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Set7/9 is a lysine-specific methyltransferase, which regulates the functioning of both the
histone and non-histone substrates, thereby significantly affecting the global gene
expression landscape. Using microarray expression profiling, we have identified several
key master regulators of metabolic networks, including c-Myc, that were affected by Set7/
9 status. Consistent with this observation, c-Myc transcriptional targets—genes encoding
the glycolytic enzymes hexokinase (HK2), aldolase (ALDOB), and lactate dehydrogenase
(LDHA)—were upregulated upon Set7/9 knockdown (Set7/9KD). Importantly, we showed
the short hairpin RNA (shRNA)-mediated attenuation of Set7/9 augmented c-Myc,
GLUT1, HK2, ALDOA, and LDHA expression in non-small cell lung cancer (NSCLC) cell
lines, not only at the transcriptional but also at the protein level. In line with this observation,
Set7/9KD significantly augmented the membrane mitochondrial potential (MMP),
glycolysis, respiration, and the proliferation rate of NSCLC cells. Importantly, all these
effects of Set7/9 on cell metabolism were p53-independent. Bioinformatic analysis has
shown a synergistic impact of Set7/9 together with either GLUT1, HIF1A, HK2, or LDHA
on the survival of lung cancer patients. Based on these evidence, we hypothesize that
Set7/9 can be an important regulator of energy metabolism in NSCLC.

Keywords: Set7/9, SETD7, non-small cell lung cancer (NSCLC), glycolysis, metabolism
INTRODUCTION

Lysine methylation plays an important role in global transcription regulation. Depending on the
location of the target lysine in histone tails, this post-translational modification can either promote or
repress transcription by affecting the architecture of chromatin. In addition, lysine methylation, by
competing with other lysine-specific modifications (e.g., acetylation, ubiquitinylation, and
SUMOylation), can affect the protein stability and hence its functioning (1). Set7/9 (alternative
Abbreviations: MMP, mitochondrial membrane potential; NSCLC, non-small cell lung cancer; TMRE,
tetramethylrhodamine, ethyl ester; ECAR, extracellular acidification rate; OCR, oxygen consumption rate.
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name SETD7) is a SET [Su(var)-3–9, Enhancer-of-Zeste,
Trithorax] domain-containing protein that utilizes both histone
and non-histone proteins as substrates. Initially, Set7/9 was shown
to specifically monomethylate lysine 4 of histone 3 (H3K4me1),
which is a positive mark for transcriptional activation (2, 3).

For instance, Set7/9-mediated methylation of histone H3 at
lysine 4 enhances the transcriptional activation of myogenic
differentiation genes (MYOD, MYOGENIN, MHC, and MCK)
(4), the inflammatory gene RelA/NFkB (5), nitric oxide synthase
(NOS2) (6), SREK1IP1, and PGC (7). Later, in addition to
histone H3, Set7/9 was shown to methylate histones H2A,
H2B, and H1.4 (8–10).

Several examples of non-histone substrates of Set7/9 include
the tumor suppressor p53 (11), estrogen receptor alpha (ERa)
(12), PCAF (P300/CBP-associated factor) (13), RelA (NFkB)
(14), b-catenin (15), and E2F1 (16). By methylating these
substrates, Set7/9 regulates their activity, stability, and
subcellular localization (8).

Set7/9 is shown to be involved in various signaling pathways
associated with several diseases, including cancer (8). We and
other researchers have demonstrated the involvement of this
lysine methyltransferase in the progression of various
malignancies, including lung cancer (16–19). Lung cancer is
one of the most frequent and dangerous groups of
malignancies. It tops the list of cancer-related deaths in men
and ranks second in women worldwide (20). The 5-year survival
rate with all types of lung cancer ranges between only 17% and
21%. Importantly, the role of Set7/9 in lung cancer is rather
contradictive, since it was shown to have both oncogenic (16, 18)
and tumor-suppressive properties (21).

Using RNA-seq analysis, Keating with co-authors (22) have
revealed a correlation between the gene expression profile in
Set7/9 knocked down cells and the status of several transcription
factors known to be the targets of Set7/9, including p53, NFkB, c-
Jun, c-Fos, GATA2, ERa, and STAT3. This study linked the
cellular status of Set7/9 with global changes in gene expression
profiles of various cell lines.

To further elucidate the role of Set7/9 in tumorigenesis, we
assessed the effect of Set7/9 ablation on global gene expression in
various cancer cell lines. We have identified c-Myc and HIF1A as
Set7/9-dependent genes. Moreover, we have shown that NSCLC
cells with an attenuated expression of Set7/9 displayed increased
mitochondrial membrane potential (MMP), glycolysis, and
respiration rates. In line with these observations, Set7/9-
deficient cells possessed elevated proliferation rates.
Bioinformatic analysis revealed the synergistic effect between
the Set7/9 and either HIF1A, HK2, GLUT1, or LDHA expression
levels on the survival outcome of lung cancer patients.
MATERIALS AND METHODS

Cell Cultures and Stable Cell
Lines Establishment
All cell lines were purchased from American Type Culture
Collection (ATCC) (USA) and genotyped by the shared
research facility “Vertebrate cell culture collection,” Institute of
Frontiers in Oncology | www.frontiersin.org 2
Cytology, Russian Academy of Science, St Petersburg, Russia.
Cells were incubated in either Dulbecco’s modified Eagle’s
medium (DMEM) (U2OS osteosarcoma cells) or Roswell Park
Memorial Institute (RPMI) (H1299, A549, and H1975) media,
supplemented with 10% fetal bovine serum (FBS) (Gibco, USA),
and 50 µg/ml gentamicin.

U2OS cells with tetracycline-inducible (Tet-on) expression of
short hairpin RNA (shRNA) against Set7/9 (pSuperior-shRNA-
Set7/9 or U2OS Set7/9 KD) and the reference cell line (U2OS
pSuperior) were generated as described previously (16).

To establish lung cancer cell lines (H1299 andH1975)with stable
Set7/9 knockdown, the lentiviral transduction by pLKO1.puro
shRNA Set7/9 or scramble was carried out as described (23). The
following specific shRNA oligonucleotides were annealed prior to
cloning into the pLKO.1-TRC vector digested with AgeI and EcoR1
enzymes: top, 5′-CCGGGATCTATGCACTACGTTTAT
CCTCGAGGATAAACGTAGTGCATAGATCTTTTT-3′ and
bottom, 5′-AATTAAAAAGATCTATGCACTACGTTTATCCTC
GAGGATAAACGTAGTGCATAGATC-3′.

H1299 cell lines with tetracycline-inducible (Tet-on) expression
of wild-type p53 (p53wt) and mutant p53 R273H mutation
(p53mut) and a control cell line (ctrl) (a kind gift of Dr P. Muller,
University of Leicester, UK) were used to knockdown Set7/9.

Set7/9 knockout in A549 cells was generated using CRISPR/
Cas9 technology. Guide RNA (5′-TAGCGACGACGAGAT
GGTGGAGG-3′) specific to Set7/9 was cloned into lenti_V2.0
vector (Addgene) according to the manufacturer’s instructions.
A549 cells were transfected by Lipofectamin 2000 (Invitrogen,
USA) with either a vehicle (lenti_V2.0 vector) or a vector
encoding for Set7/9-specific gRNA, followed by 3 days
selection with puromycin (5 µM).

Western Blotting
For Western blot analysis, whole-cell extracts were prepared
using radioimmunoprecipitation assay (RIPA) buffer. The
primary antibodies used against the analyzed proteins were as
follows: Set7/9 (1:1,000, 2813, Cell Signaling), b-actin (1:5,000,
A3854, Sigma-Aldrich, USA), HK2 (1:1,000, B-8, Santa Cruz
Biotechnologies, USA), c-Myc (1:500, 9402S, Cell Signaling,
USA), HIF1A (1:1,000, ab16066, Abcam, USA), ALDOA
(1:1,000, sc-377058, Santa Cruz Biotechnologies, USA), and
LDHA 1:1,000, 2012S, Cell Signaling, USA). The secondary
antibodies used were antimouse and anti-rabbit (1:10,000;
Sigma-Aldrich, USA). Normalization of Western blot signals
was performed based on the ratio between pixel intensities of
the bands corresponding to target proteins and loading controls
(b-actin), respectively. Densitometry was carried out using the
application of Bio-Rad Image Lab software.

Real-Time PCR
Total RNA was extracted from cells using TRIzol Reagent
(Invitrogen, USA) according to the manufacturer’s instructions.
Two micrograms of total RNA were reverse transcribed to
complementary DNA (cDNA) with oligo d(T) primer using a
RevertAid First-Strand cDNA Synthesis Kit (Evrogen, Russia).
cDNAs were amplified by real-time PCR on a CFX 1000 PCR
machine (BioRad, USA) using SYBR greenmix (Evrogen, Russia) in
October 2021 | Volume 11 | Article 706668
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triplicate. Data were analyzed by CFX Manager software. Relative
amounts of SLC19A1, Hk2, ALDOA, LDHA, c-Myc, and HIF1A
messengerRNAs (mRNAs)were normalized tob-actinmRNA.The
following primers were used: SLC2A (GLUT1), forward 5′-
AAGGTGATCGAGGAGTTCTACA-3′ and reverse 5′-ATGCCC
CCAACAGAAAAGATG-3′; HK2, forward 5′-AAGGCTTCAAG
GCATCTG-3′ and reverse 5′-GCCAGGTCCTTCACTGTCTC-3′;
ALDOA, forward 5′-CGGGAAGAAGGAGAACCTG-3′ and
reverse 5′-CCACAGGTCATCATAGTTCC-3′; LDHA, forward
5′- AGCCCGATTCCGTTACCT-3′ and reverse 5′-AGCCCG
ATTCCGTTACCT-3′; HIF1A, forward 5′-CATAAAGTC
TGCAACATGGAAGGT-3′ and reverse 5′-ATTTGATGG
GTGAGGAATGGGTT-3′; Myc (c-Myc), forward 5′-CTCCTC
CTCGTCGCAGTAGA-3′ and reverse 5′-GCTGCTTAGACGCT
GGATTT-3′; SETD7 (Set7/9), forward 5′-TCATTGATGTG
CCTGAGCCCTA-3′ and reverse 5′-TCAGGGTGCGGAT
GCATTTGAT-3′; b-actin, forward 5′-GCACCACACCTTC
TACAATGAGC-3′ and reverse 5′-TAGCACAGCCTGGAT
AGCAACG-3′.

Assessment of Mitochondrial
Membrane Potential
A day after seeding, cells were treated with 200 nM TMRE
(Thermo Fisher Scientific, USA) for 30 min at 37°С in a CO2

incubator. Then, cells were washed in phosphate-buffered saline
(PBS), detached with trypsin, and analyzed by flow cytometry
(CytoFlex, Beckman Coulter, USA). Values of the median were
used for calculations. Results were represented as the mean ±
SEM of three experiments.

Reactive Oxygen Species Detection Assay
The total reactive oxygen species (ROS) production was analyzed
using the 2′ ,7 ′-dichlorodihydrofluorescein diacetate
(H2DCFDA) substrate (Thermo Fisher Scientific, USA) in a
final concentration of 50 µM. For detection, superoxide anions
(O−

2 ) dihydroethidium (DHE) (Thermo Fisher Scientific, USA)
in a final concentration of 5 µM was used. The next day after
seeding, cells were treated with H2DCFDA or dihydroethidium
(DHE) for 30 min at 37°С in a CO2 incubator. Following the
incubation, cells were washed in PBS, detached with trypsin, and
analyzed by flow cytometry (FC) (CytoFlex, Beckman Coulter,
USA). Values of the median were used for calculation. Results
were represented as the mean ± SD of three experiments.

Proliferation Assay
The proliferation analysis was performed using the xCELLigence
technology (ACEA Biosciences, USA) according to the
manufacturer’s instructions. A total of 20,000 cells were
planted into each well of an ACEA E-plate 16 in triplicate. The
cell index was registered every 10 min for 10–40 h. Results were
represented as the mean ± SEM of three experiments.

Cell Cycle Analysis
Flow cytometry analysis of the cell cycle was carried out. A total
of 50,000 H1299 and H1975 cells, with Set7/9 KD or scramble,
and A549 control and Set7/9 KO, were planted in triplicates.
Two days after seeding, cells were harvested, washed once with
Frontiers in Oncology | www.frontiersin.org 3
PBS, and fixed in 70% ethanol at −20°C for 1 h. Then, 30 min
staining of DNA content was carried out by using 50 mg/ml of PI
(Invitrogen, USA) and 1 mg/ml RNase A (Thermo Fisher
Scientific, USA). Samples were analyzed by a CytoFLEX
(Beckman Coulter, USA) flow cytometer. Results were
processed by CytoExpert software (Beckman Coulter, USA).

Analysis of Glycolysis and Respiration
The SeaHorse energy profiling of lung cancer cell lines with either
Set7/9 KD or scramble was carried out as described in (24) with
small modifications. Briefly, 17,000 cells were seeded in SeaHorse
24-well plates a day prior to analysis. The SeaHorse Energy
Phenotype test was used in accordance with the manufacturer’s
recommendations. Stressor mix consisted of carbonyl cyanide p-
(trifluoromethoxy)-phenyl-hydrazone (FCCP) and oligomycin
(Agilent Technologies, USA) to achieve the final concentrations
of 2 and 4 µM, respectively. Results are represented as the mean ±
SEM. For further analysis of the impact of Set7/9 on glycolysis in
detail, GlycoStress kit (Agilent Technologies, USA) was used
according to the manufacturer’s instructions. The following
concentrations were used in the glycolysis stress experiments: 10
mM of glucose, 4 µM of oligomycin, and 50 mM of 2-DG. Results
are represented as the mean ± SEM.

Microarray
The microarray gene expression study was carried out using
Human Gene Expression 4x44K Microarrays and a Low Input
Quick Amp Labeling Kit (Agilent Technologies, USA) according to
the manufacturer’s instructions. RNA quality was assessed using a
2100 Bioanalyzer (Agilent Technologies, USA). One hundred
nanograms of each RNA sample were used for cDNA synthesis
and were simultaneously labeled with Cy-3. After purification,
cDNA samples were hybridized with oligonucleotide probes on
microarray slides for 18 h. The next day, the slides were washed
and scanned. Data were analyzed by GeneSpring GX11.5 software.

Bioinformatic Analysis of Lung Cancer
Patients’ Survival Rates
The single and synergistic effect of SETD7 (Set7/9), SLC2A1
(GLUT1), HIF1A, HK2, and LDHA expression levels on the
survival rate of lung cancer patients was determined by using
Syntarget software as described in (25).

Statistical Analysis
Data are represented asmean ± standard deviation (SD) or standard
error of the mean (SEM) of at least three replicates. Statistical
significance was analyzed using Student’s t-test. p < 0.05 was
considered significant. p < 0.05 was denoted as * and p < 0.01 as **.
RESULTS

Set7/9 Knockdown Upregulates c-Myc,
HIF1A, and Genes of Glycolytic Enzymes in
U2OS Human Osteosarcoma Cells
Set7/9 lysine methyltransferase is a well-known regulator of
transcription (8, 10). Previously, we have shown that Tet-
October 2021 | Volume 11 | Article 706668
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inducible Set7/9 knockdown in U2OS human osteosarcoma cells
augmented the sensitivity of cells to genotoxic stress by
upregulating the transcription of MDM2 (26).

To expand our observations on the role of Set7/9 in
transcriptional regulation and to obtain the knowledge on
global gene expression affected by Set7/9, we have carried out a
microarray gene expression analysis of the same U2OS cells with
Tet-inducible Set7/9 knockdown. We have treated U2OS with
tetracycline for 2 days, followed by mRNA extraction, cDNA
synthesis, labeling, and hybridization with oligonucleotide
probes on microarray slides of the Illumina Human Gene
Expression 4x44K Microarray Kit. The list of genes affected by
Set7/9 KD is given in the Supplementary Table 1. The gene
ontology analysis of differentially regulated genes in Set7/9 KD
versus Set7/9 wt (U2OS pSuperior) cells revealed several
functional pathways, among which the metabolic one was
significantly represented. We focused on this pathway, since
cancer metabolism is considered to be one of the hallmarks of
cancer (27).

Intriguingly, a number of genes encoding for the regulators of
energy metabolism, e.g., glucose transporter [GLUT1 (SLC2A1)],
glycolytic enzymes—hexokinase 2 (HK2) and aldolase
(ALDOB)—and their key transcription regulators c-Myc and
Frontiers in Oncology | www.frontiersin.org 4
HIF1 were found among genes being significantly upregulated in
Set7/9KD cells compared to control cells (U2OS pSuperior cells)
(Figures 1A, B).

We have verified the microarray data by independent analysis
using gene-specific real-time PCR. Indeed, Set7/9 knockdown
augmented the mRNA levels of both c-Myc and HIF1A and
their transcriptional targets—GLUT1, HK2, ALDOA, and
LDHA (Figure 1C).
Set7/9 Knockdown Upregulates c-Myc,
HIF1A, and Glycolytic Genes in NSCLC
Cells at Both Transcriptional and
Protein Levels
We next asked if Set7/9 also affected the expression of c-Myc,
HIF1A, GLUT1, and glycolytic enzymes in non-small cell lung
cancer cell lines (NSCLCs). To this end, we stably suppressed
Set7/9 expression [knock-down (KD) or knock-out (KO)] in
three NSCLC cell lines with different p53 status [H1299 (p53-
null), A549 (wild-type p53), and H1975 (mutant R273H p53)]
(Figure 2A and Supplementary Figure S1). The mRNA level of
c-Myc, HIF1A, GLUT1, HK2, ALDOA, and LDHA were
assessed by real-time PCR (Figure 2B and Supplementary
A B

C

FIGURE 1 | Microarray data analysis of U2OS Set7/9KD cells. (A) Relative expression of ALDOB, GLUT1, HK2, HIF1A, and c-Myc mRNAs in U2OS cells with
tetracyclin-induced Set7/9 knockdown (tet-on system) compared to control U2OS pSuperior cells. Both cell lines were treated with doxycycline for 48 h prior to
microarray analysis. (B) Heat map demonstrating ALDOB, GLUT1, HK2, HIF1A, and c-Myc mRNAs expression changes in Set7/9 KD U2OS cells compared to
control U2OS pSuperior cells. (C) Validation of microarray data using quantitative RT-PCR: analysis of ALDOA, GLUT1, LDHA, HK2, HIF1A, c-Myc, and Set7/9
mRNAs expression in U2OS cells with tetracyclin-induced Set7/9 knock-down (Tet-on system) compared to control U2OS pSuperior cells. *p < 0.05; **p < 0.01.
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Figure S1). The results shown in Figure 2A demonstrate that, in
general, the suppression of Set7/9 in NSCLC cells augmented the
expression of energy metabolism factors similar to that observed
in USOS osteosarcoma cells. Western blots were also consistent
with RT-PCR results, i.e., attenuated levels of Set7/9 resulted in
the increased production of the respective proteins, albeit to a
different extent. Notably, the effect of Set7/9 was more
pronounced in p53-negative cells (H1299) compared to A549
(p53-positive cells) or H1975 cell (p53 mut) (Figure 2A and
Supplementary Figure S1). Furthermore, we found that the
protein level of HIF1A was not significantly affected by Set7/9 in
H1299 and A549 cells but was altered in H1975 cells with mutant
p53 (Figure 2 and Supplementary Figure S1, respectively).

Set7/9 Knockdown Upregulates
Mitochondrial Membrane Potential,
Glycolysis, and Respiration
c-Myc and HIF1A are the two well-known master regulators of
metabolic networks including energy metabolism, deregulations
of which are recognized now as one of the “hallmarks of cancer.”
Enhanced glycolysis in malignant cells is associated with tumor
Frontiers in Oncology | www.frontiersin.org 5
progression, migration, invasion, and resistance against chemo-
and radiotherapy. Since our results suggested that ablation of
Set7/9 caused an increase in c-Myc, GLUT1, and several
glycolytic enzymes both at the mRNA and protein levels, we
decided to examine whether Set7/9 affected the MMP, glycolysis,
and respiration.

First, we stained H1299 and A549 cell lines with Set7/9 KD or
Set7/9 KO, respectively, with the TMRE agent to measure the
levels of MMP intensity. The respective parental control cell lines
with wild-type Set7/9 were also used in the experiment. Cell lines
with Set7/9 KD or KO increased the MMP level in the range of
10–60% depending on NSCLC cell line (Figures 3A, B and
Supplementary Figure S2A). Importantly, the most pronounced
effect was observed in p53-negative H1299 cells.

To confirm that the effect of Set7/9 ablation on MMP was not
dependent on the p53 status, we used H1299 cell lines with Tet-
inducible expression of wild-type p53 (p53wt) or mutant p53
R273H (p53mut) proteins, and control cells with knocked down
Set7/9. We showed that in all three H1299-derived cell lines
(control, p53wt, and p53mut), suppression of Set7/9 led to an
increase in MMP levels (Supplementary Figure S3).
A B

FIGURE 2 | The effect of Set7/9 decrease on ALDOA, GLUT1, LDHA, HK2, HIF1A, and c-Myc levels. (A) Western blot analysis of ALDOA, LDHA, HK2, HIF1A, and
c-Myc levels in NSCLC cell lines H1299 knockdown (Set7/9 KD) and A549 with Set7/9 knockout (Set7/9 KO) compared to control (scrambled or vector) cells.
Densitometry analysis was performed on the basis of three measurements. Error bars indicate ± SD; (B) Quantitative RT-PCR: analysis of ALDOA, GLUT1, LDHA,
HK2, HIF1A, and c-Myc mRNAs in the above cells. *p < 0.05; **p < 0.01.
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In general, malignant cells have 1.5–2 times higher MMP
levels than their non-malignant counterparts, which is the
consequence of an elevated energy metabolism. The level of
MMP enhancement is associated with the degree of malignancy
of neoplastic cells, including enhanced resistance to aggressive
conditions and elevation of their metastatic potential (28).

Next, we used the SeaHorse energy profiling technology to
study the impact of Set7/9 KD on glycolysis and respiration.
Using the SeaHorse Energy Phenotype kit, we showed that Set7/9
KO upregulated only ECAR (glycolysis) in p53-positive A549
cells, whereas p53-negative H1299 cells and p53-mutant H1975
cells with Set7/9 knockdown displayed elevated levels of both
glycolysis and respiration compared to control cells (Figures 4A,
B and Supplementary Figure S2C).

Using the SeaHorse GlycoStress kit, we have further analyzed
the impact of Set7/9 on several parameters of glycolysis
(Supplementary Figures S4–S6). The attenuation of Set7/9
expression upregulated both glycolysis and respiration in
H1299 and H1975 cell lines (Supplementary Figures S4, S5).
On the contrary, only glycolysis was augmented in A549 cells
upon Set7/9 attenuation, while respiration did not change
significantly (Supplementary Figure S6). These results
Frontiers in Oncology | www.frontiersin.org 6
correlate with the data obtained using the SeaHorse Energy
Phenotype kit (Figure 4B).

A previous study by Shen et al. showed that Set7/9 acts as a
negative regulator of b-catenin in response to ROS (15).
Importantly, b-catenin affects c-Myc expression, which in turn
regulates the expression of glycolytic genes. Thus, it was plausible
that Set7/9 mediated its effects on these genes through the b-
catenin/c-Myc axis. To test this hypothesis, we assessed the effect
of Set7/9 suppression on b-catenin levels in the NSCLC cell lines
and observed no correlation between b-catenin levels and the
status of Set7/9 (Supplementary Figure S7A).

Furthermore, we have tested the intracellular concentration
of ROS in these cell lines. Using DHE staining, we have shown
that the level of superoxide anions (O2−) was higher in all three
Set7/9-deficient cell lines compared to control lines
(Supplementary Figure S7B). However, the total amount of
ROS species was either the same or lower in Set7/9 KD or Set7/
9KO cells (Supplementary Figure S7C) compared to control
cells. Since the intracellular superoxide anions content
correlates with the activity of mitochondria (29, 30), this
result further confirms the effect of Set7/9 suppression on
mitochondrial activity.
A B

FIGURE 3 | The effect of Set7/9 decrease on mitochondrial membrane potential (MMP) of NSCLC cell lines H1299, A549 and H1975. FC analysis of TMRE
staining of NSCLC cell lines (A) H1299 and (B) A549 with Set7/9 knockdown (Set7/9 KD) and knockout (Set7/9 KO) compared to control (scrambled or vector)
cells. *p < 0.01.
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Set7/9 KD Enhances the Proliferation of
NSCLC Cell Lines
The increased glycolysis is usually associated with the enhanced
proliferation (31) and aggressiveness of tumors. Thus, we
decided to study the effect of Set7/9 attenuation on the
proliferation of the NSCLC cell lines. To address this question,
we used the xCelligence platform. As shown in Figures 5A, B
and Supplementary Figure S8A, all three NSCLC cell lines with
Set7/9 KD/KO displayed augmented proliferation rates from 1.2-
to 2-fold, compared to their respective controls. These results are
in agreement with our data on the stimulatory effect of Set7/9 KD
on glycolysis and respiration.

These results prompted us to assess the effect of Set7/9 on the
cell cycle. To this end, we analyzed the cell cycle distribution of
H1299, A549, and H1975 with different Set7/9 status. We
observed a significant increase in S-phase in Set7/9 KD/KO
cells in all three cell lines investigated in comparison to control
cells (Figures 5C, D and Supplementary Figure S8B). These
results, taken together with the results on proliferation obtained
by xCelligence, strongly suggest that either the attenuation or
ablation of Set7/9 upregulates proliferation rates of H1299, A549,
and H1975 cells.

Expression Levels of Set7/9, HIF1A,
GLUT1, HK2, and LDHA Correlate With
Survival Rates of Lung Cancer Patients
Increased rates of glycolysis in tumor cells are inversely associated
with patient survival (32). We sought to investigate whether there
are correlations between the expression levels of glycolytic genes
Frontiers in Oncology | www.frontiersin.org 7
HIF1A, GLUT1, HK2, and LDHA, in lung cancer patients and the
rates of the patients’ survival. We carried out a bioinformatic
analysis of several cancer samples databases using an algorithm
previously described in SynTarget software (25).

Kaplan–Meier plots (Figure 6A) demonstrate that the high
levels of HK2, SLC2A1 (GLUT1), LDHA, and HIF1a expression
were associated with poor survival of lung cancer patients.
Moreover, low expression of Set7/9 together with high
expression of each of aforementioned genes is also associated
with poor outcome. On the contrary, high levels of Set7/9
expression in conjunction with low expression of HK2,
SLC2A1 (GLUT1), LDHA, and HIF1A are associated with
increased survival of patients (Figure 6B).

These observations reinforce our hypothesis that Set7/9 may
have an impact on survival of cancer patients via regulating the
energy metabolism of NSCLC.
DISCUSSION

A number of Set7/9 non-histone substrates, including p53 (33),
MDM2 (34), E2F1 (16), STAT3 (21), affect proliferation, apoptosis,
and resistance of NSCLC cells against chemotherapeutics.

In the present manuscript, we have provided evidence that the
knockdown of Set7/9 methyltransferase in human NSCLC cell
models upregulates a number of glycolytic enzymes (hexokinase,
aldolase, and lactate dehydrogenase) and their key transcriptional
activators—oncogenes c-Myc and HIF1A—at both transcriptional
and protein levels.
A

B

FIGURE 4 | The effect of Set7/9 decrease on cell energy phenotype of NSCLC cell lines H1299, A549 and H1975 using SeaHorse system. The analysis of the
oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of NSCLC cell lines (A) H1299 and (B) A549 with Set7/9 knockdown (Set7/9 KD) and
knockout (Set7/9 KO) compared to control (scrambled or vector) cells. *p < 0.01.
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Enhanced glycolysis has been a well-known feature of
malignant cells since Otto Warburg’s pioneering works were
published in 1925 (35). The so-called “Warburg effect” is part of
metabolic reprogramming, which is considered now as one of the
“hallmarks of cancer” (36). There are at least three main reasons
why malignant cells benefit from glycolysis (37–39). First of all,
glycolysis fuels biosynthetic anabolic pathways of rapidly
proliferating cells by diverting glucose flux towards pentose-
phosphate pathways and one-carbon metabolism. The latter are
highly required for the synthesis of DNA, lipids, S-adenosyl
methionine (the main donor of methyl groups), glutathione (an
important factor of red-ox homeostasis), etc. Second, glycolysis
helps neoplastic cells to fine-tune their interaction with the
microenvironment by manipulating cancer-associated
fibroblasts (CAFs). Finally, glycolysis provides extracellular
acidification that protects malignant cells from the attack of
immune cells, which are not effective at low pH.

c-Myc and HIF1A are master regulators of metabolic
networks. They upregulate and coordinate glycolysis,
respiration, one-carbon metabolism, and the metabolism of
glutamine and lipids upon tumorigenesis (28, 40, 41). It is
important to note that HIF1A and c-Myc are both known to
Frontiers in Oncology | www.frontiersin.org 8
regulate the expression of tumor-specific isoforms of glycolytic
proteins such as GLUT1, HK2, PKM, and LDHA, thereby
diminishing the Warburg effect in cancer cells (42–44).
Moreover, both c-Myc and HIF1A play known roles in the
upregulation of metabolic networks and the proliferation of
NSCLC (23, 39, 45, 46).

Previously, two research groups have shown that Set7/9-
mediated methylation of HIF1A and HIF2A leads to their
destabilization and negatively regulates their transcriptional
activity (47). In contrast, our present results suggest that Set7/9
affects HIF1A expression only at the level of mRNA in H1299
and A549 cells and only modestly on the protein level in H1975.
Given that these three cell lines have different p53 statuses, it is
unlikely that the effect of Set7/9, or lack thereof, was a p53-
dependent effect. It is possible that the upregulation of HIF1A
observed on the level of mRNA in the absence of Set7/9 could
also be detected on the protein level should those cells be treated
with hypoxia. Future experiments under hypoxic conditions
should clarify this possibility. Nevertheless, in the present
study, we have directly shown that the ablation of Set7/9 in
several NSCLC cell lines upregulated glycolysis and respiration
even in the absence of hypoxia (i.e., in normoxic conditions)
A B

C D

FIGURE 5 | The effect of Set7/9 downregulation on the proliferation and cell cycle of NSCLC cell lines H1299 and A549. (A, B) The analysis of cell proliferation in
real time, using the xCelligence system, of NSCLC cell lines (A) H1299 and (B) A549 with Set7/9 knockdown (Set7/9 KD) and knockout (Set7/9 KO), compared to
control (scrambled or vector) cells. (C, D) The analysis of the cell cycle phases’ distribution of NSCLC cell lines (C) H1299 and (D) A549 with Set7/9 knockdown
(Set7/9 KD) and knockout (Set7/9 KO) compared to control (scrambled or vector) cells. *p < 0.05; **p < 0.01.
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(Figure 4 and Supplementary Figure S2). These effects were
likely due to the increased expression of the key glycolytic genes.

Importantly, HIF1A and c-Myc share common target genes
such as HK2, ENO1, and LDHA, whose products are involved in
glycolysis. In fact, most genes coding for glycolytic enzymes have
in their promoter regions consensus binding sequences for both
HIF1A and c-Myc (48). Thus, it is plausible that Set7/9 controls
glycolysis indirectly, by affecting c-Myc expression. In support of
this assumption is the fact that A549 and H1299 cells with
suppressed Set7/9 displayed an increased expression of c-Myc
both at the transcriptional and protein levels.

Among various malignancies, elevated glycolysis is associated
with increased proliferation (49), metastasis (50–52), increased
resistance to chemotherapy (53–55), and a poor survival
prognosis (32).

In the present study, we demonstrated that the ablation of
Set7/9 augmented the levels of HIF1A, c-Myc, and several genes
coding for glycolytic enzymes. This points to Set7/9 as a potential
tumor suppressor. Along with this notion, studies from several
groups including ours also suggest that Set7/9 plays
antiproliferative and tumor-protective roles in various cancers
(7, 15, 56, 57), including NSCLC (21, 58).

In a number of works, Set7/9-mediated tumor suppressive
effects have been achieved through p53 stabilization and
Frontiers in Oncology | www.frontiersin.org 9
activation. Indeed, we and others showed that Set7/9 is able
to directly methylate the p53 protein, which leads to p53
stabilization and nuclear translocation and enhances the
expression of p53 target genes (11, 59). Additionally, it was
demonstrated that Set7/9 contributes to p53 stability
via inactivation of SIRT1 by its methylation. Thus, the
Set7/9-mediated methylation of SIRT1 prevented p53
deacetylation and hence increased p53 transactivation
under genotoxic stress (60). Here, we demonstrate that
Set7/9 acts as a regulator of glycolysis in NSCLC cells
regardless of the p53 status. These results contribute to a
better understanding of the p53-independent role of Set7/9
in tumorigenesis.

However, several papers on the role of Set7/9 in intestinal
regeneration argue against the tumor-suppressive role of Set7/9.
Apparently, being part of a YAP/AXIN1/b-catenin complex
Set7/9 facilitates Wnt-induced nuclear accumulation of b-
catenin, a known oncogenic protein (61).

Thus, the role of Set7/9 in tumorigenesis is likely to be cell
tissue dependent. Future studies should discern the molecular
mechanisms involving Set7/9 that affect tumor growth and
metastases. Our results presented in this study indicate that
Set7/9 is a potentially important regulator of metabolic
networking in NSCLC.
A

B

FIGURE 6 | The expression level of Set7/9, HIF1A, GLUT1, HK2, and LDHA affects survival rate of lung cancer patients. (A) The bioinformatic analysis of the
association of GLUT1 (SCL2A1), LDHA, HK2, and HIF1A expression levels with NSCLC patients’ survival. (B) The bioinformatic analysis of the GLUT1 (SCL2A1),
LDHA, HK2, and HIF1A and Set7/9 (SETD7) mutual expression effect on NSCLC patients’ survival.
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