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INTRODUCTION

Rib fractures are the most frequently observed injury 
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Objective: To evaluate the performance of a convolutional neural network (CNN) model that can automatically detect and 
classify rib fractures, and output structured reports from computed tomography (CT) images.
Materials and Methods: This study included 1079 patients (median age, 55 years; men, 718) from three hospitals, between 
January 2011 and January 2019, who were divided into a monocentric training set (n = 876; median age, 55 years; men, 
582), five multicenter/multiparameter validation sets (n = 173; median age, 59 years; men, 118) with different slice 
thicknesses and image pixels, and a normal control set (n = 30; median age, 53 years; men, 18). Three classifications (fresh, 
healing, and old fracture) combined with fracture location (corresponding CT layers) were detected automatically and 
delivered in a structured report. Precision, recall, and F1-score were selected as metrics to measure the optimum CNN model. 
Detection/diagnosis time, precision, and sensitivity were employed to compare the diagnostic efficiency of the structured 
report and that of experienced radiologists.
Results: A total of 25054 annotations (fresh fracture, 10089; healing fracture, 10922; old fracture, 4043) were labelled for 
training (18584) and validation (6470). The detection efficiency was higher for fresh fractures and healing fractures than 
for old fractures (F1-scores, 0.849, 0.856, 0.770, respectively, p = 0.023 for each), and the robustness of the model was 
good in the five multicenter/multiparameter validation sets (all mean F1-scores > 0.8 except validation set 5 [512 x 512 
pixels; F1-score = 0.757]). The precision of the five radiologists improved from 80.3% to 91.1%, and the sensitivity 
increased from 62.4% to 86.3% with artificial intelligence-assisted diagnosis. On average, the diagnosis time of the 
radiologists was reduced by 73.9 seconds.
Conclusion: Our CNN model for automatic rib fracture detection could assist radiologists in improving diagnostic efficiency, 
reducing diagnosis time and radiologists’ workload.
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following thoracic blunt trauma, occurring in approximately 
40–80% of cases (1, 2) and representing an important 
indicator of trauma severity (3). In one series, 81% 
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and reduce the required manpower.

MATERIALS AND METHODS

Dataset and Classification Criteria
The local Institutional Review Board approved this 

multicenter retrospective study and waived the requirement 
for informed consent. A total of 1079 patients (25054 
annotations) from three different hospitals (A, B, C) were 
included in this study. The monocentric data of 1004 
patients (974 patients with rib fracture and 30 healthy 
controls) were collected using keyword searches in the 
picture archiving and communication system (PACS) from 
hospital A between January 2011 to January 2019 (Tables 1, 
2). Moreover, data from 75 patients with rib fracture were 
collected from hospital B and C in January 2019 using the 
same method as the multicenter data. Among the 974 rib 
fracture patients (median age, 55 years; male, 643), 90% 
were treated as training (n = 876; median age, 55 years; 
male, 582) and others as validation (n = 98; median age, 
58 years; male, 61) (Table 1). In addition, 5 independent 
multicenter/multiparameter validation sets (n = 173; 
median age, 59 years; male, 118) and a control set (n = 
30; median age, 53 years; male, 18) were added to test the 
performance of the CNN model (Table 2). Figure 1 shows the 
flow chart of the study process.

In this study, rib fractures were classified into one of 
three main types: fresh fracture, healing fracture, and old 
fracture. Fresh fracture was defined based on its sharp 
margin, lack of periosteal reaction or callus formation, and 
imaged within approximately 3 weeks of trauma (17, 18). 
The healing fracture, intermediate between the fresh and 
old fracture, was imaged in the period with blurring of the 
fracture margins to callus formation after the trauma (19). 

of patients with two or more rib fractures had either 
pneumothorax or hemothorax (4). With the increased 
use of chest multislice CT scans, the detection rate of rib 
fractures has improved remarkably (5, 6). However, it is 
time-consuming and labor-intensive to detect rib fractures 
in the “24 ribs” on hundreds of thin-slice CT images and 
missed rib fractures are not uncommon (1, 7). Cho et al. (1) 
reported that the rate of missed diagnosis of rib fracture 
on initial CT images reached 20.7%, significantly higher 
than those of the thoracic vertebrae or sternum (nearly 
100% sensitivity) (8, 9), which could lead to poor patient 
prognosis or adverse medicolegal disputes (10). Therefore, 
it is necessary to improve the accuracy of clinical diagnosis 
and reduce the rate of missed diagnoses.

Currently, the convolutional neural network (CNN), a 
deep learning technique, is widely used in the medical 
field due to its aid in reaching an accurate diagnosis, 
reducing medical errors, and improving productivity (11-13). 
Furthermore, CNNs have also been successfully employed in 
thoracic CT, for example, in the automated classification of 
pulmonary nodules (14, 15), carcinoma, or tuberculosis (16). 
However, to our best knowledge, automatic classification 
and localization of rib fractures and the output of structured 
reports of thoracic CT images using CNN methods have not 
been reported. 

In our study, a CNN model was developed and three goals 
were pursued: 1) to verify the robustness of the optimal model 
with multicenter/multiparameter validation sets; 2) to merge 
the multilayer results to one fracture and output a structured 
report generated from the CNN model; and 3) to compare 
diagnostic efficiency among the structured report and 
experienced radiologists diagnosing assisted and unassisted 
by the CNN model. It was expected that our CNN model 
would improve diagnostic accuracy, reduce diagnosis time, 

Table 1. Clinical and Radiologic Information of Rib Fracture Patients from Monocentric Data
Variables Total Training Set Validation Set P

No. of patients   974 876 (90) 98 (10) -
No. of thick slices (5 mm)   679 614 (70.1) 65 (66.3) 0.442
No. of thin slices (1 mm)   295 262 (29.9) 33 (33.7) 0.442
Median age (range) 55 (20–97) 55 (20–97) 58 (22–89) 0.190
Sex (male:female) 643:331 582:294 61:37 0.472
No. of annotations 20064 18584 1480 -
Fresh fracture 8179 7699 (41.4) 480 (32.5) -
Healing fracture 8723 8112 (43.7) 611 (40.7) -
Old fracture 3162 2773 (14.9) 389 (26.8) -
Pixels 1024 x 1024 1024 x 1024 1024 x 1024 -

Numerical data were reported as median (range). Percentages were shown inside parentheses.
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Table 2. Clinical and Radiologic Information of Five Multicenter/Multiparameter Validation Sets

Variables
Validation Sets

Control Set P
1 2 3 4 5

No. of patients
Hospital A
(n = 33)

Hospital A
(n = 65)

Hospital B
(n = 25)

Hospital C
(n = 25)

Hospital B/C
(n = 25)

Hospital A
(n = 30)

-

Median age (range) 62 (26–80) 59 (24–89) 59 (24–87) 53 (28–73) 61 (29–73) 53 (32–71) 0.625
Sex (male:female) 19:14 42:23 19:6 18:7 20:5 18:12 0.384
Slice thickness (mm) 1 5 1 2 1/2 1 -
Pixels 1024 x 1024 1024 x 1024 1024 x 1024 1024 x 1024 512 x 512 1024 x 1024 -
No. of CT images* 809 491 1468 1006 1667 9917 -
Annotations 881 599 1708 1150 2132 - -
Fresh fracture 214 (24.3) 266 (44.4)   567 (33.2) 270 (23.5) 1073 (50.3) - -
Healing fracture 418 (47.4) 193 (32.2) 1001 (58.6) 388 (33.7)   810 (38.0) - -
Old fracture 249 (28.3) 140 (23.4) 140 (8.2) 492 (42.8)   249 (11.7) - -

Numerical data were reported as median (range). Percentages were shown inside parentheses. *Validation set 1–5 contained only images 
with annotations, and control set contained patients’ all CT images.

Patients were collected from multiple centers 
(Hospital A, B, and C) from January 2011 to January 2019

Eligible patients included three classifications (fresh 
fracture, healing fracture and old fracture) (n = 1049)

Monocentric data from 
hospital A (n = 974)

Multicenter data from 
hospital B and C (n = 75)

Training set (90%) 
(n = 876)

Imaging preprocessing and 
model implementation

Training two-stage 
target detection model 

Faster R-CNN

Training one-stage 
target detection model 

YOLOv3

Evaluate performance of 
Faster R-CNN and YOLOv3

Inclusion criteria (satisfy all) 
1) Clinical trauma history
2) Imaging features 
3) Callus formation or fracture healed

Evaluate Faster R-CNN on 
multicenter/multiparameter sets

Results merged for 
structured reports

Assessment of diagnostic efficiency 
between CNN model and radiologists 

/assessment FPs on control set

Validation set (10%) 
(n = 98)

Control set from 
hospital A (n = 30)

Multicenter/multiparameter 
validation sets (n = 173)

Exclusion criteria 
1) Images with significant artifacts
2) Bone destruction or bone tumors 
3) Congenital rib dysplasia or malformation

Fig. 1. Flow chart showing overall study process. CNN = convolutional neural network, Faster R-CNN = faster region-based convolutional 
neural network, FP = false positive, YOLOv3 = you only look once v3
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Fig. 2. Schematic illustration of Faster R-CNN architecture.
A. ResNet-101. B. RPN network was mainly used to generate regional proposals. C. ROI pooling. D. Classifier. ROI = region of interest, RPN = 
region proposal network

Bone healing in rib fractures typically takes approximately 
12 weeks (20); therefore, the fracture was defined as old if it 
was imaged approximately 3 months after trauma and mature 
callus, bony remodeling, non-visualization of the fracture line 
(19), and no change in follow-up scans were seen.

Data were only collected from patients with rib fracture 
who met all three inclusion criteria: 1) a medical history 
of trauma (obtained from electronic medical records); 
2) imaging features of rib fracture; and 3) callus formation 
or healed fracture on follow-up CT scans. As for the healthy 
controls, the inclusion criteria were: 1) CT examination 
including 24 ribs without a history of trauma and 2) no rib 
fractures found by two senior radiologists. The exclusion 
criteria applicable to all participants were as follows: 1) 
images with significant radial or motion artefacts affecting 
the diagnosis of rib fracture; 2) bone destruction or bone 
tumor; and 3) congenital rib dysplasia or malformation. 

Imaging Annotation and Preprocessing
The CT images, including monocentric (training and 

validation dataset) and multicenter validation datasets, 
were annotated by two experienced musculoskeletal 
radiologists (8 and 9 years of experience in CT diagnosis) 
and checked by two senior radiologists (20 and 14 years of 
experience in CT diagnosis, respectively). If the conclusion 
was inconsistent, one thoracic surgeon was invited to 
participate in the discussion, and the final discussion result 
was established as the gold standard (ground truth [GT]) 
for diagnosis and classification. A rectangular bounding 

box, approximately 0.7–1.5 cm in size, was drawn on every 
CT slice of rib fractures using labelImg (version: 1.8.1, 
available at https://github.com/tzutalin/labelImg). CT 
scanners, scanning parameters, and details of CT image 
preprocessing are presented in Supplementary Material 1. 

Model Architecture and Implementation
The faster region-based convolutional neural network 

(Faster R-CNN) (21) (Fig. 2) and you only look once 
v3 (YOLOv3) model (22) were used in this study. The 
interpretation of those two models, and architecture 
and implementation of the CNN models are described in 
Supplementary Material 2.

Model Comparison and Validation
Patients with rib fractures in hospital A were split into a 

monocentric training set (90%, n = 876) and validation set 
(10%, n = 98) using the random function of Python (version 
2.7.15, available at http://www.python.org). The training 
set was used to fine tune the pre-trained model to fit a 
specific fracture image. The validation set was employed to 
evaluate the performance of the model, which included the 
accuracy of the classification and location. In this study, GT 
included the category of rib fracture and true bounding box. 
Supplementary Material 3 details the judgment criteria of 
the CNN models.

To objectively evaluate the performance between the 
Faster R-CNN and YOLOv3, three evaluation indicators, 
precision, recall, and F1-score, were calculated to select 

M x N

3 x 3 1 x 1

1 x 1

36

im_info

Reshape Softmax Reshape Proposal ROI pooling

bbox_pred

  Conv2_x
1 x 1, 64
3 x 3, 64
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the optimal model. Supplementary Material 4 provides an 
explanation of these indicators.

In order to evaluate the generalizability, stability, and 
robustness of the CNN model, five different validation 
sets spanning different hospitals and including various 
parameters (slice thickness and pixels) were added to the 
model. Validation set 1 (n = 33, 1-mm slice thickness) and 
validation set 2 (n = 65, 5-mm slice thickness) were from 
the monocentric validation set. Validation set 3 (n = 25, 
1-mm slice thickness) was from hospital B and validation 
set 4 (n = 25, 2-mm slice thickness) was from hospital C. 
The CT images in validation sets 1–4 were 1024 x 1024 
pixels, and those in validation set 5 (n = 25, 1-mm or 2-mm 
slice thickness) from hospital B/C were 515 x 512 pixels 
(Table 2). All training and validation sets only contained 
images with annotations; images without fractures were not 
included.

Merging Results for Structured Report
A program, which was able to combine several adjacent 

annotations of thin CT images (1-mm or 2-mm slice 
thickness) into one result, was designed to output 
structured reports. The reports contained the location and 
classification of the rib fractures. Localization included 
marking several rectangular boxes at the fracture site and 

outputting the numbers of the corresponding CT layers. We 
employed the Dice value to judge whether detection results 
in different layers or different parts of one image belonged 
to the same fracture. The detailed explanation is presented 
in Supplementary Material 5 and the structured report from 
CNN model is shown in Figure 3.

Comparison of Diagnostic Efficiency between the CNN 
Model and Radiologists

To compare the efficiency of the CNN model and that 
of experienced radiologists in diagnosing and classifying 
rib fractures, three settings were included in our study: 
structured report, conventional diagnosis by experienced 
radiologists, and comprehensive results based on artificial 
intelligence (AI)-assisted diagnosis. The dataset for the 
test encompassed all CT images (data from validation set 1, 
1-mm slice thickness, 1024 x 1024 pixels) from 33 patients. 
Five attending radiologists (no overlap with the radiologists 
who labelled and checked the annotations), each with 6–8 
years of experience in CT diagnosis, participated in the 
study. They were informed of the gold standard criteria for 
rib fracture classification. They were required to read and 
record the localization (corresponding CT layers of the rib 
fracture) and category of rib fracture using the bone window 
with thoracic CT images. The second test was conducted 

Fig. 3. CT image with rectangular boxes and corresponding CT image reports. All detected fractures were listed in sequence with numbers 
of corresponding CT layers (green numbers) (left). Preceding small white numbers correspond to fractures labelled in CT image (right).



874

Zhou et al.

https://doi.org/10.3348/kjr.2019.0651 kjronline.org

two months later and diagnosed based on the structured 
report. The diagnosis time was recorded using a stopwatch 
and the detection time of the CNN model was obtained from 
the computer terminal. 

A control set contained 30 subjects without rib fractures 
was added to the study in order to validate the performance 
of the CNN model in images without fractures. The false 
positives (FPs) and their frequency in patient and lesion 
level were calculated.

The number of true negatives for the ribs was too large 
to be calculated, as one rib may have myriad normal parts; 
therefore, the receiver operating characteristic (ROC) 
curve and specificity were not applicable. We used a free-
response ROC (fROC) curve to evaluate the comprehensive 

performance of the model, as described by Setio et al. 
(23), because fROC allows for many lesions and normal 
appearance on one image. Detection/diagnosis time, 
precision, and sensitivity were selected as evaluation 
indices.

Statistical Analysis
Precision, recall, and F1-score were selected as 

performance metrics of the CNN models, and the 
corresponding 95% confidence intervals were estimated 
using bootstrapping with 1000 bootstraps. The sensitivity 
and average number of FPs per patient in the CNN model 
of whole CT images from 33 patients without merging 
results were analyzed using fROC curves and the 11 points 

Table 3. Performance Metrics for Multicenter and Multiparameter Validation

Indicators
Validation Set

Mean
1 (n = 33) 2 (n = 65) 3 (n = 25) 4 (n = 25) 5 (n = 25)

Precision

Fresh fractures
203/259 = 0.784
(0.722–0.832)

231/250 = 0.924
(0.895–0.955)

487/600 = 0.812 
(0.746–0.843)

225/282 = 0.798
(0.726–0.852)

853/961 = 0.888 
(0.857–0.912)

0.841

Healing fractures
365/388 = 0.941
(0.908–0.961)

171/206 = 0.830
(0.803–0.868)

840/913 = 0.920 
(0.896–0.943)

343/461 = 0.744
(0.696–0.787)

660/778 = 0.848 
(0.812–0.876)

0.857

Old fractures
200/237 = 0.844 
(0.791–0.901)

116/144 = 0.806
(0.773–0.859)

129/182 = 0.709 
(0.620–0.782)

367/415 = 0.884 
(0.832–0.922)

144/230 = 0.626 
(0.537–0.696)

0.774

Mean 0.856 0.853 0.814 0.809 0.787 0.824
Recall

Fresh fractures
203/214 = 0.949
 (0.897–0.978)

231/266 = 0.868 
(0.841–0.898)

487/567 = 0.859 
(0.846–0.871)

225/270 = 0.833 
(0.811–0.866)

853/1073 = 0.795 
(0.780–0.808)

0.861

Healing fractures
365/418 = 0.873
(0.860–0.884)

171/193 = 0.886 
(0.857–0.926)

840/1001 = 0.839 
(0.830–0.852)

343/388 = 0.884
(0.869–0.899)

660/810 = 0.815 
(0.804–0.831)

0.859

Old fractures
200/249 = 0.803
(0.774–0.830)

116/140 = 0.829 
(0.795–0.884)

129/140 = 0.921 
(0.901–0.939)

367/492 = 0.746 
(0.727–0.774)

144/249 = 0.578 
(0.521–0.631)

0.775

Mean 0.875 0.861 0.873 0.821 0.729 0.832
F1-score

Fresh fractures
1.488/1.733 = 0.859

(0.824–0.886)
1.604/1.792 = 0.895 

(0.868–0.914)
1.395/1.671 = 0.835 

(0.798–0.863)
1.329/1.631 = 0.815 

(0.785–0.844)
1.412/1.683 = 0.839 

(0.823–0.847)
0.849

Healing fractures
1.643/1.814 = 0.906

(0.890–0.917)
1.471/1.716 = 0.857 

(0.827–0.885)
1.544/1.759 = 0.878 

(0.869–0.888)
1.315/1.628 = 0.808 

(0.783–0.834)
1.382/1.663 = 0.831 

(0.817–0.848)
0.856

Old fractures
1.355/1.647 = 0.823

(0.796–0.852)
1.336/1.635 = 0.817 

(0.792–0.848)
1.306/1.630 = 0.801 

(0.757–0.845)
1.319/1.630 = 0.809 

(0.792–0.830)
0.724/1.204 = 0.601 

(0.552–0.643)
0.770

Mean 0.863 0.856 0.840 0.811 0.757 0.825
Total FPs* 116 82 239 223 312 194

Fresh fractures 56 (41–78) 19 (11–27) 113 (91–166) 57 (39–85) 108 (82–142) 71
Healing fractures 23 (15–37) 35 (26–49) 73 (51–97) 118 (93–150) 118 (93–153) 73
Old fractures 37 (22–53) 28 (19–34) 53 (36–79) 48 (31–74)   86 (63–124) 50
Mean 39 27 80 74 104 65

Corresponding 95% confidence intervals, shown inside parentheses, were estimated by using bootstrapping with 1000 bootstraps 
and randomly sampled at annotations level. *Number of FPs was total number of FPs annotations. Validation set 1 and 2 were from 
monocentric validation set, and validation set 3–5 were from multicenter data. FPs = False positives
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of the structured report and diagnoses of radiologists with 
and without AI assistance were overlaid on the curves. 
Supplementary Material 6 provides the detailed statistical 
methods.

RESULTS

Patient Characteristics
There was no significant difference in age, sex, or slice 

thickness between the monocentric training and validation 
set, and no difference of age or sex was observed between 
the validation sets and control set (all p > 0.05) (Table 2).

Comparison of the Classification Models
The mean precision (0.862 > 0.670), mean recall 

(0.867 > 0.554), and mean F1-score (0.864 > 0.603) 
were significantly better for the Faster R-CNN (p = 0.037, 
0.0002, and 0.002, respectively). The results are tabulated 
in Supplementary Material 7. Therefore, Faster R-CNN was 
chosen as our study model and proceeded to the next step 
of validation.

Multicenter and Multiparameter Validation of the CNN 
Model

As shown in Table 3, except validation set 5 (1-mm 
slice thickness; 512 x 512 pixels) and old fractures, the 
mean precision, recall, and F1-score for the five different 
validation sets and three different classifications were all > 

0.8. Based on the Kruskal-Wallis H test and least significant 
difference post hoc test (rank conversion), there were no 
significant differences in the performance regarding fresh 
and healing fractures (mean F1-score: 0.849 and 0.856, 
respectively; p = 0.999), and both were identified better 
than old fractures (mean F1-score: 0.849, 0.856, 0.770, 
respectively; all p = 0.023). 

Comparison of Diagnostic Efficacy of CNN Model and 
Radiologists

The 11 points of the structured report and radiologists 
with and without AI assistance were all above the fROC 
curve, and the five points representing diagnoses after AI 
assistance had the highest value (Fig. 4). The precision 
of the structured report and five radiologists without AI 
assistance were comparable (mean precision: 0.642 < 0.870, 
0.803 < 0.848 and 0.826 > 0.692 for fresh, healing, and 
old fractures, respectively; p = 0.001, 0.578, and 0.117, 
respectively) and the sensitivity was higher for the three 
types of structured report (mean recall: 0.956 > 0.725, 0.875 
> 0.614, and 0.704 > 0.533 for fresh, healing, and old 
fractures; all p < 0.05) (Table 4). 

The mean sensitivity of the five radiologists’ diagnoses 
increased from 0.624 to 0.863 (increased by 23.9%) after AI 
assistance (p = 0.008), and the mean precision of diagnosis 
improved from 0.803 to 0.911 (p = 0.008) (Table 4). Moreover, 
the detection/diagnosis time of the structured report, 
and radiologists with and without AI assistance were 
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Fig. 4. Comparison of diagnostic efficiency for different fractures in different situations on fROC curves.
True positive rate and average number of FP per scan of fresh fractures (A), and healing fractures (B), old fractures (C) on whole CT images from 
33 patients without merging results are shown by fROC curves. From enlarged inset, 11 points of structured report (yellow star) and radiologists 
with and without AI assistance (red and orange circles, respectively) were all above curve; among them, five points representing AI-assisted 
diagnosis (red circles) were greatest (all located in upper left corner). AI = artificial intelligence, fROC = free-response receiver operating 
characteristic



876

Zhou et al.

https://doi.org/10.3348/kjr.2019.0651 kjronline.org

significantly different (23.08 ± 8.15 seconds, 101.25 ± 
47.75 seconds, and 155.15 ± 50.34 seconds, respectively; 
p < 0.01) (Fig. 5). Diagnosis time was reduced by an 
average of 73.9 seconds after AI assistance. Supplementary 
Material 8 provides the detailed performances of individual 
radiologists in the reading test. In the control set, FPs were 
inevitable. The FP frequency (FPs per patient) for fresh, 
healing, and old fractures was 0.200, 0.167, and 0.033, 
respectively, at a per-patient level and 0.333, 0.200, and 
0.067, respectively, at a per-lesion level (Table 5). Figure 
6 displays the CT images detected/diagnosed correctly by 
CNN model and radiologists (Fig. 6A-C), misdiagnosed by 
radiologists (Fig. 6D, E) and with FPs in control set by CNN 

model (Fig. 6F-I).

DISCUSSION

We presented a method for the fully automatic detection 
and classification of rib fractures based on Faster R-CNN 
and assessed the performance of the algorithm twice, first 
using the raw output from the CNN and second using the 
merged structured report. The results demonstrate that our 
model has good performance in classifying rib fractures 
into three different categories, as verified by multicenter/
multiparameter validation sets. In addition, after AI 
assistance was implemented, both the precision and 
sensitivity improved remarkably and the diagnosis time was 
reduced observably. 

In the current study, the Faster R-CNN showed better 
performance in fracture detection and classification than 
YOLOv3. The Faster R-CNN is a two-stage algorithm with 
real-time performance and superior detection accuracy (24), 
whereas YOLOv3 is the most advanced one-stage algorithm 
and is focused on detection speed. In terms of detection 
efficiency of the different categories, detection of healing 
fractures and fresh fractures was better than that of old 
fractures. This was probably because the proportion of 
healing fractures and fresh fractures was higher than that 
of old fractures. Patients with fresh or healing fractures 
usually went to the hospital for CT examination and were 
followed up many times. However, old fractures were 
seldom re-examined. In addition, old fractures were similar 
to the surrounding healthy ribs, with mature calluses, no 
visible fracture lines (19), so it was difficult to distinguish 

Fig. 5. Bar graph of time to diagnosis. Time to diagnosis of five 
different radiologists decreased when AI assistance was used (all p < 
0.01) and average time decrease was 73.9 seconds.
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Table 4. Comparison of Precision and Sensitivity of Different Fractures in Different Situations
Indicators Fresh Fractures Healing Fractures Old Fractures Mean

Mean precision
Five validation sets with fracture images 4.206/5 = 0.841 4.283/5 = 0.857 3.869/5 = 0.774 0.824
Full images without results merged 165/283 = 0.583 345/483 = 0.714 168/296 = 0.568 0.622
Structured report 43/67 = 0.642 49/61 = 0.803 38/46 = 0.826 0.757
Radiologists without AI assistance* 4.351/5 = 0.870 4.243/5 = 0.848 3.459/5 = 0.692 0.803
Radiologists with AI assistance* 4.457/5 = 0.891 4.577/5 = 0.915 4.642/5 = 0.928 0.911

Mean sensitivity
Five validation sets with fracture images 4.304/5 = 0.861 4.297/5 = 0.859 3.877/5 = 0.775 0.832
Full images without results merged 165/214 = 0.771 345/418 = 0.825 168/249 = 0.675 0.757
Structured report 43/45 = 0.956 49/56 = 0.875 38/54 = 0.704 0.845
Radiologists without AI assistance† 3.623/5 = 0.725 3.071/5 = 0.614 2.667/5 = 0.533 0.624
Radiologists with AI assistance† 4.621/5 = 0.924 4.570/5 = 0.914 3.758/5 = 0.752 0.863

*Precision of radiologists’ diagnoses increased 10.8% after AI assistance (p = 0.008), †Sensitivity of diagnosis increased 23.9% after AI 
assistance (p = 0.008). AI = artificial intelligence
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Table 5. FPs and Frequency of Rib Fracture of Structured Report in Control Set (n = 30)

Category
Per-Patient Level Per-Lesion Level

FPs Frequency (FPs/Patient) FPs Frequency (FPs/Patient)
Fresh fractures 6 (2–9)   6/30 = 0.200 (0.067–0.300) 10 (3–16) 10/30 = 0.333 (0.100–0.533)
Healing fractures 5 (1–8)   5/30 = 0.167 (0.033–0.267)   6 (1–10)   6/30 = 0.200 (0.033–0.333)
Old fractures 1 (0–2)   1/30 = 0.033 (0.000–0.067) 2 (0–4)   2/30 = 0.067 (0.000–0.133)
Total 10 (3–19) 10/30 = 0.333 (0.100–0.633) 18 (4–30) 18/30 = 0.600 (0.133–1.000)

Correspondence 95% confidence intervals were shown inside parentheses. In patient level, there were 2 patients who have PFs of both 
fresh and healing fractures. 

Fig. 6. Detection/diagnosis results of different fractures shown on CT images.
A-C. Rib fractures were detected/diagnosed by CNN model and radiologists correctly. D. Two fresh fractures were diagnosed by CNN model, 
while subtle fresh fracture in posterior rib was missed by some radiologists (arrow). E. These two healing fractures were misdiagnosed as old 
fractures by radiologists, and rear one was detected correctly by CNN model (arrow). F-I. FPs were detected on healthy ribs by CNN model. CNN = 
convolutional neural network
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them from healthy ribs. White callus formation in healing 
fractures or fracture lines in fresh fractures were evident on 
CT images.

We used five different multicenter/multiparameter 
validation sets including diverse CT scanners, three 
reconstructed slice thicknesses (5, 1, and 2 mm) and two 
image resolutions (1024 x 1024 and 512 x 512 pixels). The 
results revealed that the robustness of the Faster R-CNN in 
these validation sets was good (mean F1-score > 0.8) except 
for validation set 5 (512 x 512 pixels). It was speculated 
that image resolution might affect image recognition. In 
a pilot experiment, we found that a 1024 x 1024-pixel 
resolution led to a better detection performance than a 512 x 
512-pixel resolution as the 512 x 512-pixel images did not 
reflect the features of rib fractures well. In brief, this CNN 
model could be applied in different hospitals using various 
scanners, different reconstructed slice thicknesses, and 
high-resolution CT images in PACS.

In order to avoid incorrectly identifying a fracture in one 
location as many separate fractures, a program to merge 
the results and output a structured report was developed. It 
can reduce false negatives and FPs because the CNN model 
could output correct results identified correctly over a few 
layers and ignore predicted boxes only on one or two layers. 
Surprisingly, when we compared the diagnostic efficiency 
to that of experienced radiologists, the structured report 
performed comparably to the radiologists, and the diagnoses 
after AI assistance had the highest diagnostic efficiency. 
An analysis of the radiologists’ diagnoses showed that 
they often missed diagnoses with multiple fractured ribs 
or subtle fractures. Some relatively confounding fractures, 
for instance, fresh fractures vs. healing fractures or 
healing fractures vs. old fractures, were also misdiagnosed. 
However, the Faster R-CNN extracted the feature map for 
each input image by means of a region proposal network 
and sliding-window M x N feature map (25). This led to the 
accurate detection of rib fractures in accordance with the 
diagnosis of radiologists, and the model could detect many 
subtle fractures that the radiologists missed. Moreover, the 
diagnosis time was obviously shortened after AI assistance. 
In the control set, FPs were inevitable, and the causes of 
misdiagnosis included the identification of uneven bone 
density/local defects as fresh fractures, identification 
of bone island/costal cartilage calcification as healing 
fractures, and local bone enlargement as old fractures.

Our preliminary study had several limitations. First, 
although our model could mark the fractures on CT images 

and output a structured report, the current model cannot 
show the anatomical location of the rib fractures (right or 
light, number of ribs, anatomical name of fractured rib). In 
future, a three-dimensional deep learning and tracking method 
may be used to identify the anatomical location. In addition, 
the precision and recall of this model were not particularly 
high, especially for old fractures, and some FPs existed in 
the ribs without fractures. We will increase the number of 
different shapes of fractures and introduce some common FP 
annotations into the model. Finally, the size of the validation 
set was relatively small, and additional data and prospective 
studies should be pursued to verify the CNN model.

In conclusion, our CNN model achieved fully automatic 
detection and classification of rib fractures and output 
structured reports. AI-assisted diagnosis attained a 
precision of 91.1% (increased by 10.8%) and sensitivity 
of 86.3% (increased by 23.9%), measurably surpassing the 
unaided work of experienced radiologists and requiring 
significantly less time. Furthermore, our method has a 
certain degree of generalizability, stability, and robustness 
based on the multicenter/multiparameter validation. In 
summary, our model suggest the feasibility of AI-assisted 
diagnosis of rib fractures, which could improve diagnostic 
efficiency, and reduce diagnosis time and radiologists’ 
workload.
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