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The value of single-molecule real-time technology in the
diagnosis of rare thalassemia variants and analysis of
phenotype-genotype correlation
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To compare single-molecule real-time technology (SMRT) and conventional genetic diagnostic technology of rare types of
thalassemia mutations, and to analyze the molecular characteristics and phenotypes of rare thalassemia gene variants, we used 434
cases with positive hematology screening as the cohort, then used SMRT technology and conventional gene diagnosis technology
[(Gap-PCR, multiple ligation probe amplification technology (MLPA), PCR-reverse dot blot (RDB)] for thalassemia gene screening.
Among the 434 enrolled cases, conventional technology identified 318 patients with variants (73.27%) and 116 patients without
variants (26.73%), SMRT identified 361 patients with variants (83.18%), and 73 patients without variants (16.82%). The positive
detection rate of SMRT was 9.91% higher than conventional technology. Combination of the two methods identified 485 positive
alleles among 49 types of variant. The genotypes of 354 cases were concordant between the two methods, while 80 cases were
discordant. Among the 80 cases, 76 cases had variants only identified in SMRT method, 3 cases had variants only identified in
conventional method, and 1 false positive result by the traditional PCR detection technology. Except the three variants in HS40 and
HBG1-HBG2 loci, which was beyond the design of SMRT method in this study, all the other discordant variants identified by SMRT
were validated by further Sanger sequencing or MLPA. The hematological phenotypic parameters of 80 discordant cases were also
analyzed. SMRT technology increased the positive detection rate of thalassemia genes, and detected rare thalassemia cases with
variable phenotypes, which had great significance for clinical thalassemia gene screening.
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INTRODUCTION

Thalassemia, also known as Mediterranean anemia, is a hereditary
hemolytic anemia mainly caused by deletions or point mutations
of globin genes. It is one of the most common single gene
diseases in the world. The global thalassemia gene carriers
comprise ~1.67% of the total population, which are mainly
distributed in the Mediterranean coast, North Africa, the Middle
East, the Indian mainland, Southeast Asia, and southern China [1].
Thalassemia is one of the most common genetic diseases in
southern China. The pathogenic variants of thalassemia include
single-nucleotide variations (SNVs), indels, and large fragments of
copy number variants (CNVs) and structural variations (SVs).
Among them, a-thalassemia is mainly caused by large fragment
deletions, and B-thalassemia mainly involves point mutations. In
China, simple and low cost red blood cell and hemoglobin tests
are used as a first-tier screening strategy. Then molecular

diagnosis will be performed for individuals with positive results
of blood test. Conventional molecular diagnosis methods for
detecting thalassemia genes include Gap-PCR, PCR-RDB, PCR-flow
fluorescence hybridization, and MLPA. Other common technolo-
gies used in China include gene chip, Sanger sequencing, and
next generation sequencing (NGS). Conventional screening
methods can only detect a limited spectrum of gene mutations,
which sometimes lead to misdiagnosis. NGS used in thalassemia
screening can effectively reduce the need for various types of
conventional genetic testing, but there could be missed diagnoses
[2]. Although the probe hybridization target capture NGS method
can simultaneously detect deletions and SNV/indels, the detection
cost is high, and the accuracy is not ideal. Gap-PCR combined with
NGS technology is currently used to compensate for the short-
comings of NGS capture sequencing technology. In addition, due
to the high homology between HBA2 and HBAT genes, the short-
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read NGS method cannot distinguish HBA2 and HBAT effectively
[3, 4]. With the advantage of long-molecule sequencing, PacBio
real-time sequencing technology (SMRT) had been used for
comprehensive and precious thalassemia test [5, 6]. In this study,
SMRT technology and conventional methods were performed for
434 suspected carriers of thalassemia to simultaneously detect
deletion and non-deletion variants of a-thalassemia and
B-thalassemia. Compared to conventional methods, SMRT tech-
nology detected more abnormal hemoglobin variant sites on the
HBAT, HBA2, and HBB genes, which illustrated the value of SMRT
technology in the diagnosis of common and rare types of a-
thalassemia and B-thalassemia variants.

PATIENTS AND METHODS

Patients

A total of 434 patients who attended Liuzhou Maternal and Child Health
Hospital in Guangxi, China from January 2018 to December 2020, were
included in the study. The enrolled patients should meet at least one of the
following inclusion criteria: (1) routine hematology examination showed
abnormal mean corpuscular volume (MCV <80fL) and/or mean corpus-
cular hemoglobin (MCH < 27 pg); (2) hemoglobin electrophoresis showed
HbA2 < 2.5% or HbA2 > 3.5% or elevated HbF or abnormal hemoglobin; (3)
the results of conventional genetic diagnosis were inconsistent with the
results of the hematology phenotype; (4) the patient gave birth to children
with moderate or severe thalassemia; and (5) there may be abnormalities
outside the scope of conventional genetic testing techniques. The
exclusion criteria included: (1) incomplete basic clinical data; (2) the
patient had other blood diseases; and (3) the patient had mental
abnormalities or cognitive dysfunctions. The study group was comprised
of 185 males and 249 females, with age range 3 days to 56 years, and an
average age of 26.4 + 12.59 years. This study was approval by the ethics
committee of our hospital, and all research subjects or their legal guardians
signed an informed consent form.

Methods

Hematology and hemoglobin electrophoresis analysis. An automatic blood
cell analyzer was used for routine blood analyses, and high-performance
liquid chromatography was used for hemoglobin analysis to detect HbF,
HbA2, HbH, and other hemoglobin variants.

Genomic DNA extraction. The magnetic bead method was used to extract
nucleic acids (LabAid820; Xiamen Zhishan Biotechnology, Xiamen, China).
The nucleic acid analyzer (ASP-2680; ACTGene, Piscataway, NJ, USA) was
used to detect DNA concentration and purity. The A,g0/Azg0 Of extracted
DNA was between 1.6 and 1.9, and the concentration was 20-30 ng/pL.

a-thalassemia and f-thalassemia genotyping. Genomic DNA extracted
from peripheral blood were used for thalassemia test. Gap-PCR (Yishengtang,
Shenzhen, China) was performed for the four common a-thalassemia
deletions [-F” (Southeast Asia), —a>’ (rightward), —a*? (leftward) —'HA
(Thailand)] were performed using the gap-polymerase chain reaction (Gap-
PCR). PCR-RDB assay (Yishengtang, Shenzhen, China) was performed for the
three  common non-deletional a-thalassemia mutations including Hb
Constant Spring (Hb CS, HBA2: c427T>C), Hb Quong Sze (Hb QS, HBA2:
¢.3777>C), and Hb Westmead (Hb WS, HBA2: c.369G>C), and the 17 known
B-thalassemia mutations including —28 (A>G) (HBB: c.—76A>G), —29 (A>G)
(HBB: ¢.—79A>G), —30 (T>C) (HBB: c.—80T>C), —32 (C>A) (HBB: c.—82C>A),
codons 14/15 (+G) (HBB: c.45_46insG), codon 17 (A>T) (HBB: c.52A>T), codon
26 (or Hb E) (G>A) (HBB: c.79G>A), codons 27/28 (+C) (HBB: c.84_85insC),
codon 31 (-C) (HBB: c.94delC), codons 41/42 (-TTCT) (HBB: c.126_129delCTTT),
codon 43 (G>T) (HBB: c.130 G>T), codons 71/72 (+A) (HBB: c. 216_217insA),
IVS--1 (G>T) (HBB: ¢.924+1G>T), IVS--5 (G>C) (HBB: ¢.92+5G>C), IVS-I-654
(C>T) (HBB: ¢.316-197C>T), CAP+1 (A>C) (HBB: c.—50A>C), and initiation
codon (T>G) (HBB:c.2T>G). MLPA detection was performed using the P102
and P140 probe kit (MRC-Holland, Amsterdam, The Netherlands) to analyze
the copy number variation of the deleted plutonium-Mediterranean gene.
Capillary electrophoresis was performed on amplified products using
the 3500Dx genetic Analyzer (Applied Biosystems, Foster City, CA, USA).

SMRT and data analysis. Genomic DNA was extracted from peripheral
blood leukocytes using the QlIAamp DNA blood mini kit (Qiagen, Hilden,
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Conventional technology, including Gap-
PCR and (or) MLPA, RDB

Patients without variants
(n=73,16.82%)

Patients without variants
(n=116,26.73%)

Patients with variants Patients with variants
(n=318,73.27%) (n=361,83.18%)
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‘ 485 positive alleles, 49 variant types ‘
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Conventional technology SMRT
408 positive alleles (84.12%) 482 positive alleles (99.38%)
19 variant types (38.78%) 47 variant types (95.92%)

Fig. 1 Combined analyses of the two techniques. Comparison of
variants detection results between conventional technology and
SMRT technology.

Genotyping results

(n=434)

80 cases with
inconsistent results
(18.43%)

354 cases with exactly
the same result
(81.57%)

14 cases with
rare deletions
and triplicate o-
globin genes
(3.22%)

49 cases with

rare variants in rare variants in
HBAI2 HBB
(3.69%) (11.29%)

16 cases with
one case with

@7 deletion®
(0.23%)

281 cases with
variants
(64.75%)

73 cases without
variants
(16.82%)

Fig. 2 Comparison of genotyping results between conventional
technology and SMRT technology *SMRT method showed that the
genotype of sample D141966 was —a>”/aa, while by conventional
Gap-PCR it was —a>”/—o”’. Validation by MLPA confirmed D141966
had heterozygous —a3” deletion.

Germany). Purified DNA samples were quantified using the Qubit dsDNA
BR assay kit (Thermo Fisher Scientific, Waltham, MA, USA) using a Qubit 2.0
fluorometer (Life Technologies, Carlsbad, CA, USA). Samples were sent to
an independent laboratory (Berry Genomics, Beijing, China) for sequencing
using the Sequel Il platform and data analysis (PacBio, Menlo Park, CA,
USA). Briefly, genomic DNA samples were subjected to multiplex long-
molecule PCR using optimized primers to generate specific amplicons that
encapsulated currently known structural variation (SV) regions, single-
nucleotide variations (SNVs), and indels (insertions and deletions) in the
HBA1, HBA2, and HBB genes. After purification and end repair, the
barcoded adapters were ligated to the 5 and 3’ ends, and SMRT bell
libraries were prepared using the sequel binding and internal Ctrl Kit 3.0
(PacBio). Primed DNA-polymerase complexes were loaded onto SMRT cells
(PacBio) and sequencing was performed on the PacBio Sequel Il system to
generate 10-25 subjects per molecule. Following alignment of subreads,
the consensus circular sequence was mapped to the GRCh38 reference
and variants identified (FreeBayes software, version 1.2.0). Variant
pathogenicity was classified according to general guidelines and from
information provided in hemoglobin variant databases. Phenotypes were
finally assigned from known genotypic-phenotypic associations. Large
deletion variants was confirmed by Gap-PCR or MLPA. SNVs and indels
were confirmed by PCR-RDB or Sanger sequencing.

Sanger sequencing for HBA and HBB gene

Four sets of primer pairs were designed and used to amplify and sequence
the a-globin genes (HBAT and HBA2) and 3-globin gene (HBB): HBA1-F: 5'-
TGG AGG GTG GAG ACG TCC TG-3/; HBA1-R: 5/-TCC ATC CTC TCC TCC CGC
CCC TGC CTT TTC-3"; HBA2-F: 5'-TGG AGG GTG GAG ACG TCT TG-3/; HBA2-R:
5/-CCG TTG TTG GCA CAT TCC GG-3';HBB-FP: 5'-AAC TCC TAA GCC AGT GCC
AG-3’; Avall-HBB-FP: 5'-TTG GGG ATC TGT CCA CTC CT-3/; Avall-HBB-RP: 5'-
CCA GCC TTA TCC CAA CCA TAA AAT AA-3’; and HBB-RP: 5-ATG CAC TGA
CCT CCC ACA TTC CCT-3'. DNA sequencing was performed using the
Sanger dideoxy termination sequencing method, and the reference
sequence was NM_000517. Amplification was performed using 50 ng of
genomic DNA, and 20 pmol of forward (F) and reverse (R) primers, on a
C1000 Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA). The PCR
products were sequenced on the ABI PRISM” 3130 automated sequencer
(Applied Biosystems).
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Yes Sanger [32]

No

14 (2.89)

American

2/140270,
GnomAD

Pathogenic

HBB:c.341T>A

CD113 (GTG>GAG)

Chinese

[33]

Sanger

Yes

No

1/251362, American 1 (0.21)

Likely-

HBB:c.431A>G

CD143 (CAC>CGQ)

Italian

GnomAD_exome

pathogenic

This study

Yes Sanger

No

3 (0.62)

Chinese

34/140174,
GnomAD

None

Benign-likely-
benign

HBB:c.316-45G>C

IVS- 11-806 (G>C)

This study

Sanger

Yes

No

1(0.21)

Chinese

Benign-likely-
benign

HBB:c.316-179A>C

IVS- 11-672 (A>C)

This study

Sanger

Yes

No

Chinese 1 (0.21)

None

Benign-likely-
benign

HBB:c.315+308delA

IVS -11-308 (-A)

485 (100)

Total

Gap-PCR Gap- polymerase chain reaction, MLPA multiple ligation probe amplification technology, RDB reverse dot blot.

?Data come from HbVar (https://globin.bx.psu.edu/hbvar/hbvar.html), genomAD (https://gnomad.broadinstitute.org/), and dbSNP (https://www.ncbi.nlm.nih.gov/snp/).
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Genotype analysis with exactly the same test results for the
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405

(83.50%)

Fig. 3 Distribution of 49 variant types and 485 positive alleles. A Distribution of 49 variant types. SMRT cannot detect but conventional
techniques can detect (pink), SMRT and conventional techniques can detect (orange), SMRT can detect but conventional techniques failto
detect (yellow). B Distribution of 485 positive alleles. SMRT cannot detect but conventional techniquescan detect (red), SMRT and
conventional techniques can detect (yellow-green), SMRT can detect butconventional techniques fail to detect (light green).

Data analysis

The subjects with positive test results were diagnosed as carriers or
patients of thalassemia. The concordance of the two methods were then
calculated. SPSS statistical software for Windows, version 22.0 (SPSS,
Chicago, IL, USA) was used for statistical analyses. The measurement data
are expressed as X + SD and the count data are expressed as examples and
percentages.

RESULTS

Comparison of genotyping results between traditional
methods and SMRT technology

Among the 434 enrolled cases, using conventional methods (gap-
PCR and /or MLPA, RDB), 318 patients with variants (73.27%), and
116 patients without variants (26.73%) were identified. SMRT
identified 361 patients with variants (83.18%) and 73 patients
without variants (16.82%). The positive detection rate of SMRT was
9.91% higher than that of conventional methods. Combined
analyses of the two techniques revealed that there were 485
positive alleles among 49 variant types (Fig. 1). Among them,
conventional technology identified 408 positive alleles (84.12%)
among 19 variant types (38.78%), and SMRT identified 482 positive
alleles (99.38%) among 47 variant types (95.92%) (Fig. 2). Of the 49
types of variants, 30 types (61.23%) were detected by SMRT only,
two types (4.08 %) were detected by conventional methods only,
and 17 types (34.69%) were detected by both methods (Fig. 2). Of
the 485 positive alleles, 77 (15.88%) were identified by SMRT only,
three (0.62%) were identified by conventional methods and 405
(83.50%) were identified by both methods (Table 1 and Fig. 2). A
total of 354 cases had completely concordant results between the
two types of techniques, including 73 negative and 281 positive
cases (Table 2 and Fig. 3), while 80 cases had discordant results
(Fig. 3). Of the 80 cases, 14 patients had rare deletions and
triplicate a-globin genes (Table 3), 16 patients had rare variants in
the a-globin gene (Table 4), and 49 patients had rare variants in
the B-globin gene (Table 5), one case had o>’ deletion. The
genotype of sample D141966 was —a>’/aa by SMRT method,
while it was —a®’/—a>” by conventional Gap-PCR. Validated by
MLPA technology, the genotype is the same as the result of SMRT
technology (Fig. 4). The IGV plots of selected samples were
displayed to show the thalassemia variants identified by SMRT
(Fig. 5).

Hematology examination and hemoglobin electrophoresis
results in patients with rare deletions and triplicate a-globin
genes

A total of 14 rare cases of a and [B-globin gene deletions, or
triplicate a-globin genes were found (Table 3). Among them, the
result of hemoglobin electrophoresis of patients with —**/—a>*
and —a*7/HS-40 deletion showed the presence of HBH peak.

Journal of Human Genetics (2022) 67:183 - 195

The routine hematology examination results of patients with aa/
aaa®™ ™7 and aa/aac®™* were normal, but HoA2 was decreased
and HbF was significantly increased to 12.3% and 16.2%,
respectively. When aa/aaa®®7 and aa/aac®™? were combined
with (-thalassemia, they were assigned as intermediate
-thalassemia, and HbF was also significantly increased. Patients
with HKao/aa presented with silent a-thalassemia, and patients
with HKaa/—>** presented with mild o-thalassemia. The HBGI-
HBG2 deletion combined with BP*42TTN/BN \was clinically

manifested as mild B-thalassemia (Table 3).

Hematology examination and hemoglobin electrophoresis
results in patients with rare variants in HBA1/2

Sixteen rare HBAT/2 variants were found, including ->*/HBA:
c2dell,  —**/HBA2:c.2T>C**/HBA2:c.52G>T,-a*” /HBAT:c.19G>T,
HBA1:.34A>CHBAT:c.51G>CHBAT:c.55G>C, A /HBAT:c.55G>C,—F*/
HBA1:c.84G>T,HBA2:c.91G>CHBA2:c.—59C>T combined with HBA2:
c91G>C, HBA2:c.256G>A. Among them, HBAT: c.34A>C and HBAI:
¢.51G>C had normal routine blood test results, but abnormal
hemoglobin was detected. The routine blood phenotypes of the
genotypes HBAT: ¢.84G>T, HBA1:c.19G>T, and HBA1:c.55G>C were
normal. If it was compounded with other deletion variant, it
manifested as mild or silent thalassemia, and abnormal hemoglobin
was detected. The -°*/HBA2:c.2delT, —*4/HBA2: c2T>C, and %4/
HBA2: ¢52G>T manifested as non-deletion HbH disease. HBA2:
¢.91G>C had normal hematology phenotype, though with abnormal
hemoglobin, and reduced HbA2. In cases with HBA2: c.—59C>T/
HBA2: ¢91G>C compound heterozygous variants, hemoglobin
electrophoresis showed abnormal hemoglobin peaks at 3.784 and
4349 min, the routine hematology phenotype was normal, and
HbA2 was significantly increased. HBA2: c.256G>A cases had a
normal phenotype, though abnormal hemoglobin was detected,
and HbA2 was reduced (Table 4).

Hematology examination and hemoglobin electrophoresis
results in patients with rare variants in HBB

The ¢.—100G>A, c.—136C>G, ¢315+5G>C, ¢380T>G, and c.
—81A>C belonged to beta+ thalassemia (partial loss of function
of B-globin gene). Heterozygous variants of these types showed
silent or mild pB-thalassemia. c91A>G belonged to beta0
thalassemia (complete loss of function of the B-globin gene),
and heterozygous mutations manifested as mild 3 thalassemia.
The hematological phenotype of c.170G>A, c431A>G, ¢.232C>T,
c.341T>A, and c.431A>G heterozygous variation was normal, the
HbA2 and HbF contents were within the reference range, but
abnormal hemoglobins were detected. Abnormal hemoglobin of
case with ¢.341T>A/c.315+5G>C accounted for 93.5%, and HbA
was almost undetectable. HbA2 content of case with c431A>G
heterozygous variation was increased. The hematological
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Fig. 4 The genotyping results of sample D141966 by three technologies. A It was —«®’/—a>” by Gap-PCR. B It was —a®7/aa by SMRT. C It
was —a>/ao by MLPA. Redboxed areas indicate the position of —o” deletion.

phenotype of c.—248A>G heterozygous variation was normal, and
mainly manifested as decreased HbA2 content. ¢.316-45G>C,
¢.316-179A>C, and ¢.315+308delA combined with other types of
a-thalassemia were manifested as silent or mild a-thalassemia
(Table 5).

DISCUSSION

Thalassemia is a single gene disease, which is difficult to cure but
more straightforward to diagnose and be prevented clinically. Its
gene mutation types are diverse and complex. As of 2021, the
LOVD (https://databases.lovd.nl/shared/genes) database had more
than 2000 thalassemia and abnormal hemoglobin-related variant
sites, and most of the sites have not been studied by conventional
genetic testing methods, especially the large deletion variant type.
At present, common clinical testing techniques for thalassemia
genes include Gap-PCR, reverse dot hybridization, PCR-flow
fluorescence hybridization, gene chip, MLPA, Sanger sequencing,
and next generation sequencing. The conventional screening
mode can only detect variants in known gene loci, which is far
from sufficient for the detection of other variant loci, leading to
missed diagnoses and misdiagnoses. There is therefore an urgent
need to use more accurate and effective diagnostic techniques to
screen thalassemia patients in clinical practice. In recent years,
there have been reports of missed detections of thalassemia using
conventional genetic testing methods. The SMRT technology can
detect the thalassemia gene without interrupting the DNA, and
can directly read the full-length gene sequence. The DNA does not
need to be amplified by PCR during sequencing, which facilitates
individual sequencing of each DNA molecule, and it has very long
read lengths (a read length up to 30-100kb), high accuracy
(QV30 > 99.8%), no GC preference, and single-molecule resolution
characteristics [7]. SMRT technology can facilitate the simulta-
neous detection of a-thalassemia and f-thalassemia in 1L of
whole blood or 10-15mL of amniotic fluid sample. It can also
detect hotspots and rare variant sites and their arrangements with
high accuracy, including comprehensive coverage of 2062 variant
sites related to thalassemia, and detection of 18 a-globin gene
deletion variants, four a-globin genes triplicate and two {3-globin
gene deletion. It can detect 96 samples at a time with high
efficiency and high accuracy.

Xu et al. [5] first used the SMRT to sequence full-length
thalassemia-related genes (HBA1/2 and HBB) to obtain complete
variant information of two alleles that were difficult to obtain by
conventional genetic testing techniques. Twelve hospitals in
southern China assessed a comprehensive analysis of thalassemia
alleles (CATSA) for identifying both a and B thalassemia genetic
carrier status by third-generation sequencing (TGS). Compared
with standard thalassemia variant PCR panel testing, TCS can
detected 33 more positive variants, and found that the traditional
PCR detection technology had 1 false negative and 8 false positive
result [6]. The present study used the SMRT and conventional

SPRINGER NATURE

technologies to test the thalassemia gene in the thalassemia
screening positive population in this area. The results showed that
the percentage of thalassemia gene was high and the genotype
was complex, rare variant types of thalassemia and the
phenotypes were diverse. Among the 434 cases, 49 variant types
were detected, of which 19 were detected by conventional
technology and 47 were detected by SMRT technology. Compared
with conventional technology, SMRT technology detected 28
more variant types. The positive detection of SMRT was 9.91%
higher than that of conventional technology, and SMRT technol-
ogy increased the detection of thalassemia genes. At present, the
detection range of the reagents we used only included 2062
variant sites related to thalassemia on the HBA1/2 and HBB genes.
HS-40 deletion occurs upstream of the a-globin gene cluster, and
HBG1-HBG2 deletion occurs upstream of the HBB gene cluster. The
SMRT method developed in this study focused on detection of
variants in HBA1, HBA2, and HBB genes, which consisted the vast
majority of thalassemia variants. With expanded primer pairs, the
SMRT technology can definitely detect HS-40 and HBG1-HBG2
deletions. However, the sequencing cost will increase with more
primer pairs [7]. So, it was the limit of the design of SMRT method
in this study but not SMRT technology itself.

This study found 14 cases of rare deletions or triplicate a-globin
genes. Among them, the —**/—a®* and —a®’/HS-40 deletion
patients all manifested with HbH disease [8, 9]. Carriers of
aaa®37 and aao®*2 had normal phenotypes, but HbF was
significantly increased by 12.3% and 16.2%, respectively, and
HbA2 was reduced. When compounded with B-thalassemia, it can
manifest as intermediate (3-thalassemia due to the aggravation of
the imbalance between the a and [ chains, and HbF is also
significantly increased [10, 11]. In the present study, among the
thalassemia carriers whose detection results were —a®’/aa by
conventional methods, two of them were found to be HKaa/aa
using SMRT technology, and the misdiagnosis rate was as high as
4.17% (2/48). HKao/aa patients presented with silent a-thalasse-
mia, and HKaa/—>F* patients presented with mild a-thalassemia,
which is consistent with past reports [12]. Although the HBGI-
HBG2 deletion combined with ¢.126_129delCTTT/WT had two
allelic variants in the HBB gene, HBG1-HBG2 was functionally
closed in adulthood and did not affect the expression of 3 globin,
so it was clinically mild 3-thalassemia. SMRT method showed that
the genotype of sample D141966 was —a>’/aq, while by
conventional Gap-PCR it was —a®*’/—a®’. Validation by MLPA
confirmed D141966 had heterozygous —a>” deletion. To investi-
gate the basis of this discordance, we analyzed the SNV/indels in
the aa allele identified by SMRT method and found there were
three SNPs in the 3’-terminal of HBA2, which caused dropout of
the aa allele in conventional Gap-PCR method that designed
primer in this region.

This study found 16 rare HBA gene variants. Among them,
¢.34A>C, c.51G>C, ¢.84G>T, and c.19G>T were located in the HBAT
gene. ¢.34A>C and c¢.51G>C showed normal hematology, and
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abnormal hemoglobin was detected [13, 14]. Carriers with HBAT:
¢.84G>T, HBA1:c.19G>T, and HBA1:c.55G>C genotypes had a normal
blood phenotype. When they were compounded with other
deletion types, they could be mild or silent [15-17]. Carriers of
these gene variants all showed abnormal hemoglobin, and no HbH
phenot /Pe was found in the compound Southeast Asian deletion.
The -**"/HBA2:c.2delT, -***/HBA2:c.2T>C, and --***/HBA2:c.52G>T
are located in the more functional HBA2 gene, causing a chain
synthesis to be affected, showing that the non-deletion HbH
disease was more serious than the deletion of HbH disease [18-20].
HBA2: ¢.91G>C has a normal phenotype, the main manifestation
is abnormal hemoglobin, and HbA2 is reduced [21]. Qadah et al.
[22] reported that the HBA2: c.—59C>T variant caused a
significant reduction in the transcription level of HBA2 by 53.7%.
Our study reported, for the first time, HBA2:c.—59C>T and HBA2:
¢.91G>C compound heterozygous cases. Hemoglobin electrophor-
esis detected abnormal hemoglobin peaks at 3.784min and
4.349 min, and the routine blood phenotype was normal, due to
the abnormal hemoglobin peak time being very close to HbA2, so
it could be easily misdiagnosed as a significant increase in HbA2.
There are related reports of HBA2:c.256G>C [23], but no related
reports of HBA2:c.256G>A. The phenotype of this case was normal,
the main manifestation was abnormal hemoglobin, and HbA2 was
reduced.

Among the rare variants in the HBB gene, carriers with c.
—100G>A, c¢.—136C>G, ¢.315+5G>C, ¢.380T>G, and c.—81A>C
were manifested as silent or mild B-thalassemia. The normal
hematological phenotype of some cases is consistent with related
reports [24-27]. Carrier with c¢.91A>G was manifested as mild 3
thalassemia, which is consistent with related reports [28]. Carriers
with c.170G>A, c431A>G, ¢.232C>T, ¢341T>A, and c431A>G s
had normal hematological phenotypes. The content of HbA2 and
HbF was within the reference range, and abnormal hemoglobin
was detected [29-32]. In the first report of ¢.341T>A/c.315+5G>C
case, abnormal hemoglobin accounted for 93.5%, and HbA was
not detected. Carrier with ¢431A>G had the peak time of
abnormal hemoglobin and HbA2 overlapped, and the content of
each component could not be detected correctly. The blood
routine examination of c.—248A>G carrier was normal, mainly
manifested as a decrease in HbA2 content [33].The phenotype of
¢.316-45G>C, ¢.316-179A>C, and ¢.315+308delA combined with
other types of a-thalassemia may be as silent or mild o-
thalassemia.

CONCLUSIONS

In summary, in this region, the incidences of rare gene variants
and abnormal hemoglobin cases were high. SMRT technology
used in the genetic diagnosis of thalassemia had wide detection
spectrum with improved efficiency and accuracy over conven-
tional methods. The application of this technology has greatly
enriched the thalassemia gene mutation bank and hemoglobin
gene profiles in the region, and provided a reference for better
prevention and control of thalassemia. However, the pathogeni-
city of many rare mutant genes is still unclear, and family analysis
is required, which brings great challenges to clinical genetic
counseling.

DATA AVAILABILITY

Individual participant data describing the results reported in this article, after de-
identification (text, tables, figures, and appendices), together with the study protocol,
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