroblasts to activated 
myofibroblasts and highlights the existing gaps of knowledge as relates to the devel-
opment of right ventricular fibrosis.
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to males (Frost et  al.,  (2011)). Male patients diagnosed with 
PAH are older than female patients at the time of diagnosis and 
have poorer outcomes (Maron & Galiè, 2016). PAH is clini-
cally defined as a syndrome of resting mean pulmonary arterial 
pressure ≥25 mmHg measured by right heart catheterization 
(Hatano & Strasser, 1975; Hoeper et al., 2013), although a re-
cent World Symposium on Pulmonary Hypertension suggested 
redefining adult Group 1 PAH as a mean resting pulmonary 
arterial pressure ≥20  mmHg with pulmonary vascular resis-
tance ≥3 Wood Units and pulmonary artery wedge pressure 
≤15 mmHg (Simonneau et al., 2018). Symptoms of PAH in-
clude dyspnea, fatigue, weakness, angina, syncope, peripheral 
edema, and abdominal distension, (Barst et al., 2004) and there 
is currently no curative treatment.

Since right ventricular failure is the usual cause of mor-
tality in PAH, this review summarizes knowledge regarding 
adaptive and innate immune mechanisms and the develop-
ment of right ventricular fibrosis in PAH and relates this to 
growing knowledge of the role of immune mechanisms and 
fibrosis in left ventricular failure.

2 |  PATHOPHYSIOLOGY

PAH is characterized pathologically by excessive vascular re-
modeling of the intima, media, and adventitial layers of the dis-
tal pulmonary precapillary arterioles arising from accelerated 
proliferation of smooth muscle cells, pulmonary endothelial 
cells and fibroblasts (Rabinovitch, 2012), leading to obstruction 
of the pulmonary vessels and elevated pulmonary vascular re-
sistance (Humbert, Sitbon, & Simonneau, 2004). Additionally, 
there is rarefication of distal vessels which can increase pressure 
and reduce lung perfusion. This pulmonary vasculopathy leads 
to increased pulmonary vascular resistance, right ventricular 
pressure overload, right ventricular hypertrophy, right ventricu-
lar failure, and death (Vonk Noordegraaf & Galie, 2011). The 
thin-walled right ventricle initially accommodates increases in 
pressure with increased contractility, hypertrophy, and homeo-
metric adaptation without change in the dimensions of the heart. 
However, rapid increases in pulmonary arterial pressure lead to 
maladaptive remodeling of the right ventricle, right heart dila-
tation, stiffening of the ventricular wall, and subsequent heart 
failure (Naeije, 2015; Naeije & Manes, 2014). Until recently, 
the right ventricle has been a poorly understood and understud-
ied cardiac structure.

The right ventricle originates from the secondary heart 
field with lower oxygen demand compared to the left ven-
tricle (Friedberg & Redington,  2014). The crescent-shaped 
thin walled right ventricle of the heart can be easily fatigued 
since right ventricular mechanical function is solely depen-
dent on ventricular preload and afterload. To compensate for 
increases in right ventricular pressure afterload, the highly 
compliant right ventricle adapts rapidly to changes in volume 

load by enhancing contractility, thus causing right ventricular 
hypertrophy (Naeije & Manes, 2014). The left ventricle may 
also fail in PAH as the dilated right ventricle impairs filling 
of the left ventricular cavity, with resultant reduction in the 
left ventricular ejection fraction, contractility, and maximum 
force-generating capability (Manders et  al.,  2014). Under 
normal conditions, the right ventricle is much smaller than 
the left ventricle, however, in the setting of PAH, increases 
in systolic and diastolic pressures cause concentric right ven-
tricle hypertrophy. The increases in right ventricular systolic 
and diastolic pressures further lead to increased muscle mass 
through protein synthesis and cardiomyocyte hypertrophy. 
Adaptive hypertrophy of the right ventricle is not maintained 
in the presence of chronic pressure increases, ultimately 
leading to right ventricular decompensation, impaired dia-
stolic function, and low cardiac output (Vonk Noordegraaf 
& Galie, 2011). There is no clear consensus on whether the 
alterations in the right ventricle are adaptive or maladaptive 
and on the mechanism(s) involved in the progression to heart 
failure (Badagliacca et  al.,  2016; Rich et  al.,  2010; Ryan 
et al., 2015; Veerdonk, Bogaard, & Voelkel, 2016). Animal 
models of PAH suggest that alterations in the right ventric-
ular perfusion, metabolism, vessel rarefaction, and right 
ventricular fibrosis contribute to the switch from adaptive to 
maladaptive right ventricular hypertrophy and failure (Rain 
et al., 2016; Thenappan, Ormiston, Ryan, & Archer, 2018). 
pathological right ventricular fibrosis characterized by un-
controlled cardiac fibroblast proliferation and excess fibril-
lary collagen deposition causes increased right ventricular 
diastolic stiffness associated with impaired diastolic func-
tion and clinical progression of PAH in human patients (Trip 
et  al.,  2015). In patients with PAH, circulating markers of 
collagen metabolism indicating fibrotic responses and vascu-
lar narrowing indices are correlated with a higher mortality 
(Golob, Wang, Prostrollo, Hacker, & Chesler, 2016; Safdar 
et al., 2014; Vanderpool et al., 2015). PAH associated with 
connective tissue diseases, such as systemic sclerosis, has a 
poor prognosis with a 5-year overall survival rate of 50% in 
affected individuals (Safdar et  al., 2014; Trip et  al., 2015). 
The pro-fibrotic mediators and resident cardiac fibroblast 
activators involved in the switch from adaptive to maladap-
tive right ventricular remodeling, decompensation, decreased 
contractility and cardiac output, systolic and diastolic dys-
function are unknown.

3 |  IMMUNE CELL 
PATHOGENESIS OF CARDIAC 
FIBROSIS

Most literature to date has focused on the pathogenesis of left 
ventricular fibrosis, and considerably less is known regarding 
the pathogenesis of right ventricular fibrosis, including both 
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nonimmune and immune cell mechanisms that may contrib-
ute to inflammation mediated fibrosis.

The most common connective tissue cell types in the 
myocardium are the resident cardiac fibroblasts or differenti-
ated myofibroblasts that provide structural support and pro-
mote conductivity. Cardiac fibroblasts are morphologically 
and structurally diverse consisting of dynamic, nonmyocyte 
populations residing in the epicardium. These cells regulate 
tissue homeostasis and participate in repair and regeneration 
after an ischemic/reperfusion or pressure overload event. The 
contractile cardiac fibroblasts are heterogeneous in function 
and secrete extracellular matrix upon activation by a spec-
trum of stress signals and inflammatory signals to prevent 
ventricular rupture (Ivey & Tallquist, 2016).

Cardiac fibroblasts migrate, proliferate, and differentiate 
in response to autocrine and paracrine signals and are im-
plicated both in tissue regeneration and pathology (Souders, 
Bowers, & Baudino, 2009). Cardiac fibroblasts show cham-
ber-specific proliferative response. The atrial cardiac fibro-
blasts proliferate at a rate three folds higher than ventricular 
cardiac fibroblasts and this mechanisms is believed to protect 
the atria while the ventricle undergoes pressure or volume 
associated remodeling (Rizvi et  al.,  2016). Furthermore, a 
recent paper indicates that cyclic overstretch and aldosterone 
modulates pro-proliferative and profibrotic activators, mi-
R21 and miR-221 in the RV but not the LV in vitro and in 
vivo (Powers et al., 2020).

Pro-inflammatory cytokines from cardiac fibroblast cells, 
innate immune cells, and vascular cells have been identified 
that may contribute to fibrotic responses through varied mech-
anisms. Activated cardiac fibroblasts produce mediators such 
as monocyte recruitment factors (MCP-1), growth factors, 
cytokines, and proteases that are involved in tissue repair and 
regeneration (desJardins-Park HE, Foster DS, & Longaker 
MT.,  2018; Furtado, Nim, Boyd, & Rosenthal,  2016). The 
sites of action of these tissue repair and regeneration media-
tors and their role in fibrosis are poorly understood. Lineage 
tracing studies are unable to fully identify cardiac fibroblasts 
types because the fibroblasts exhibit distinct phenotypic 
markers depending on the niche and microenvironmental 
cues. Typical fibroblast markers such as, collagen 1α tran-
scription factor TCF21, and membrane receptor PDGFRα are 
expressed by other cell types contributing to the ambiguity 
of the identity of fibroblasts (Tallquist,  2018; Tallquist & 
Molkentin, 2017). The activation states and fate of the fibro-
blasts in right ventricular pressure overload conditions such 
as PAH are unknown.

Additionally, exogenous noxious stimuli, such as cigarette 
smoke, may promote the proliferation of rat cardiac fibro-
blasts, acting through α7 nicotinic acetylcholine receptors 
and various protein kinases (Vang et al., 2017). In the event 
of cardiac injury, fibroblasts differentiate into myofibroblasts 
expressing alpha smooth muscle actin with rapid enlargement 

of Golgi apparatus. The myofibroblasts initiate tissue recon-
struction by producing extracellular matrix and transmitting 
signals to neighboring cardiomyocytes and stromal cells 
(Frangogiannis, 2017; Furtado et al., 2016; Pellman, Zhang, 
& Sheikh, 2016; Shinde & Frangogiannis, 2014). In right ven-
tricular fibrosis, dysregulated fibroblast behavior in response 
to unknown extrinsic factor(s) leads to matrix deposition and 
scar formation (Choudhary, Troncales, Martin, Harrington, 
& Klinger, 2011; Schreier, Hacker, Song, & Chesler, 2013; 
Wynn, 2007). The mediators and mechanisms underlying the 
transition of cardiac fibroblasts to myofibroblasts or the fate 
of myofibroblasts beyond scar tissue formation in the settings 
of right ventricular afterload are unclear. We discuss below 
several specific mechanisms by which immune cells may par-
ticipate in the process of ventricular fibrosis and failure, with 
emphasis on right-sided ventricular disease when possible.

4 |  TRANSDIFFERENTIATION 
OF IMMUNE CELLS INTO 
MYOFIBROBLASTS

Myeloid cells or wound macrophages transdifferentiate into 
cardiac myofibroblast cells in response to miR-21 (Sinha 
et al., 2018). The sudden surge in the number of myofibro-
blasts in the ventricle is in response to pressure overload is 
highly debated. One of the paradigms is that myeloid cells 
are a source of the myofibroblasts recruited to the ischemic 
regions and adds to the resident myofibroblast pool fol-
lowing myocardial injury (Sinha et  al.,  2018). Resident 
cells such as epidermal and endothelial cells transdifferen-
tiate into myofibroblasts adding to the heterogeneity (He 
et al., 2017). Cardiac fibroblasts can also be reprogrammed 
into cardiomyocytes using specific factors suggesting the 
versatility and plasticity (Fu & Srivastava, 2015; Lu et al., 
2020). Researchers have also shown the transdifferentiation 
of fibroblasts into endothelial cells to recapillarize the tissue 
(Sayed et al., 2015).

Irrespective of the origin of the increased myofibroblast 
population, it is commonly agreed that the activated, secre-
tory interstitial, and perivascular cardiac myofibroblasts are 
the principal drivers of cardiac fibrosis through excess fibril-
lary collagen Iα deposition and right ventricular maladaptive 
remodeling (Tallquist & Molkentin, 2017). The numbers of 
cardiac fibroblasts vary among species, with mice having 
the lowest percentage of cardiac fibroblasts and the humans 
having the largest percentage of cardiac fibroblasts, which 
may correlate with inter-species heterogeneity in fibrotic 
responses.

The transdifferentiation of immune cells, endothelial cells, 
and epithelial cells into cardiac myofibroblast cells in the left 
ventricle to secrete cytokines and extracellular matrix is dis-
puted as transdifferentiation offers no explanation for the role 
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of resident cardiac fibroblasts (Zeisberg & Kalluri,  2010). 
We hypothesize that sufficient energy, nutrients, and cell 
communication are required to cause transdifferentiation by 
rechanneling of resources from other regions of the heart and 
from other organs. Therefore, in-depth study of knocking 
out specific noncardiac fibroblast populations and studying 
the cardiac myofibroblast number in homeostasis and dis-
ease conditions is required. In a genetic periostin conditional 
knockout mouse model, newly activated fibroblast deletion 
leads to insufficient collagen production and ventricular rup-
ture emphasizing the significance of activated fibroblasts in 
tissue healing (Kanisicak et al., 2016). Another study showed 
similar results in preventing adverse cardiac remodeling in 
mice when removing the periostin-expressing activated fi-
broblasts (Kaur et al., 2016).

High resolution, comprehensive gene expression profiling 
of mouse heart nonmyocytes indicates cellular diversity of 
“nonmyocytes” and their subpopulations. Added to the com-
plexity are sex-specific cardiac gene expression and the emer-
gence of a “fibrocyte” population defined as a subpopulation 
of cells that exhibit hybrid features of macrophages and fi-
broblasts (Skelly et al., 2018). Further single cell RNAseq on 
total cardiac nonmyocyte populations and enriched fibroblast 
lineages (Platelet derived growth factor receptor [PDGFR]
α-GFP+ populations) in sham operated and 3 and 7  days 
post myocardial infarction models show previously uniden-
tified lineages among the fibroblasts (Farbehi et al., 2019). 
Novel subtypes of myofibroblasts with characteristic pro- or 
anti-fibrotic signatures have also been described (Farbehi 
et al., 2019). Cardiac fibroblast cells may have greater plas-
ticity than previously recognized in that they may transdiffer-
entiate into different cell populations with more than a single 
function in response to metabolic stress, oxidative stress, and 
inflammatory cytokines. Research related to the subtypes of 
myofibroblasts and their interactions with endothelial cells, 
cardiomyocytes, immune cells, and resident fibroblasts are 
emerging with the advance of multi-dimensional analysis 
using single-cell transcriptomics, proteomics and mass cy-
tometry. Future reductionist approaches may be directed 
toward understanding of the roles of myofibroblast subpopu-
lations in homeostasis, inflammation, fibrosis, tissue healing, 
transdifferentiation of cell types, and tissue regeneration.

A holistic approach of validating results in autopsy or ex-
planted heart studies and rodent models may be helpful in 
order to reconcile the differences in pro-fibrotic responses 
among species and models of right ventricular pressure 
overload and considering the variability in number of resi-
dent fibroblasts. Some of the difficulties in obtaining human 
ventricular tissue can be circumvented by obtaining human 
ventricular cardiac fibroblasts from commercial sources, ex-
planted hearts rejected for transplant, or from autopsies. As 
stiffness is critical for the transformation of cardiac fibro-
blasts into myofibroblasts, results from studies using tissue 

culture dishes require validation in 3D models, artificial ma-
trixes and directional and positional cues in reconstructed 
tissue injury models. The recent surge in the discovery of im-
mune mediators in the pro-fibrotic responses in right ventric-
ular pressure overload warrants further investigation in the 
roles of immune cells and cytokines in cardiac fibrosis and 
right ventricular dysfunction (Dewachter & Dewachter, 2018; 
Sydykov et al., 2018).

5 |  ROLE OF IMMUNE CELLS 
AND CYTOKINES

Inflammatory cells such as mast cells, macrophages, dendritic 
cells, and B cells and T cells are seen in the perivascular fi-
brotic regions and have been implicated with worse outcomes 
in PAH (Heath & Yacoub, 1991; Perros et al., 2012; Perros, 
Dorfmüller, Souza, Durand-Gasselin, Mussot, et al., 2007; 
Price et al., 2012; Tuder, Marecki, Richter, Fijalkowska, & 
Flores,  2007). Helper T cells stimulate B cells to produce 
antibodies and activate macrophages; these macrophages are 
divided into classically activated (M1) or alternatively acti-
vated (M2) categories that promote Th1 and Th2 responses 
respectively (Mills,  2012; Mills, Kincaid, Alt, Heilman, & 
Hill, 2000). CD4+ helper T cells secrete mediators that can 
interfere with fibroblast and macrophage function and result 
in progression of fibrosis in lungs (Chakraborty, Chatterjee, 
& Bhattacharyya,  2018). In the heart, CD4+  T cell activ-
ity can influence cardiac remodeling and scarring (Ramos, 
Hofmann, & Frantz, 2016). Depletion of CD4+ T cells, the 
T helper cells, slows the progression of pulmonary arterial 
muscularization in the lungs (Daley et al., 2008). T-cell tar-
geted antibodies reverse cardiac fibrosis in systemic sclerosis 
patients and a mouse model of inflammation associated fi-
brosis (Crunkhorn, 2016).

The inflammatory process includes the formation of an 
inflammasome complex that detects pathogens and activates 
macrophages to secrete pro-inflammatory cytokines such as 
interleukin-1β (IL-1β) and IL-18 as a part of an innate im-
mune response (Figure 1) (Ceneri et al., 2017; Latz, Xiao, & 
Stutz, 2013). PAH patients have significant increases in circu-
lating IL-1β and IL-18 levels when compared to normal healthy 
patients associated with adverse outcomes (Elaine et al., 2010; 
Humbert et  al.,  1995; Ross, Strieter, Fishbein, Ardehali, & 
Belperio, 2012). IL-18 increases smooth muscle cell prolifer-
ation, contributing to hypertrophy and fibrosis in WHO clas-
sified Type I PAH patients (Ross et  al.,  2012). Additionally, 
interleukin family cytokines such as IL-2, IL-4, IL-6, IL-8, 
IL-10, IL-12p70, and tumor necrosis factor-α (TNFα) are 
signatures of right ventricular failure in PAH patients (Elaine 
et  al.,  2010; Humbert et  al.,  1995). Transgenic mice overex-
pressing IL-6 develop vascular remodeling and PAH through 
proliferative and anti-apoptotic mechanisms, when exposed to 
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hypoxic conditions (Steiner et  al.,  2009). In humans, higher 
levels of these aforementioned inflammatory cytokines are in-
dependently associated with mortality in PAH patients, indicat-
ing the significance of macrophage derived cytokines in PAH 
(Cracowski et al., 2014). This corresponds with a previous study 
that suggested that increased cytokine levels in blood were cor-
related with decreased chances of survival at 1-year, 3-year, and 
5-year time points in PAH patients (Elaine et al., 2010). These 
results suggest that cytokine levels are associated with fibrosis 
and mortality in humans.

Transcriptomic profiling of right ventricle in monocro-
taline-treated male Sprague Dawley rats and comparisons 

with right ventricle of pulmonary artery banded mice and 
humans with bone morphogenetic protein receptor type 2 
(BMPR2) mutations shows the signatures of mitochondrial 
dysfunction, fibrosis, angiogenic rarefaction, and inflamma-
tion in right heart failure (Potus, Hindmarch, Dunham-Snary, 
Stafford, & Archer, 2018). Annexin A1(ANXA1), identified 
as a key dysregulated gene in decompensated rat hearts, is 
expressed primarily by leukocytes and inhibits ET-1 asso-
ciated inflammatory cytokine secretion (Potus et al., 2018). 
Proinflammatory gene expression, fibrotic gene expression, 
and collagen I deposition in the left ventricle increases in 
ANXA1 knockout mice after myocardial infarction (Qin 

F I G U R E  1  Complexity and interdependence of pathogenic processes in right ventricular fibrosis and pulmonary arterial hypertension

a

b
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et al., 2017). These animal studies also indicate the impor-
tance of cytokines in sustaining fibrosis leading to ventricular 
failure.

Elevated levels of chemokines such as Regulated upon 
Activation, Normal T Cell Expressed and Presumably 
Secreted (Dorfmüller et al., 2002), fractalkine (CX3CL1) 
(Perros, Dorfmüller, Souza, Durand-Gasselin, Godot, 
et al., 2007), CC chemokine ligand 2 (CCL2) (Sanchez 
et al., 2007), and CXCL10 (Ross et al., 2012) are also found 
in patients with PAH. Proteomic profiling of blood bio-
markers to identify the immune cell subtype on 281 PAH 
patient cohorts identified several pro-inflammatory cyto-
kines, chemokines and growth factors central to immune 
system upregulation, such as CCL4, CCL5, TNF-related 
apoptosis-inducing ligand, CCL7, Macrophage migra-
tion inhibitory factor, and CCL11 (Sweatt et  al.,  2019). 
Moreover, researchers have identified clinical risk associ-
ated immune phenotypes that are independent of the WHO 
group 1 subtypes (Sweatt et al., 2019). Altogether, it is un-
clear if these pro-inflammatory cytokines and chemokines 
also participate in right ventricular fibrosis.

6 |  ROLE OF MACROPHAGE 
SUBTYPES

Cardiac injury, such as myocardial infarction, activates the 
innate immune response through the elicitation of an inflam-
matory phase and a reparative phase. Mutually exclusive 
immune cell populations are the main players of the innate 
immune response. Pro-inflammatory lymphocyte antigen 6 
rich in cysteine (Ly6Chi) monocytes from splenic reservoirs 
or bone marrow give rise to activated M1 macrophages, 
which promote inflammation and phagocytosis intended to 
remove dead and dysfunctional cardiomyocytes (Barnette 
et  al.,  2018). The macrophages are then replenished dur-
ing inflammatory conditions through recruitment of other 
macrophages in the chemokine receptor type 2 (CCR2) 
and monocyte chemotactic protein-3 (MCP3)-dependent 
manner (Gerasimovskaya et  al.,  2012; Stow, Ching Low, 
Offenhäuser, & Sangermani,  2009). The reparative Ly6low 
monocytes are associated with alternatively activated M2 
macrophages which resolve the inflammation and propagate 
repair through collagen deposition to maintain the structural 
integrity of the left ventricle (Barnette et al., 2018; Dewald 
et  al.,  2004; Jugdutt, Joljart, & Khan,  1996; Nahrendorf, 
Pittet, & Swirski, 2010).

While the immune system participates in the resolution 
of injury, it often “overreacts” to the initial “trigger” by a 
process of bystander damage to neighboring cells (Epelman, 
Liu, & Mann, 2015). Recent single cell sequencing studies 
point to the significant role of tissue resident macrophages 
in inflammation and tissue repair. Resident macrophages in 

the heart are distinguished by the cell surface expression of 
CCR2 (Bajpai et al., 2018). The CCR2- macrophages enter 
the heart during embryonic development and in the absence 
of monocyte recruitment have a role in tissue homeostasis 
(Lavine et al., 2014; Leid et al., 2016). In contrast, the CCR2+ 
macrophages are recruited after a few weeks of life and are 
maintained through monocyte recruitment and proliferation 
(Bajpai et  al.,  2018). CCR2+ macrophages are associated 
with initiation of inflammation and coronary angiogenesis, 
tissue repair, and cardiac regeneration (Bajpai et al., 2018). 
A shift in the balance from CCR2- to the CCR2+ population 
is seen in patients with left ventricular heart failure (Bajpai 
et al., 2018). Antibody depletion of CCR2+ macrophages al-
leviates left ventricular remodeling and cardiac fibrosis (Patel 
et  al.,  2018). CCL2 global deletion mice have attenuated 
postinfarct left ventricular remodeling and reduced accumu-
lation of myofibroblasts (Dewald et al., 2005). Macrophage 
also play a role in adverse remodeling and right ventricular 
hypertrophy due to pressure overload (Forman, Brower, & 
Janicki, 2006). Macrophage derived cytokines such as IL-1β 
are associated with right ventricle failure and PAH in animal 
models in dogs, rats and pigs (Belhaj et al., 2013; Dewachter 
et al., 2010; Rice et al., 2016; Rondelet et al., 2012). Strong 
evidence suggests the association of plasma macrophage-me-
diated inflammatory cytokines such as TNFα, IL-1β, and 
IL-6 with cardiac remodeling such as hypertrophy, fibrosis 
and apoptosis in heart failure (Gullestad et al., 2012). Fibrosis 
is a feature of several chronic inflammatory illnesses involv-
ing both innate and adaptive immune response (Wynn & 
Ramalingam, 2012). Inflammation and fibrosis are inter-re-
lated and have many overlapping aspects. Macrophages, T 
helper cells, and myofibroblasts play important roles in both 
inflammation and in fibrosis (Lupher & Gallatin, 2006; Wick 
et al., 2010).

Tissue repair usually begins with inflammation, which 
involves the recruitment of cytokines and the proliferation 
and conversion of fibroblasts into myofibroblasts (Lupher 
& Gallatin,  2006). Myofibroblasts and CD4+  T cells se-
crete collagen and TGF-β functioning as anti-fibrotic and 
anti-inflammatory cytokine. Reactive fibrosis results from 
a switch from the initial Th1 inflammatory cell response 
to Th2 cells with prolonged exposure to an inflammatory 
stimulus response (Usher et al., 2019). The Th1 response 
involves the production of IFN-gamma and IL-2 production 
by the macrophages. The Th1 response is generally effec-
tive against intracellular parasites. The Th2 cell responses 
involve production of IL-4, IL-5, IL-6, IL-10, and IL13 
cytokines that participate in tissue healing through colla-
gen deposition and fibrosis. IL-17, IL-6, TNFα, and IL-1 
feedback loops are important drivers of chronic inflam-
matory disease (Usher et  al.,  2019). TGF-β, pro-inflam-
matory, and pro-fibrotic molecules are the primary driver 
of fibrosis in other tissues (Usher et  al.,  2019). Elevated 
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TGF-β expression correlates with abnormal connective tis-
sue deposition seen in fibrotic diseases (Usher et al., 2019; 
Wynn & Ramalingam, 2012).

The macrophage cells produce cytokines such as IL-1β 
to initiate inflammation. IL1β belongs to the family of in-
flammatory cytokines and their receptors share similar in-
nate functions, like pattern recognition, with conserved 
Toll-like receptor families (Gerasimovskaya et  al.,  2012). 
PAH patients have elevated serum IL-1β levels (Voelkel, 
Tuder, Bridges, & Arend,  1994). IL-1β also accumulates 
in the right ventricle of patients with PAH (Cracowski 
et al., 2014; Duncan et al., 2012; Elaine et al., 2010; Humbert 
et  al.,  1995; McMahan, Schoenhoff, Van Eyk, Wigley, & 
Hummers,  2015). Anakinra, an anti-IL-1 drug commonly 
used for rheumatoid arthritis is currently being tested as a 
repurposed drug for patients with PAH (Trankle et al., 2019).

7 |  EPIGENETIC MODIFICATIONS 
OF INFLAMMATORY MOLECULES 
LEADING TO FIBROSIS

Transdifferentiation or phenotype switching involves nu-
clear reprogramming and epigenetic modifications. Recent 
epigenetic hypotheses suggest that myofibroblasts inherit an 
altered phenotype that promotes excessive fibrotic tissue ac-
cumulation (Robinson, Watson, & Baugh,  2012). Inherited 
or de novo epigenetic modifications alter gene expression 
pattern and activity which, in the aggregate define cellular 
identities and functions. Epigenetic modifications with po-
tential to treat cardiac fibrosis (Felisbino & McKinsey, 2018) 
include chromatin remodeling, histone post translational 
modifications, DNA methylation, noncoding RNA, nuclear 
re-organization, and miRNA regulation. Possible epige-
netic mechanisms contributing to PAH include dysregulated 
miRNA networks, DNA methylation, increase in Reactive 
Oxygen Species generation and aberrant expression of his-
tone deacetylases (Chelladurai, Seeger, & Pullamsetti, 2016; 
Kim et al., 2015; Zhou, Chen, & Raj, 2015). miRNAs regu-
late gene expression, and dysregulation is important to the 
development of PAH (Spiekerkoetter, Kawut, & de Jesus 
Perez, 2019). Possible miRNA related therapies include in-
hibitors of miR-17, miR-130/301, miR-143/145, miR-20a, 
and miR210 and mimics of miR-204, miR424/503, and miR-
96 (Chun, Bonnet, & Chan, 2016). A recent paper indicates 
that RV fibroblasts undergo chamber-specific mitochondrial 
epigenetic reprogramming to promote RV fibrosis, RV hy-
pertrophy, and RV failure (Tian et al., 2020).

Chronic inflammation causes epigenetic modifications 
and activation of myofibroblasts (Usher et al., 2019). A study 
of a mouse model of kidney fibrogenesis demonstrates that 
epigenetic modifications may be one of the several reasons 
behind fibroblast activation (Bechtel et  al.,  2010). Histone 

acetylation, an epigenetic modification, activates inflam-
matory genes (Bayarsaihan,  2011). Airway biopsies and 
alveolar macrophages from chronic obstructive pulmonary 
disease indicate that histone acetylation of inflammatory 
genes is mediated by NF-κβ (Bayarsaihan,  2011). TGF-β, 
another pro-inflammatory molecule, also increases methyl-
ation of anti-fibrotic genes and decreases methylation of fi-
brotic genes (Usher et al., 2019). DNA methylation increases 
are also associated with fibrosis of the heart (Felisbino & 
McKinsey, 2018), lungs (Evans et al., 2016), and other organs 
(Meng, Nikolic-Paterson, & Lan, 2016). Activation of myo-
fibroblasts can trigger histone acetylation, which strengthens 
the pro-fibrotic effects of epigenetic modifications (Usher 
et  al.,  2019). Epigenetics control pro-inflammatory TNFα, 
interleukins, autocrine, and paracrine activation of the tran-
scription factor NF-κβ thereby contributing to the inflam-
matory response (Shanmugam & Sethi,  2013). Therefore, 
epigenetic changes should be taken into consideration when 
designing novel therapeutics for right ventricular fibrosis and 
PAH.

8 |  CONCLUSION

Pulmonary arterial hypertension is a complex disease with 
multiple, inter-dependent mechanisms known to be involved 
in the initiation and propagation of ventricular dysfunction 
(Figure 1). Although currently available therapies can allevi-
ate PAH symptoms, there is presently no cure for a failing 
right ventricle. Current research is expanding our under-
standing of innate immune responses and development of 
fibrosis and right ventricular failure. Knowledge of cardiac 
fibroblast and immune cell interactions in orchestrating in-
flammation and resolution of inflammation will be key to 
preventing exacerbated immune and fibrotic responses. 
Identification and characterization of immune cell subtypes 
and cardiac fibroblast cell subtypes associated with cardiac 
fibrosis and right ventricular remodeling present new thera-
peutic opportunities. Resolution of the roles of tissue resi-
dent and transdifferentiated cardiac fibroblasts will provide 
a clearer picture of the specific cardiac fibroblast subtypes 
involved in progression of right ventricular failure in PAH. 
The heterogeneity and myriad roles of cardiac fibroblasts are 
coming to light through newer technologies such as single 
cell sequencing of tissue resident cells and their roles in in-
flammation and fibrosis determined. Blood based biomarkers 
and high throughput screening technologies can be used for 
risk stratification, disease monitoring, and prognostication. 
Genetic tools are needed to understand the time dependent 
diverse phenotypes of cardiac fibroblasts at genomic, prot-
eomic, metabolomic levels in settings of inflammation and 
fibrosis in order to formulate treatments to prevent immune-
induced right ventricular fibrosis and PAH.
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