
&C@H activation | Hot Paper |

Metal-Free C@H Borylation of N-Heteroarenes by Boron Trifluoride
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Abstract: Organoboron compounds are essential reagents
in modern C@C coupling reactions. Their synthesis via cata-

lytic C@H borylation by main group elements is emerging as
a powerful tool alternative to transition metal based cataly-

sis. Herein, a straightforward metal-free synthesis of aryldi-
fluoroboranes from BF3 and heteroarenes is reported. The re-

action is assisted by sterically hindered amines and catalytic

amounts of thioureas. According to computational studies
the reaction proceeds via frustrated Lewis pair (FLP) mecha-

nism. The obtained aryldifluoroboranes are further stabilized
against destructive protodeborylation by converting them to

the corresponding air stable tetramethylammonium organo-
trifluoroborates.

Introduction

Efficient C@C and C@X couplings in contemporary organic syn-
thesis including Suzuki–Miyaura coupling, Petasis reaction,

Chan–Lam coupling etc. , are performed by utilizing various or-
ganoboron compounds.[1] Consequently, a ready access to ini-

tial organoboron reagents is prerequisite in such cross-cou-
pling strategies. Among various organoboron compounds, or-

ganotrifluoroborates are widely used due to their increased

stability under air and, especially, against protodeboronation.
Generally, they are synthesized from boronic acids or their

esters via fluorination with KHF2.[2] In turn, synthesis of organo-
boronic acids and organoboronates is widely studied including

both transition metal[3] and main group catalysis.[4] However,
direct synthesis of organotrifluoroborates by C@H borylation is
still underdeveloped.

Borylation of C(sp2)@H bonds was traditionally performed by
transition metal catalysts[5] until it was recently shown that

geometrically arranged ansa-aminoboranes,[6] usually used for

hydrogen activation and reductions, are also capable of acti-

vating certain electron-rich heteroarenes.[7] After that, substrate
scope was notably expanded[6c] and several reports were pub-

lished concerning the structure–activity correlation of such
ansa-systems.[8] Beside ansa-aminoboranes, it is also possible

to activate C(sp2)@H bonds by strong Lewis acids such as
B(C6F5)3

[9] or BX3 (X = Cl, Br).[4c, 10] Depending on the conditions,

reactions proceed either by direct electrophilic attack of the

boron halide[10e] or by in situ generated borenium cations de-
rived from BCl3,[4c, 10b,b, 11] BBr3,[10a,d,e, 11] or catecholborane.[12] Re-

gardless of the mechanisms, such borylation reactions with
BF3, the weakest among boron halides Lewis acid, has not

been reported to the best of our knowledge.
Recently, we reported that combination of BF3·SMe2 with

1,2,2,6,6-pentamethylpiperidine (PMP, 4 a) borylates terminal al-

kynes forming tri- and tetraalkynyl borates.[13] Such approach
avoids usage of precious metals and utilizes one of inexpen-
sive boron reagents along with the recoverable base. Also, we
found that BF3·SMe2 adduct is very labile and can serve as the
convenient alternative to reactive gaseous BF3. In continuation
of our efforts, we focused on extending developed methodolo-

gy to the borylation of more challenging C(sp2)@H bonds.
Herein, we present the direct C@H borylation of electron rich

N-heterocycles such as indoles, pyrroles, and indolenines by

BF3·SMe2. These reactions are assisted by sterically hindered
amines and promoted by catalytic amounts of various thio-

ureas (Scheme 1). Borylation products, aryldifluoroboranes, are
converted to organotrifluoroborates via complexation with

pyridine and further fluorination by tetramethylammonium

fluoride. Such procedure overcomes the problem of unwanted
protodeboronation of organofluoroboranes and makes them

practical starting materials for the C@C coupling reactions.
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Results and Discussion

In our previous studies we showed that BF3 together with ste-

rically hindered base, 4 a, can borylate phenylacetylene quanti-
tatively within 15 minutes.[13] The BF3·SMe2/4 a pair was also

proven efficient, yet full conversions were reached after

2 hours. When these Lewis pairs were applied to our model
substrate, N-methylindole 1 a, we achieved 62–65 % in situ

yields of aryldifluoroborane 2 a and minor amounts of bis(in-
dolyl) product 3 a (Scheme 2). Because of possibility of indole

borylation to both 2nd and 3rd positions, regioselectivity of
borylation was confirmed by X-ray diffraction and 2D NMR

spectra of the corresponding trifluoroborate (see Supporting

Information for details).
A mixture of BF3·OEt2 and PMP was shown to borylate termi-

nal acetylenes to a remarkable degree,[13] whereas only traces
of 2 a were observed with this reagent combination (entry 3).

Addition of SMe2 to the reaction mixture didn’t enhance the
reactivity of the BF3·OEt2/PMP system (entry 4). When the reac-

tion temperature was raised to 120 8C, the in situ yield of 2 a
raised to 30 % (entry 5). According to the previous studies, a
higher energetic penalty required for dissociation of BF3·OEt2

results in the poor reactivity of this adduct that sharply con-
trasts with labile and reactive BF3·SMe2 and BF3·PMP (Table 1,

column 4).[13]

We also explored the borylation of 1 a using other sterically

hindered amines (Scheme 2, Table 1). Although 4 a is a sterical-

ly very demanding amine, it is capable of forming a weak
Lewis adduct with BF3 (Entry 1). When sterically less hindered

and hence more strongly interacting with BF3 N,N-diisopropyle-
thylamine (DIPEA, 4 b) was applied in combination with

BF3·SMe2, the yield of 2 a reached only 22 % (entry 6). More-
over, when all the BF3 in the solution was in the form of

adduct with 4 b, not even traces of borylation products were

found (entry 7). Sterically more hindered than 4 a bases 4 c and
4 d did not form stable adducts even with gaseous BF3 (en-

tries 8–9). However, borylation with 4 c–d was less effective as
compared to 4 a, yet all the bases 4 a–d have similar Brønsted

basicities. We hypothesized that 4 c and 4 d had stronger steric
repulsive component in the borylation transitions states (vide

infra) that conveyed into higher kinetic barriers in comparison

to 4 a.
To gain mechanistic insight, computational studies of the

borylation reaction of 1 a with BF3·SMe2/PMP pair were carried
out. The mechanistic scenarios depicted in Scheme 3 were in-

vestigated via Density Functional Theory (DFT) calculations.[14]

Despite the high nucleophilicity of indole, the 1 a-BF3 adduct
could not be identified computationally.[15] Therefore, the elec-

trophilic substitution (SEAr) pathway can be readily excluded as
a viable mechanism. For the borenium mediated pathway, the
formation of the borenium/BF4

@ species (4 a-BF2
+/BF4

@ ion
pair) is thermodynamically uphill, but the relatively high barrier

(34.7 kcal mol@1) represented by the subsequent BF2
+ transfer

transition state (TSbor) renders this pathway unlikely as well.

Hence our attention turned towards the FLP-type C@H acti-
vation mechanism, which has been described previously for
ansa-aminoboranes.[7–9] This mechanism assumes the coopera-

tive action of Lewis acid/base centers, which was confirmed
computationally (see Figures 1 and 2).[16] The reactants (1 a, 4 a
and BF3) form a transient weakly bound complex (4 a·1 a·BF3),
from which the C@H activation takes place concertedly via

TSFLP. The obtained free energy barrier (29.6 kcal mol@1) is con-

sistent with the reaction rate measured at elevated tempera-
ture. The concerted C@H activation leads to intermediate int,

which is stabilized by N@H···F hydrogen bonding interactions.
This species can favorably interact with an additional BF3 mole-

cule, and the (int-BF3) adduct can easily furnish the borylated
product 2 a via a fluoride transfer (TSFtrans). The dissociation of

Scheme 1. General pattern of N-heteroarenes borylation by boron trifluo-
ride.

Scheme 2. N-Methylindole 1 a borylation with BF3·L and sterically hindered
amines 4 a–d gives 3-difluoroborane 2 a and minor amounts of 3 a.

Table 1. In situ yields of the borylation product 2 a produced in the reac-
tions of 1 a, BF3·L, and sterically hindered amines 4 a–d[a]

Entry Base L Strength of amine-BF3

adduct, kcal mol@1[b]

1 a, % 2 a, %[c,d]

1 4 a SMe2 @1.9 28 62
2 4 a 4 a @1.9 20 65
3 4 a OEt2 @1.9 94 5
4[e] 4 a OEt2 @1.9 83 3
5[f] 4 a OEt2 @1.9 40 30
6 4 b SMe2 @7.8 55 22
7 4 b 4 b @7.8 100 0
8 4 c SMe2 –[g] 55 35
9 4 d SMe2 –[g] 43 47

[a] Reactions were performed in the gas-tight NMR tubes for 24 h at 60 8C
in the argon atmosphere; Yields were determined by the 1H NMR spec-
troscopy against 1-bromo-3,5-difluorobenzene as the internal standard.
[b] Defined as DG of amine + BF3!amine-BF3 as obtained from ref. [13] .
[c] Characteristic signal of 2 a in 11B and 19F NMR spectra was observed at
+ 24 ppm and @94 ppm, respectively. [d] In addition to 1 a and 2 a, some
amount of unidentified product with indole pattern was observed in
1H NMR spectra (see Supporting Information for details). [e] 1 equiv. of
SMe2 was added to the reaction. [f] Reaction temperature 120 8C. [g] No
adduct with gaseous BF3 was detected.
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the weakly bound 2 a·4 aH+/BF4
@ species yield a more stable

product state (2 a + 4 aH+/BF4
@).

We carried out kinetic studies of the 1 a borylation in the

presence of varying amounts of BF3·SMe2 and 4 a. Analysis of
initial rates revealed that the reaction is first order in 1 a and a
positive order in BF3·SMe2. At the same time, addition of over-

stoichiometric 0.5 equivalents of 4 a resulted in a pronounced
inhibiting effect (Figure 3). This effect was attributed to the

zero kinetic order of the reaction in 4 a along with the positive
order in free BF3. Additional 4 a decreased the concentration of

BF3 and hence the reaction rate. Notwithstanding this explana-

tion contrasted with the computationally found endergonicity
of 4 a-BF3 dissociation (Figure 1) it was known from our previ-

ous work[13] that this Lewis adduct was better stabilized in a
more polar solvent, DCM. In the present work, the free ener-

gies were computed for benzene that was used as a solvent
for borylation reaction. However, this might not be a com-

pletely adequate description of the real reaction mixture pro-

vided the presence of polar reactants (Me2S-BF3, 4 a-BF3) and
products ([4 a-H+][BF4

-]) in high concentrations.

The ultimate picture of the kinetic processes seemed rather
complex: apparently 4 a-BF3 is generated in situ upon mixing

of the reagents that discharged some amount of free Me2S. In

addition to that, more Me2S was generated during the boryla-
tion, suppressing dissociation of the starting BF3 adducts. In

order to derive the quantitative model of the observed kinetics
a numerical simulation was carried out. Two most likely

models were compared, one that followed the k[1 a][BF3] rate
law (model A) and the model B with the k[1 a][BF3]2 law. Both

Scheme 3. Computationally examined mechanistic pathways of 1 a borylation by a PMP/BF3 Lewis pair. Free energy data (in kcal mol@1) given in parentheses
are with respect to the 1 a + 4 a+ BF3 reactant state.

Figure 1. Free energy profile computed for the FLP-type C@H activation
pathway for 1 a borylation by a PMP/BF3 Lewis pair. Free energy data are
given relative to the 1 a + 4 a + BF3 reactant state.

Figure 2. Structures of reaction intermediates and transition states identified
computationally for the FLP-type C@H activation pathway for 1 a borylation
by PMP·BF3. H atoms (except that involved in the reaction) and the four
methyl groups of PMP are omitted for clarity. Forming and breaking bonds
are shown as black dotted lines in TS structures; H-bonds are highlighted by
blue dotted lines. Free energy data are given relative to the 1 a + 4 a + BF3

reactant state (in kcal mol@1).
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of them described high percentage of the total observed varia-

bility but statistically were quite comparable (see Supporting
Information for details). We concluded that there is more than

one mechanism in action including also the FLP mechanism
that is expected to follow the k[1 a][BF3][PMP] kinetic law. Yet

such a kinetic model alone would poorly agree with the col-

lected kinetic data, it might in combination with the models A
or B.

Although 4 a together with BF3 gives the highest in situ
yield in the borylation of 1 a among the bases 4 a–d, parallel

decomposition of amine by Lewis acidic BF3 is an unwanted
side reaction.[13] This drawback can be overcome by using the

most sterically hindered base 4 d, where formation of its BF3

adduct is sterically unfavorable. However, borylation with 4 d
proceeds much slower (Figure 3) and gives the lower yield of

2 a (Table 1). This inspired us to look for additives, which could
promote the borylation reaction further. Considering that for-

mation of borocations in benzene cannot be completely ex-
cluded (Scheme 3), we turned out attention to tetramethyl-

thiourea (TMTU) that proved assisting the autoionization of

BF3.[17] Accordingly, we found that the addition of small
(5 mol %) amounts TMTU (5 a) to both BF3·SMe2/4 a and

BF3·SMe2/4 d pairs increases the rate of 2 a formation (Figure 3).
When stoichiometric amounts of 5 a were used in the absence

of 4 a or 4 d, only 1 a, BF3·5 a adduct, some unidentified prod-
ucts but no traces of 2 a were detected by 1H or 11B NMR analy-

sis.
Our computational analysis indicates that the formation of

the borenium/BF4
@ species with TMTU (5 a-BF2

+/BF4
@ ion pair)

as well the subsequent BF2
+ transfer process is notably more

favored as compared to the analogous borenium formation

process with PMP (see Scheme 4).[18] The barrier computed for
the formation of borenium 1 a-BF2

+ is 31.0 kcal mol@1, which is

comparable to that of the FLP pathway with PMP (29.6 kcal

mol@1). Furthermore, the deprotonation of 1 a-BF2
+ by TMTU

takes place via a similar barrier (29.9 kcal mol@1) and the proton

is then delivered to the more basic PMP. Based on these results
and considering the uncertainty in the computed barriers (a

few kcal mol@1 at least), one possible explanation for the bene-
ficial effect of TMTU is that it opens an alternative borylation

pathway to the PMP assisted FLP mechanism. In this latter
mechanism, TMTU acts as catalyst facilitating the formation

and the deprotonation of the 1 a-BF2
+ borenium intermediate.

We have also explored the FLP pathway with TMTU acting as a

base and we obtained a barrier of 31.7 kcal mol@1, which is

slightly higher than that of the TMTU promoted borenium
pathway (31.0 kcal mol@1), but still comparable to the most fa-

vored PMP assisted FLP pathway (29.6 kcal mol@1). So an alter-
native explanation for the improved yields with TMTU is that it

acts as a base in the FLP mechanism, which becomes impor-
tant and beneficial at higher conversion rates, when most of

the PMP is consumed.

To study the role of TMTU in more details, we introduced
borylation of 1 a with other thioureas 5 b–e (Scheme 5).

Among the series, cyclic thioureas 5 b and 5 d give the highest
in situ yield of 2 a. Interestingly, in case of 5 d minor amounts

of diarylfluoroborane 3 a were also found (Table 2).
We investigated the substrate scope of borylation with 5 d.

In general, electron rich N-alkylindoles and -pyrroles were

borylated with high to moderate yields (Scheme 6, examples
2 a–d). Moreover, N-allyl group remained untouched in the re-

action conditions (entry 2 e). Incorporation of halogens atoms
as electron withdrawing groups into the indole ring decreases

Figure 3. Kinetic profiles of 1 a borylation with BF3·SMe2, 4 a/4 d and various
amounts of 5 a.

Scheme 4. TMTU assisted borenium pathway examined computationally.
Free energy data (in kcal mol@1) given in parentheses are with respect to the
1 a + 5 a + BF3 reactant state.

Scheme 5. Screening of various thioureas as catalysts for borylation of 1 a.
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the conversion (examples 2 f–h). Interestingly, terminal double

bond in indolenine ring (entry 2 i,j) can also be borylated with
a high yield. In general, electron-rich alkyl- and halosubstituted

N-heteroarenes we found to be the best substrates in the de-
veloped reaction conditions. Attempted borylation of other
substrates was less successful : 5-Methoxy substituted indole
1 k produced complex mixture with no trace of borylation
product. Set of signals around + 15 ppm in the 11B NMR spec-
trum indicated possible ether cleavage. Attempt to use con-

ventional enamines 1 l–m led only to their BF3 adducts where-
as 2-methylbenzothiophene (1 n) remained completely intact.
Interestingly, 3-ethynylthiophene 1 o gave a complex product

mixture, however, characteristic for hetarene-BF2 peaks at
22.95 ppm (11B NMR) and @84.96 (19F NMR) were detected. Im-

portantly, no evidence of terminal alkyne CH bond activation
was found even though this substrate is known to form trialky-

nylborane SMe2 adduct upon treatment with BF3·SMe2/4 a
system.[19] Allyltrimethylsilane 1 p gave traces of borylation

products according to 11B and 19F spectra. At the same time,

the characteristic peak for trimethylsilylfluoride multiplet found
in the 19F NMR spectrum at @157 ppm indicated TMS group

cleavage.
Aryldifluoroboranes 2 a–j were generated and partially char-

acterized by the NMR spectroscopy in solution, however, at-
tempted isolation of these compounds appeared to be unsuc-

cessful due to high reactivity and reversibility of the borylation

reaction (Figure 1). In line with the recent reports[15] we found
protodeboronation to be the major decomposition pathway.

Although only few 3-BF3-substituted indoles, all stabilized by
the strongly electron withdrawing groups on nitrogen, were

known in the literature,[1g] we attempted conversion of in situ
produced 2 a to the corresponding indolyltrifluoroborate (6 a)

(Scheme 7).

We reported previously that trialkynylboranes are converted
to trialkynylfluoroborates by the treatment with tetramethyl-

ammonium fluoride (TMAF).[13] However, all attempts to per-
form direct fluorination of 2 a to 6 a with TMAF led to the com-

plete protodeborylation, and starting material 1 a was ob-

Table 2. In situ yields of products from the borylation of 1 a in the pres-
ence of thioureas 5 a–5 e.[a]

Thiourea 1 a 2 a 3 a

– 43 47 –
5 a[b] 30 69 –
5 b[b] 22 77 –
5 c[b] 34 65 –
5 d[b] 19 79 2
5 e[b] 32 68 –

[a] Reactions were performed in the gas-tight NMR tubes for 24 h at 60 8C
in the argon atmosphere; Yields were determined by the 1H NMR spec-
troscopy against 1-bromo-3,5-difluorobenzene as the internal standard;
see the Supporting Information for details; [b] 5 mol % of thiourea 5 a–e
was used.

Scheme 6. Substrate scope of the reaction and NMR yields of the N-hetero-
arenes borylation products.

Scheme 7. Aryldifluoroboranes are accessible with high reactivity and proto-
deboronation of 3-subsituted indole 2 a takes place in the presence of
TMAF. However, 2 a forms pyridine (7) and N,N-dimethylaniline (8) adducts.
The former can be further converted to trifluoroborate 11 a with TMAF.

Chem. Eur. J. 2020, 26, 13873 – 13879 www.chemeurj.org T 2020 The Authors. Published by Wiley-VCH GmbH13877

Chemistry—A European Journal
Full Paper
doi.org/10.1002/chem.202001436

http://www.chemeurj.org


served instead. The reason for instability of 2 a in the presence
of TMAF is not clear, but to overcome this issue, we stabilized

2 a in the form of its pyridine or N,N-dimethylaniline adducts.
Addition of any of these amines to the 2 a containing reaction

mixture resulted in instantaneous formation of the correspond-
ing adducts 7 and 8. All further attempts to isolate them led

to the decomposition to 1 a, but, to our delight, 7 produced
trifluoroborate 6 a without noticeable protodeboronation upon

treatment with TMAF. In contrast to 7, reaction of adduct 8
with TMAF led to a complex mixture of unidentified products.
To demonstrate generality of the developed two-step method,

we applied it to other substrates and isolated the correspond-
ing trifluoroborates with the overall yields equal or slightly

lower than those measured in situ during the previous boryla-
tion experiments (Scheme 8). Although 5 d was found to be
the most active additive for borylation in general, we found

that commercially available 5 a gives similar yields with elec-
tron rich arenes (Scheme 8, substrates 6 a–c). Borylation of less

active 1-methyl-2-phenylindole was successfully performed
with bulky thiourea 5d, giving corresponding trifluoroborate
6 d in good yield.

Conclusions

In conclusion, we developed a straightforward method of N-
heteroarenes C@H borylation by boron trifluoride and sterically

hindered amines. Addition of thioureas as additives had a ben-
eficial effect on the yield of borylation products. Indoles were

selectively borylated into the 3-position and indolenines to the

terminal position of the double bond. Borylation intermediates,
aryldifluoroboranes, are very reactive and prone to protode-

boronation in presence of Me4NF. This problem was overcame
by intermediate formation of their pyridine adducts prior to

treatment with Me4NF that furnished 3-substituted indolyl- and
pyrrolyltrifluoroborates with high overall yields. Expansion of

the reactivity of boron trifluoride towards other C@H bonds as
well as studies towards avoiding protodeboronation in other
organoboron compounds are subjects of ongoing studies in
our groups.
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