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Abstract: This study aimed to establish and validate a radiomics nomogram using the radiomics
score (rad-score) based on multiregional diffusion-weighted imaging (DWI) and apparent diffusion
coefficient (ADC) features combined with clinical factors for evaluating HER-2 2+ status of breast
cancer. A total of 223 patients were retrospectively included. Radiomic features were extracted from
multiregional DWI and ADC images. Based on the intratumoral, peritumoral, and combined regions,
three rad-scores were calculated using the logistic regression model. Independent parameters were
selected among clinical factors and combined rad-score (com-rad-score) using multivariate logistic
analysis and used to construct a radiomics nomogram. The performance of the nomogram was
evaluated using calibration, discrimination, and clinical usefulness. The areas under the receiver
operator characteristic curve (AUCs) of intratumoral and peritumoral rad-scores were 0.824/0.763
and 0.794/0.731 in the training and validation cohorts, respectively. Com-rad-score achieved the
highest AUC (0.860/0.790) among three rad-scores. ER status and com-rad-score were selected to
establish the nomogram, which yielded good discrimination (AUC: 0.883/0.848) and calibration.
Decision curve analysis demonstrated the clinical value of the nomogram in the validation cohort. In
conclusion, radiomics nomogram, including clinical factors and com-rad-score, showed favorable
performance for evaluating HER-2 2+ status in breast cancer.
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1. Introduction

Female breast cancer (BC) ranks first in incidence globally and fifth as cause of cancer
mortality worldwide [1]. BC is a heterogeneous tumor that is categorized into four major
molecular subtypes: luminal A, luminal B, positive HER-2, and basal like [2]. Tumors
with positive HER-2 account for approximately 20–30% of BCs and are associated with
poor prognosis in the absence of systemic therapy [3]. HER-2-targeted therapy using
anti-HER-2 antibodies (trastuzumab and pertuzumab) and small molecule tyrosine ki-
nase inhibitors (lapatinib and neratinib) has beneficial effects on patients with positive
HER-2 [4]. Therefore, accurate evaluation of HER-2 status is important for treatment deci-
sions. Immunohistochemistry (IHC) is frequently performed to detect the expression of the
HER-2 protein because it is easy to perform and cost-effective [5]. According to IHC results,
a HER-2 staining intensity score of 3+ is considered positive, whereas a score of 0 or 1+ is
considered negative. However, IHC cannot identify HER-2 2+ status, which accounted for
approximately 17% of HER-2 patients [6], and a fluorescence in-situ hybridization (FISH)
assay is required. Identification of gene amplification via FISH classifies tumors into posi-
tive or negative according to the HER-2 2+ status. However, this method of examination is
cost-prohibitive, time consuming, and requires specialized equipment and technical skills.
Therefore, there is an urgent need to establish a model to evaluate HER-2 2+ status.
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Dynamic contrast-enhanced magnetic resonance imaging is a sensitive examination
for the detection of BC [7]. However, owing to the recent concerns about the safety of
gadolinium-including contrast agents, diffusion-weighted imaging (DWI) with apparent
diffusion coefficient (ADC) maps has received increasing attention and is routinely used
in a multiparametric imaging setting for BC detection [8–12]. It can provide functional
information of tissue microstructure by measuring the random Brownian motion of water
molecules and does not require intravenous injection of contrast agent [13]. Kim et al.
showed that the ADC difference value derived from whole-lesion histogram analysis can
be used to assess the recurrence risk in invasive BC patients with positive estrogen receptor
(ER), negative HER-2, and negative node disease [14]. Another study demonstrated that
maximum whole tumor ADC values may be used to discriminate luminal from other molec-
ular subtypes of BC [15]. Radiomics transmutes medical images into high dimensional,
mineable data using the technology for high-throughput extraction of quantitative features,
and these data can be analyzed for decision support [16]. Therefore, this method may
offer useful information about tumor heterogeneity. The radiomics model based on ADC
maps achieved a good prediction performance for the Ki-67 status in patients with invasive
ductal BC [17]. However, studies based on DWI for the diagnosis of BC have focused on
investigating the predictive performance of imaging features within the tumor, ignoring
the surrounding tissues. The peritumoral region may contain valuable information for the
diagnosis of BC, such as peritumoral lymphatic vessel invasion, peritumoral lymphocytic
infiltration, peritumoral edema, and peritumoral parenchyma [18–21]. Fan et al. showed
that the ADC of the proximal peritumoral stroma could discriminate low from high Ki-67
groups in BC with positive ER [21]. A recent study found that the radiomic features from
DWI and ADC images can be used to improve the performance for predicting different
stages of rectal cancer [22]. Thus, the radiomic features from multiregional DWI and ADC
images might be useful for evaluating HER-2 2+ status in patients with BC.

Guo et al. developed a nomogram including ER status, progesterone receptor (PR)
status, and tumor grade to assess HER-2 2+ status in BC patients and achieved an area under
the receiver operating characteristic (ROC) curve (AUC) of 0.749 in the validation cohort [6].
The diagnostic performance of that model was relatively low. Therefore, improving the
diagnostic performance of the model is necessary for the identification of HER-2 2+ status
in BC patients. Recent studies showed that a radiomics model constructed by incorporating
clinical factors and radiomics score (rad-score) based on radiomic features could improve
the predictive ability [23,24]. However, the diagnostic performance of clinical factors and
the rad-score based on multiregional DWI and ADC images for evaluating HER-2 2+ status
in BC patients has not been thoroughly investigated.

The purpose of this study was to establish a radiomics nomogram using the rad-
score calculated according to multiregional DWI and ADC features combined with clinical
factors for the assessment of HER-2 2+ status in BC and to analyze the performance of the
radiomics model from each region.

2. Materials and Methods
2.1. Patient Cohort

The Institutional Ethics Committee approved the retrospective study, which was per-
formed in accordance with the ethical principles for medical research involving human
subjects as described in the 1964 Helsinki Declaration and its later amendments. The re-
quirement of informed consent was waived owing to the retrospective nature of this study.

The information of all patients who underwent a preoperative breast DWI scan be-
tween November 2017 and April 2021 and who met the inclusion and exclusion criteria
was retrospectively collected by three radiologists from the picture archiving and com-
munication system (PACS). The inclusion criteria were: (i) confirmed diagnosis of BC
based on pathological assessment of biopsy specimens; (ii) DWI scan performed <1 month
before surgery; (iii) HER-2 score of 2+ verified by IHC; and (iv) presence of a mass-like
single tumor (facilitating the subsequent segmentation of breast tumors). The exclusion
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criteria were: (i) any treatment before MRI scan, such as radiotherapy, chemotherapy, or
chemoradiotherapy; (ii) incomplete pathology data (HER-2 2+ status unknown); and (iii)
insufficient MRI quality, as determined by consensus of three radiologists (e.g., motion
artifacts). Finally, 223 women with HER-2 2+ status verified by FISH were selected for this
study, and the median lesion area was 352 mm2 (range: 195–1512 mm2).

According to the time of treatment, all patients were divided into two cohorts at a
ratio of 3:1. The training cohort included 167 patients (75 positive and 92 negative HER-2
2+) who received treatment between November 2017 and February 2020. The validation
cohort included 56 patients (22 positive and 34 negative HER-2 2+) who received treatment
between March 2020 and April 2021. The flowchart of this study is provided in Figure 1.
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Figure 1. Flowchart of this study. (a) Image data (DWIb=0, DWIb=800, and ADC) was collected. (b) Intra- and peritumoral
regions (red masks) were obtained using semi-automatic segmentation. (c) A total of 2504 radiomic features were extracted
from three images, and ICC analysis and three-step feature selection were performed. (d) Three rad-scores were calculated
with the selected features using the logistic regression model and evaluated. (e) Independent parameters were selected
among clinical factors and combined rad-score (com-rad-score) using multivariate logistic analysis and used to establish a
radiomics nomogram. ICC, intraclass correlation coefficient; WLCX, Wilcoxon rank-sum test; MRMR, minimum redundancy
maximum relevance; ROC, receiver operating characteristic.

2.2. MRI Acquisition

All breast MRI examinations were performed with the patient in the prone position
using a Signa HDxt 3.0 T MRI system (GE Healthcare Life Sciences, Chicago, IL, USA) with
a dedicated eight-channel bilateral breast coil. An axial DWI sequence was performed for
all patients. The acquisition parameters were as follows: repetition time, 4000 ms; echo
time, 83.30 ms; flip angle, 90◦; matrix size, 256 × 256; field of view, 340 m × 340 m; slices,
32; slice thickness, 4.50 mm; spacing between slices, 5 mm; and b values, 0 and 800 s/mm2.

All DWI (b = 0 and 800) data were exported from the PACS at the institution. ADC
maps were calculated based on a pixel-by-pixel basis using the following formula:
ADC = (lnSI0 − lnSI)/(b − b0), where SI0 and SI represent signal intensity obtained with b
values of 0 and 800 s/mm2, respectively.

2.3. Tumor Segmentation

The slice image with largest tumor cross-section on DWIb800 was selected with evalua-
tion consensus between two radiologists (Reader 1, with 10 years of experience in breast
image interpretation, and Reader 2, with 5 years of experience). When any divergence
of evaluation views existed, another senior radiologist (Reader 3, with 14 years of experi-
ence) was asked to make the final evaluation. Evaluators were blinded to the clinical and
histopathological data.

Tumor segmentation was performed on the DWIb800 slice image selected above using
MATLAB 2018a (Mathworks, Natick, MA, USA) by a radiologist (Reader 1). The intratu-
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moral region of interest (ROI) was obtained using the following steps, as described in a
previous study [25]:

First, an arbitrary shaped ROI was drawn around the lesion area.
Second, the maximum between-cluster variance method was applied to the ROI voxels,

and the segmented image was converted into a binary image with the objective region as 1
and the background region as 0.

Third, morphological erosion was applied to the obtained binary image, and the size
of the structural element was set at 4 × 4.

Fourth, a post-eroded image was traversed to obtain the largest unique eight-
connected region.

Finally, morphological dilation of the unique region was performed, and the target
region was considered as the intratumoral ROI.

The peritumoral ROI was obtained by dilating a distance of 4 mm from the boundary
of the intratumoral ROI [26].

For tumors near the edge of the breast or chest wall, a breast parenchyma ROI (mask)
was manually created using itk-SNAP software (version 3.6.0, Philadelphia, PA, USA) and
loaded into MATLAB 2018a [27]. The peritumoral ROI was additionally bounded to the
breast tissue ROI so that the peritumoral ROI was not outside of the breast region [27].

The contours of intra- and peritumoral ROIs on DWIb800 were copied to the exact same
location of the corresponding DWIb0 and ADC images. Then, the segmentation results of
ADC and DWIb0 were validated by Reader 1.

2.4. Radiomic Feature Extraction

Image intensity normalization and feature extraction were performed using MATLAB
2018a (Mathworks, Natick, MA, USA). Prior to feature extraction, all pixel intensities
within the intra- and peritumoral ROIs were normalized between µ± 3σ (µ, mean of image
intensity within the ROI; σ, standard deviation), and the gray level range was quantized to
eight bits/pixel [28].

Five categories of features were extracted from three images (DWIb0, DWIb800, and
ADC) according to previous radiomic studies [26,29–31]: (i) shape features, (ii) first-order
statistics features, (iii) gray-level co-occurrence matrix (GLCM) features, (iv) Laws fea-
tures, and (v) Gabor features. Detailed descriptions of these radiomic features are pro-
vided in Table 1. All features were then normalized to z distribution ((value−mean
value)/standard deviation).

Table 1. List of Radiomic Features.

Category (Quantity) Radiomic Features

Shape
n = 14 a

Area, Perimeter, Sphericity, Elongation, Extent, Circularity, Solidity, Eccentricity, Equivalent diameter, Major axis
length, Minor axis length, Perimeter to area ratio, Maximum 2D diameter, Spherical disproportion.

First-order statistics
n = 5 b Mean, Median, SD, Skewness, Kurtosis.

GLCM
n = 45 c

Energy, Contrast, Correlation, Variance, Entropy, Homogeneity, Inverse difference moment, Information measures
of correlation 1, Information measures of correlation 2.

Laws
n = 125 c

Response to 5-pixel × 5-pixel filter targeting the specific texture enhancement patterns in the X and Y directions.
25 descriptors are derived from all combinations of five one-dimensional filters: level (L), edge (E), spot (S), wave
(W), and ripple (R). L5 = (1 4 6 4 1), E5 = (−1 −2 0 2 1), S5 = (−1 0 2 0 −1), R5 = (1 −4 6 −4 1), and W5 = (−1 2 0
−2 −1). The 25 filters were L5L5, L5E5, L5S5, L5W5, L5R5, E5L5, E5E5, E5S5, E5W5, E5R5, S5L5, S5E5, S5S5,

S5W5, S5R5, W5L5, W5E5, W5S5, W5W5, W5R5, R5L5, R5E5, R5S5, R5W5, and R5R5.

Gabor
n = 240 c

Gabor wavelet is sensitive to image edge and has good spatial locality and directional selectivity and can grasp
the spatial frequency (scale) and local structure characteristics of multiple directions in the local area of the image.

Each descriptor quantifies response to a given Gabor filter at a specific frequency ( f = 0, 2, 4, 8, 16, 32) and
orientation (θ = 0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 167.5◦).

a Shape features were extracted from the intratumoral ROIs. b First-order statistics for three original images (DWIb0, DWIb800, and ADC)
within the intra- and peritumoral ROIs were calculated. c First-order statistics (mean, median, SD, skewness, and kurtosis) for per descriptor
per image per ROI were calculated (three images, both intratumoral and peritumoral ROIs).
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2.5. Interobserver Variability Evaluation

Sixty images, including 30 positive and 30 negative HER-2 2+, were randomly selected
for ROI segmentation by two radiologists (Reader 1 and Reader 2). Then, radiomic features
were extracted from the segmented images of each radiologist. Intraclass correlation
coefficient (ICC) analysis was performed to evaluate the reproducibility and stability of
radiomic feature extraction. Features with an ICC > 0.8 were considered to have good
agreement and selected for subsequent radiomics analysis [32,33].

2.6. Feature Selection and Radiomics Score Calculation

A three-step feature selection was conducted based on the training cohort. First, the
features with p < 0.1 between the positive and negative HER-2 2+ groups were identified
using Wilcoxon rank-sum test (WLCX). Second, 20 features with high relevance and low
redundancy were chosen by applying minimum redundancy maximum relevance (MRMR).
Third, the optimal features were selected based on the backward stepwise method where
the stopping rule was set to the likelihood ratio test with Akaike’s information criterion [34].

Feature selection for the intratumoral, peritumoral, and combined regions was per-
formed according to the HER-2 2+ status. Next, the intratumoral rad-score (intra-rad-score),
peritumoral rad-score (peri-rad-score), and combined rad-score (com-rad-score) were cal-
culated using the logistic regression model [34]. The AUC was used to evaluate the
discriminative performance of three rad-scores in the training and validation cohorts.

2.7. Radiomics Nomogram Establishment

The potential predictors were first identified among clinical factors and com-rad-
score using univariate logistic regression. These predictors were fed into the multivariate
logistic regression, which was used to select independent predictors of positive HER-2
2+. A radiomics nomogram was established based on the independent predictors. The
discrimination performances of the radiomics nomogram in the training and validation
cohorts were assessed using the AUCs. The calibration curve was generated to analyze
the agreement between the observed and predicted risks of positive HER-2 2+, and the
calibration performances of the radiomics nomogram were assessed in the training and
validation cohorts. The clinical usefulness of the radiomics nomogram was evaluated in
the validation cohort using decision curve analysis (DCA).

2.8. Statistical Analysis

Differences in categorical variables between positive and negative HER-2 2+ groups
were analyzed using the chi-square test. The independent sample t-test was used to
investigate the associations between rad-scores and HER-2 2+ status. A p value < 0.05
was considered statistically significant. The DeLong test was used to statistically compare
the AUC values between two models. The statistical analyses, feature selection, model
construction, and figure plots were performed using R software (version 3.6.2).

3. Results
3.1. Patient Characteristics

The patient characteristics are shown in Table 2. No significant difference in the rates
of positive HER-2 2+ was observed between the two cohorts (75/167, 44.91% vs. 22/56,
39.29%, p = 0.463). There were significant differences in ER (p < 0.001), PR (p < 0.001), and
Ki-67 (p = 0.002) status between the positive and negative HER-2 2+ groups but not in age
(p = 0.866). Two randomly selected cases are provided in Figure 2 to display the results of
intratumoral segmentation, peritumoral segmentation, pathology, and FISH.
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Table 2. Characteristics of 223 patients with HER-2 2+ BC.

FISH Results

Characteristics Positive HER-2 2+
(n = 97, 43.50%)

Negative HER-2 2+
(n = 126, 56.50%) p Value

Age (%) 0.866
<40 years 17 (17.53) 21 (16.67)
≥40 years 80 (82.47) 105 (83.33)

ER status (%) <0.001 *
Negative 39 (40.21) 14 (11.11)
Positive 58 (59.79) 112 (88.89)

PR status (%) <0.001 *
Negative 38 (39.18) 21 (16.67)
Positive 59 (60.82) 105 (83.33)

Ki-67 (%) 0.002 *
<14% 17 (17.53) 46 (36.51)
≥14% 80 (82.47) 80 (63.49)

The chi-square test was used to compare the differences in categorical variables between the positive and negative
HER-2 groups. * p value < 0.05 was considered statistically significant.

Diagnostics 2021, 11, x FOR PEER REVIEW 6 of 15 
 

 

validation cohorts. The clinical usefulness of the radiomics nomogram was evaluated in 
the validation cohort using decision curve analysis (DCA). 

2.8. Statistical Analysis 
Differences in categorical variables between positive and negative HER-2 2+ groups 

were analyzed using the chi-square test. The independent sample t-test was used to 
investigate the associations between rad-scores and HER-2 2+ status. A p value < 0.05 was 
considered statistically significant. The DeLong test was used to statistically compare the 
AUC values between two models. The statistical analyses, feature selection, model 
construction, and figure plots were performed using R software (version 3.6.2). 

3. Results 
3.1. Patient Characteristics 

The patient characteristics are shown in Table 2. No significant difference in the rates 
of positive HER-2 2+ was observed between the two cohorts (75/167, 44.91% vs. 22/56, 
39.29%, p = 0.463). There were significant differences in ER (p < 0.001), PR (p < 0.001), and 
Ki-67 (p = 0.002) status between the positive and negative HER-2 2+ groups but not in age 
(p = 0.866). Two randomly selected cases are provided in Figure 2 to display the results of 
intratumoral segmentation, peritumoral segmentation, pathology, and FISH. 

Table 2. Characteristics of 223 patients with HER-2 2+ BC. 

 FISH Results  

Characteristics 
Positive HER-2 2+ 

(n = 97, 43.50%) 
Negative HER-2 2+ 

(n = 126, 56.50%) p Value 

Age (%)   0.866 
<40 years 17 (17.53) 21 (16.67)  
≥40 years 80 (82.47) 105 (83.33)  

ER status (%)   <0.001 * 
Negative 39 (40.21) 14 (11.11)  
Positive 58 (59.79) 112 (88.89)  

PR status (%)   <0.001 * 
Negative 38 (39.18) 21 (16.67)  

 Positive 59 (60.82) 105 (83.33)  
Ki-67 (%)   0.002 * 

<14% 17 (17.53) 46 (36.51)  
≥14% 80 (82.47) 80 (63.49)  

The chi-square test was used to compare the differences in categorical variables between the 
positive and negative HER-2 groups. * p value < 0.05 was considered statistically significant. 

 
Figure 2. Intratumoral segmentation, peritumoral segmentation, pathology, and FISH results of randomly selected cases
with negative and positive HER-2 2+. Case with negative HER-2 2+: (a) DWIb=0, (b) DWIb=800, (c) ADC map, (d) pathology
findings, and (e) FISH results. Case with positive HER-2 2+: (f) DWIb=0, (g) DWIb=800, (h) ADC map, (i) pathology findings,
and (j) FISH results. The white and red lines indicate the intratumoral and peritumoral margins on DWIb=0, DWIb=800, and
ADC images, respectively.

3.2. Feature Selection, Rad-Score Calculation, and Evaluation

Of the 2504 extracted radiomic features, 2408 (96.17%) had good interobserver agree-
ment with ICCs > 0.8, including 14 shape, 1210 intratumor, and 1184 peritumor features.

Four Laws and five Gabor features were selected to calculate the intra-rad-score.
Five Laws and four Gabor features were chosen to calculate the peri-rad-score. Seven
Laws and six Gabor features were selected to calculate the com-rad-score. The features
respectively derived from DWIb0, DWIb800, and ADC images could be observed among the
selected features used for each rad-score calculation (intra-rad-score: 3/2/4; peri-rad-score:
2/3/4; com-rad-score: 5/3/5). Further details about the features and rad-score calculation
formulas are provided in Supplementary Table S1.

There were significant differences in intra-, peri-, and com-rad-scores between the
positive and negative HER-2 2+ groups in the training cohort (all p < 0.05) and in the
validation cohort (all p < 0.05). Patients with positive HER-2 2+ showed generally higher
values in the three rad-scores (Figure 3). The ROC curves of three rad-scores are shown in
Figure 4. Discriminative performances of three rad-scores in the training and validation
cohorts are shown in Table 3. The com-rad-score achieved the highest AUC (0.860) among
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the three rad-scores in the training cohort, and the same result (0.790) was obtained in the
validation cohort. The intra-rad-score obtained an AUC of 0.824 and 0.763 in the training
cohort and validation cohort, respectively. The AUC of the peri-rad-score was 0.794 and
0.731 in the training cohort and validation cohort, respectively. No significant differences
of AUCs between the intra-rad-score and peri-rad-score (p = 0.476) and between the intra-
rad-score and com-rad-score (p = 0.182), were observed in the training cohort. However,
significant difference existed between the peri-rad-score and com-rad-score (p = 0.031). In
addition, no significant differences (intra-rad-score vs. peri-rad-score, p = 0.681; intra-rad-
score vs. com-rad-score, p = 0.637; and peri-rad-score vs. com-rad-score, p = 0.370) were
presented in the validation cohort. Detailed results are provided in Table 4.
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AUC (95% CI) 0.824 (0.769–0.884) 0.794 (0.726–0.850) 0.860 (0.824–0.925) 0.883 (0.844–0.938)

Sensitivity (95% CI) 0.920 (0.859–0.981) 0.693 (0.589–0.798) 0.840 (0.757–0.923) 0.813 (0.725–0.902)
Specificity (95% CI) 0.598 (0.498–0.698) 0.750 (0.662–0.838) 0.761 (0.674–0.848) 0.859 (0.788–0.930)
Accuracy (95% CI) 0.743 (0.740–0.745) 0.725 (0.722–0.727) 0.796 (0.795–0.798) 0.838 (0.837–0.840)

Validation cohort
AUC (95% CI) 0.763 (0.631–0.867) 0.731 (0.596–0.841) 0.790 (0.661–0.887) 0.848 (0.726–0.930)

Sensitivity (95% CI) 0.864 (0.720–1.000) 0.864 (0.720–1.000) 0.636 (0.435–0.837) 0.727 (0.541–0.913)
Specificity (95% CI) 0.618 (0.454–0.781) 0.559 (0.392–0.726) 0.882 (0.774–0.991) 0.882 (0.774–0.991)
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Table 4. The statistical comparison of AUC values using the DeLong test among four models.

Cohort Models Intra-Rad-Score Peri-Rad-Score Com-Rad-Score Radiomics Nomogram

Training

Intra-rad-score / 0.476 0.182 0.053
Peri-rad-score 0.476 / 0.031 0.002
Com-rad-score 0.182 0.031 / 0.068

Radiomics nomogram 0.053 0.002 0.068 /

Validation

Intra-rad-score / 0.681 0.637 0.162
Peri-rad-score 0.681 / 0.370 0.082
Com-rad-score 0.637 0.370 / 0.096

Radiomics nomogram 0.162 0.082 0.096 /

The slash indicates that there is no data here.

3.3. Radiomics Nomogram Establishment and Assessment

The results of univariate and multivariate logistic regression analyses are summarized
in Table 5. The com-rad-score (odds ratio (OR): 2.644, confidence interval (CI): 1.888–3.702,
p < 0.001) and ER status (OR: 8.255, CI: 1.745–39.044, p = 0.008) were selected as independent
predictors. Next, a radiomics nomogram was developed including the com-rad-score
and ER status (Figure 5). The ROC curves of the radiomics nomogram are provided
in Figure 6. Discriminative performances of radiomics nomogram in the training and
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validation cohorts are shown in Table 4. The radiomics nomogram yielded an AUC of 0.883
and 0.848 in the training and validation cohorts, respectively. No significant differences
of AUCs between the radiomics nomogram and intra-rad-score (p = 0.053) and between
the radiomics nomogram and com-rad-score (p = 0.068) were observed in the training
cohort. However, significant difference existed between the radiomics nomogram and
peri-rad-score (p = 0.002). Moreover, no significant differences (radiomics nomogram vs.
intra-rad-score, p = 0.162; radiomics nomogram vs. peri-rad-score, p = 0.082; and radiomics
nomogram vs. com-rad-score, p = 0.096) were observed in the validation cohort. Detailed
results are shown in Table 4. The calibration curves of the radiomics nomogram are shown
in Figure 7. The calibration curves indicated that the radiomics nomogram had the ability
of good calibration in the training and validation cohorts. The results of the DCA for the
radiomics nomogram are presented in Figure 8. The DCA indicated that applying the
radiomics nomogram was more beneficial than the treat-all strategy and the treat-none
strategy when the range of threshold probability was >21%.

Table 5. Univariate and multivariate logistic regression analyses of the clinical parameters and com-rad-score for HER-2 2+
status in the training cohort.

Univariate Analysis Multivariate Analysis

Parameters OR (95% CI) p Value OR (95% CI) p Value

Age
<40 years 1
≥40 years 1.126 (0.538–2.359) 0.753
ER status
Negative 1 1
Positive 5.480 (2.516–11.936) <0.001 * 8.255 (1.745–39.044) 0.008 *

PR status
Negative 1 1
Positive 3.535 (1.743–7.169) <0.001 * 0.422 (0.096–1.860) 0.254

Ki-67
<14% 1 1
≥14% 0.447 (0.220–0.908) 0.026 * 0.589 (0.227–1.528) 0.277

Com-rad-score 2.718 (1.975–3.741) <0.001 * 2.644 (1.888–3.702) <0.001 *

OR, odds ratio; CI, confidence internal. * p < 0.05 was considered statistically significant in the univariate logistic regression analysis. Then,
those significant parameters were incorporated into the multivariate logistic regression analysis. Finally, the parameters with p < 0.05 were
selected as independent predictors.
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4. Discussion

In this study, three rad-scores were first calculated according to the intratumoral,
peritumoral, and multiregional features in DWI and ADC images. The ROC curves showed
that the com-rad-score based on multiregional features achieved the highest AUC in both
the training and validation cohorts. A radiomics nomogram was then established using
com-rad-score and ER status. The results indicated that the radiomics nomogram yielded
good discrimination and calibration.

Studies have investigated the diagnostic value of imaging features from ADC maps
for assessing the genetic status of BC [15,35]. However, these studies only evaluated the
performance of histogram features in intratumoral regions. Advances in radiomics have
provided more high-order radiomic features that can be analyzed to comprehensively
describe tumor heterogeneity. Zhang et al. constructed an ADC-based radiomics model
using 11 radiomic features (selected from 1029 extracted features) in intratumor regions for
predicting Ki-67 status in patients with invasive ductal BC, and this model showed good
diagnostic ability. However, these studies mainly analyzed the features from intratumoral
regions [17]. BC involves not only neoplastic cells but also significant alterations in the
surrounding stroma or tumor microenvironment [36]. A recent study found the differences
on ADC maps of the proximal peritumoral stroma between high and low Ki-67 in BC
patients with positive ER [21]. In our study, low- and high-order radiomic features from
intra- and peritumoral regions of DWI and ADC images were extracted to improve the
performance of the model. Then, intra- and peri-rad-scores were calculated according
to the features selected from the corresponding regions. The results indicated that the
intra-rad-score and peri-rad-score had the potential value for the evaluation of HER-2
2+ status. A com-rad-score was also calculated by combining the intra- and peritumoral
features in this study. The ROC curve indicated that the com-rad-score yielded a higher
AUC score than intra- and peri-rad-scores in both the training and validation cohorts. The
results were in agreement with those of several recent studies, which indicated that a
radiomics model including intra- and peritumoral features could improve the diagnostic
performance for predicting the pathological outcome in BC [29,30,37].

The reproducibility and robustness of radiomic feature extraction performed by two
radiologists were determined by calculating ICCs. The results demonstrated that most
of the features were in good agreement. After feature selection with WLCX, MRMR, and
stepwise, the radiomic features obtained from each modality image were found among the
finally selected features for the calculation of three rad-scores, which demonstrated that
three images, DWIb0, DWIb800, and ADC, were all essential and could offer complementary
information for the detection of HER-2 2+ status. The features used to calculate the three
rad-scores were mainly Law and Gabor features, which may reflect intra- and peritumor
heterogeneity. Gabor features can detect the wavelike patterns of intensity variation across
different spatial scales in different orientations, and Law features can capture the patterns
of inconsistent enhancement and abnormal structure [26,29,31]. However, detailed intra-
and peritumor features are usually difficult to detect using the naked eye, whereas they
can be easily detected by radiomics analysis.

In this study, ER status and com-rad-score were identified as independent predictors
using univariate and multivariate logistic regression analyses. Positive HER-2 2+ correlated
significantly with negative ER status (Figure 5). This result was consistent with that of
a previous study [38]. A radiomics nomogram was established incorporating ER status
and com-rad-score. The nomogram yielded an AUC of 0.848 in the validation cohort,
which was higher than that of previous nomograms for HER-2 2+ status determination
that only used clinicopathologic characteristics of BC (AUC: 0.749) [6]. The nomogram
also achieved a higher AUC than the com-rad-score. This finding indicated that the
diagnostic performance of the radiomics model by combining the com-rad-score with
clinical factors could be improved. Several recent studies reported similar findings that
further support the value of the radiomics model established using rad-score and clinical
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factors for evaluating pathological outcomes [26,32,39]. Finally, DCA demonstrated the
feasibility of the established nomogram for clinical application.

There are several limitations to our study. First, the retrospective nature of this study
may have led to potential selection bias. Second, the number of patients included in
the study was limited, and patients were from a single center. Therefore, multicenter
studies with a larger number of patients are needed to validate the performance of the
constructed models. Third, only two-dimensional images with the largest tumor cross-
section were used for the radiomics analysis. This could lead to missed information because
of the heterogeneity of tumor volume. A radiomics model based on three-dimensional
segmentation should be developed in future studies. Finally, more and more studies on BC
diagnosis were performed based on deep neural learning, which was a subset of machine
learning and unsupervised from data that were unstructured and unlabeled [40–43]. In
our study, only conventional radiomics analysis was investigated, and the difference of
performance and robustness in evaluating HER-2 2+ status should be further compared
between our study and those based on deep neural network.

5. Conclusions

The radiomics nomogram incorporating ER status and com-rad-score showed a favor-
able performance for predicting HER-2 2+ status in patients with BC. Therefore, it could
be used as a supplementary method. An external validation cohort consisting of a large
number of samples is necessary to evaluate the effectiveness of the established nomogram
before clinical application.
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