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THE BIGGER PICTURE Genome-wide association studies have discovered many genetic variants that
contribute to human diseases. However, it remains a challenge to effectively utilize these variants to facil-
itate early and accurate diagnosis and treatment. In this report, we propose a new approach that transforms
genetic data into AIOs so that they can be classified by advanced artificial intelligence andmachine learning
algorithms. Using schizophrenia as a case study, we demonstrate that genetic variants can be transformed
into AIOs and that the AIOs can be classified by CNN algorithms consistently. Our approach can be applied
to other omics data and combine them to jointly model disease risks and treatment responses.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
In this article, we propose a new approach to analyze large genomics data. We considered individual genetic
variants as pixels in an image and transformed a collection of variants into an artificial image object (AIO),
which could be classified as a regular image by CNN algorithms. Using schizophrenia as a case study, we
demonstrate the principles and their applications with 3 datasets. With 4,096 SNVs, the CNN models
achieved an accuracy of 0.678 ± 0.007 and an AUC of 0.738 ± 0.008 for the diagnosis phenotype. With
44,100 SNVs, the models achieved class-specific accuracies of 0.806 ± 0.032 and 0.820 ± 0.049, and
AUCs of 0.930 ± 0.017 and 0.867 ± 0.040 for the bottom and top classes stratified by the patient’s polygenic
risk scores. These results suggest that, once transformed to images, large genomics data can be analyzed
effectively with image classification algorithms.
3,4
INTRODUCTION

In the last decade, large-scale genome-wide association studies

(GWASs) have identified risk variants for many human diseases

and other complex traits,1 including schizophrenia.2 This pro-

vides a great opportunity to utilize these variants to promote

personalized medicine through early diagnosis, prevention,

and optimized treatment. However, common diseases have

complex genetic architecture, thousands of genetic variants, if
This is an open access article under the CC BY-N
not more, contribute to these diseases. The effects of the indi-

vidual variants are very small. These make it a challenge to

develop an effective strategy to utilize these GWAS-identified

variants for early diagnosis and better treatment. In the literature,

the use of polygenic risk score (PRS) is popular and it has been

demonstrated that PRS has high predictive power for many

diseases.5–8 There are also reports that a panel of selected risk

variants could predict clinical outcomes. While useful and prom-

ising, these approaches have some limitations. For the PRS
Patterns 2, 100303, August 13, 2021 ª 2021 The Author(s). 1
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Figure 1. Schematic drawing showing the

overall design of the study

(A) Study design.

(B) Recoding of SNV genotypes into an artificial

image object (AIO). A set of SNVs can be selected

from GWAS data and recoded and rearranged into

an AIO. In the process, each SNV is treated as a

pixel, and its genotype, AA, aA, or aa, is assigned a

unique, arbitrary value. In the figure, 0, 154, and 254

are used for the 3 genotypes. The AIOs made from

the genetic markers of a group of individuals can

be classified as digital images by advanced AI

algorithms, such as a convolutional neural

network (CNN).
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approach, the effects of individual variants could not be fol-

lowed, because the effects of individual variants are aggregated

across the genome. For the approach that uses selected variants

to form a panel, its predictive power is generally low, and most

models do not consider the interactions among these selected

markers. Can we develop a new approach that preserves the ef-

fects of individual markers and at the same time harnesses the

power of hundreds of thousands of markers collectively?

In recent years, computer science has seen rapid progress in

image classification analysis using artificial intelligence (AI) and

machine learning (ML) algorithms, exemplified by the highly ac-

curate identification of objects in image files.9,10 Many of these

advanced techniques have been implemented in software

frameworks, such as TensorFlow11 and Keras (https://keras.io/

about/). One approach, the convolutional neural network or

CNN, has been widely used in image classification and predic-

tion, and has achieved unprecedented accuracy. Impressed by

the performance and simplicity of the implementation, we have

thought of whether we can adapt these algorithms to the ana-

lyses of genetic and genomic data.

Imaging analysis relies on the detection and extraction of

spatial patterns of image elements, such as pixel intensity and

color. This process is commonly referred to as feature extraction

and is accomplished by the CNN algorithm. In the process, im-

ages are analyzed pixel by pixel. In an image, a pixel can carry

a series of values and colors. In contrast, genetic markers, for

a majority of them, have limited variations. For example, for

many single-nucleotide variations (SNVs), the most common

form of genetic variation, there are only two alleles. For a diploid
2 Patterns 2, 100303, August 13, 2021
organism, such as humans, there are only

three possible genotypes for a given locus.

If we consider each genetic marker as a

pixel in a digital image, we can arrange a

collection of genetic markers from an indi-

vidual to form an artificial image object

(AIO), then we can use the advanced im-

age analysis algorithms to train and clas-

sify these AIOs as regular images. Based

on this rationale, we obtained genotype

data from the Molecular Genetics of

Schizophrenia (MGS),12 the Swedish

Case-Control Study of Schizophrenia

(SCCSS),13 and the Clinical Antipsychotic

Trials for Intervention Effectiveness
(CATIE),14,15 and made AIOs for all individuals in these datasets.

Then we performed image classification using the TensorFlow/

Keras packages and CNN architecture. The overall design of

this study is outlined in Figure 1A. Here, we use schizophrenia

as a case study to evaluate this new approach and report our

findings from analyses of the AIOs derived from schizophrenia

patients and normal controls.

RESULTS

Set I SNV classification of normal controls and
diagnosed patients
Using the 4,096 set I SNVs selected by GWAS p value and link-

age disequilibrium (LD) pruning, we made 64 3 64 AIOs for the

subjects in the MGS, SCCSS, and CATIE datasets. We com-

bined the MGS and SCCSS datasets as training data and used

the CATIE data as testing data. Table 1 summarizes the results.

The models achieved an accuracy of 0.678 ± 0.007 (mean ± SD)

and an area under the curve (AUC) of 0.738 ± 0.008. The preci-

sion, recall, and f1-score were 0.677 ± 0.013, 0.675 ± 0.029,

and 0.675 ± 0.014, respectively. To evaluate the impact of con-

founding factors on the model performance, we used the PLINK

program to calculate 20 principal components from imputed ge-

notypes for the 3 datasets and made an ancillary AIO with sex

and the 20 principal components. The ancillary AIO was inte-

grated into the main model as a separate layer. We found that

the impact was minimal, and the confounders did not change

the overall performance. For example, in a typical run with the

ancillary AIO included, the classification accuracy was 0.670,

https://keras.io/about/
https://keras.io/about/


Table 1. Classification of schizophrenia diagnosis and PRS class by set I SNPs

Phenotype Group/Class Accuracya AUCb Precision Recall f1-score

Diagnosis CTRL 0.666 ± 0.014 0.667 ± 0.015 0.711 ± 0.025 0.688 ± 0.011

SCZ 0.687 ± 0.012 0.688 ± 0.011 0.638 ± 0.033 0.662 ± 0.016

average 0.678 ± 0.007 0.738 ± 0.008 0.677 ± 0.013 0.675 ± 0.029 0.675 ± 0.014

PRS class class I 0.747 ± 0.065 0.937 ± 0.006 0.749 ± 0.065 0.866 ± 0.035 0.801 ± 0.024

class II 0.364 ± 0.023 0.747 ± 0.006 0.363 ± 0.024 0.523 ± 0.073 0.427 ± 0.037

class III 0.839 ± 0.021 0.873 ± 0.012 0.840 ± 0.020 0.563 ± 0.069 0.673 ± 0.048

average 0.650 ± 0.036 0.852 ± 0.008 0.650 ± 0.036 0.650 ± 0.059 0.634 ± 0.036
aFor PRS classes, categorical accuracy is reported.
bFor PRS classes, class-specific AUC is reported.
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the AUC was 0.726, and the precision, recall, and f1-score were

0.670, 0.675, and 0.667, respectively, which were not signifi-

cantly different from the results listed in Table 1.

To visualize the patterns of the correctly classified controls

and cases, we compared the original AIOs along with the sa-

liency maps derived from the model using the saliency map visu-

alization method,16 a technique that visualizes which pixels of

the image contribute the most to the prediction. We selected

correctly predicted individuals and calculated the saliency

maps for these individuals. We found that the correctly classified

AIOs did have some distinct features (see Figures 2A and 2B) be-

tween individuals.We confirmed the observation after visually in-

specting hundreds of correctly classified cases and controls. To

view the patterns between the control and case groups, we ex-

tracted all correctly classified controls and cases and calculated

the mean values for each pixel of the saliency maps for each

group. Then we plotted the mean values as an image for each

group (Figure 2C, CTRL and SCZ) and the difference between

the means of the two groups (Figure 2C, Diff btwn CTRL &

SCZ). From these images, we could see that, at group level,

the differences between the groups were almost all quantitative.

The distinct differences observed between individual patients

and controls were not observed at group level.

Set I SNV classification of PRS-stratified classes
Using thesameset ISNVs,weset upmodels toclassifyPRS-strat-

ified classes. In these analyses, the AIOs were the same for the

subjects but the phenotype was changed from diagnosis to PRS

classes. We used similar model architecture and strategy to clas-

sify theseAIOs. Table 1 summarized the reportmatrices. Fromthis

table, it could be seen that, while the overall average of the accu-

racy was similar to that of the diagnostic model (0.678 ± 0.007

versus0.650± 0.036), the categorical accuracy andclass-specific

AUC for classes I and III were significantly improved. For example,

for class III, the categorical accuracy and class-specific AUC

reached 0.839 ± 0.021 and 0.873 ± 0.012, respectively (Table 1),

much better than the accuracy and AUC of the diagnostic model.

We noticed that class II, which had a PRS score within 0.25 SD of

the mean of diagnosed subjects, the performance was much

worse than classes I and III. This was somewhat expected

because class II had a PRS score between classes I and III, it

was a mixed group with members from the high and low end of

classes I and III, respectively. As shown in Figure S1, the PRSs

from the controls and cases overlapped significantly.
Similar to the model that classified diagnosed patients and

controls, we also compared the original AIO images with the

model-generated gradient saliency maps for the three classes

(Figures 3A–3C). Like what we observed for the diagnostic

phenotype, there were distinct patterns between individual pa-

tients and controls. When we took the average pixel intensity

for each class and plotted them as an image (Figure 3D), the pat-

terns between the classes became more similar. To quantify the

differences between class I and class III, which corresponded to

the controls and cases in the diagnostic model, we took the dif-

ference of pixel intensity between class I and class III, and

plotted them as an image. This image showed where the differ-

ences between the two classes were located. From the image, it

was clear that many pixels, i.e., SNVs, were required to form the

pattern that separated the two classes.

Set II SNV classification of normal controls and
diagnosed patients
Set II SNVs were selected by GWAS p value% 53 10�5 and mi-

nor allele frequencyR0.05. The 44,100 SNVswere arranged as a

210 3 210 AIO and classified using the CNN algorithm. The

average accuracy for the models was 0.685 ± 0.021 and the

AUC was 0.708 ± 0.030 (Table 2). When the performance of

the two SNV sets were compared, the results were very close

across all measured matrices (see Tables 1 and 2), suggesting

that more SNVs did not improve the performance when the

SNVs were selected from the same GWAS p value threshold.

Similar to the set I SNVs, we also evaluated the impact of con-

founders on model performance. Using a similar approach to

integrate the confounders into the main model, we found similar

results as the set I SNVs that these confounders did not change

the overall performance.

When we applied the saliency map visualization technique to

examine and compare the model extracted feature maps (Fig-

ures 4A and 4B), the distinction between individual patients

and controls was clear. However, at group level (Figure 4C,

CTRL andSCZ), the differences became very difficult for humans

to see but could be quantified (see the image between CTRL

and SCZ).

We explored the effect of AIO configuration on classification

performance using the set II SNVs, here the same 44,100 SNVs

were arranged as a 105 3 105 3 4 AIO, the third dimension

could be treated technically as different color channels as in

regular digital images. We compared the performance of the
Patterns 2, 100303, August 13, 2021 3



Figure 2. Classification of diagnosed pa-

tients and normal controls by set I SNVs

(A and B) Comparisons of original AIOs and model-

predicted saliency maps for the normal control

(CTRL) and diagnosed (SCZ) subjects. The images

were plotted with the jet color map series (pseudo

color) as defined in the pyplot library of the Mat-

plotlib package. For the jet color map, the color

changed from blue to green to red, with the red as

the highest value. The label and pred in the panels

were labels for the subjects (0 for normal controls

and 1 for diagnosed schizophrenia patients) and

predicted probabilities from the model.

(C) The saliency maps of the CTRL and SCZ groups

and the difference (Diff btwn SCZ & CTRL) between

the two groups.
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210 3 210 and 105 3 105 3 4 configurations and found that

they performed similarly (see Tables 2 and S1), the accuracies

were 0.685 ± 0.021 and 0.657 ± 0.014 and the AUCs were

0.708 ± 0.030 and 0.708 ± 0.047, respectively, for the two con-

figurations. When the saliency maps were compared, the

colored AIOs, i.e., 105 3 105 3 4 AIOs, were more simplistic

and distinctive (compare Figures 4 and S2). For the colored

AIOs, some subjects had only a few clustered pixels that

were critical to the correct classifications while other subjects

had slightly more clustered pixel patterns. We also noticed

that small changes in training hyperparameters could lead to

quite different saliency maps, but the overall performance

matrices did not change much (data not shown).

Set II SNV classification of PRS-stratified classes
We applied the set II SNVs to classify the PRS phenotype using

the 2103 210 AIO configuration. The performance of the model

was summarized in Table 2. Similar to the results of set I SNVs,

the performances for classes I and III (accuracy: 0.806 ± 0.032

and 0.820 ± 0.049; AUC: 0.930 ± 0.017 and 0.867 ± 0.040,

respectively) were significantly better when compared with the

results using the case control design (i.e., binary classification

of normal controls and diagnosed patients) (Table 2). But the per-

formances between the two SNV sets were grossly similar (see

Tables 1 and 2) for all measured matrices.

We generated the saliency maps for some individuals (Figures

5A–5C for each of the three classes of the PRS-stratified pheno-

type) as we did for the set I SNVmodels. As seen previously, indi-

vidually these subjects looked distinctive, but since the number

of markers in set II were 10 times more than that in set I, the pat-

terns seemedmore complex in human eyes. Visually, it was diffi-

cult to see the differences between the classes (Figure 5D, class

I, class II, and class III). To reveal the difference between class I

and class III, we took the differences in pixel intensity between

the two classes and plotted them as an image (Figure 5D, Diff

btwn class I & class III). Although the feature differences between
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the classes looked alike by human eye, the

classification model could distinguish the

two classes with high discriminative power

(class-specific AUC for classes I and III

were 0.930 ± 0.017 and 0.867 ± 0.040)

and reasonable sensitivity (class-specific
sensitivity or recall for classes I and III were 0.815 ± 0.035 and

0.605 ± 0.115) (see Table 2).

Classification of diagnosis by PRS with RF and SVM
algorithms
To compare the performance of our CNN model, we conducted

classification analyses with the random forest (RF) and support

vector machine (SVM) algorithms using the PRS calculated at

p = 5 3 10�5, the same threshold we used to select SNVs for

our AIOs, along with sex and 20 principal components. We did

a grid search to find the optimal parameters for both the RF

and SVM algorithms and used the selected parameters to build

RF and SVMmodels separately. For the RFmodel, the classifica-

tion accuracy for the training samples (MGS and SCCSS com-

bined) was 0.675. With this model, we obtained an accuracy of

0.637 ± 0.003 and AUC of 0.699 ± 0.002 for the external CATIE

samples. For the SVM model, the classification accuracy for

the training samples was 0.678. Applying this SVM model to

the CATIE samples, the accuracy and AUC were 0.647 ± 0.001

and 0.687 ± 0.001, respectively. For direct comparison, we

plotted the receiver operating characteristics (ROCs) for the

CNN, RF, and SVM models together (Figure 6). From the plot,

it was clear that, while the performances of the RF and SVM

models were comparable, our AIO-based CNNmodel was about

4% better.

DISCUSSION

In this study, we developed a method to transform genetic data

into AIOs and then used advanced image classification algo-

rithms to classify the AIOs. Our goal was to evaluate whether

genetic data, once transformed into an image, could be used

effectively to distinguish diagnosed patients from normal con-

trols using schizophrenia as a case study.

In this study, we selected two sets of SNVs fromGWASdata to

create AIOs and applied CNN image classification algorithms to



Figure 3. Classification of PRS-stratified phenotypes by set I SNVs

(A–C) Comparisons between original AIOs and saliency maps derived from the

classification model for selected individuals from the three classes, respec-

tively. The labels and preds in these panels listed the labels and prediction

probabilities for the corresponding classes.
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classify these AIOs. We used two phenotypes, one was the dis-

ease diagnosis status, for which we used the case control status

for the three datasets directly. The other one was a PRS-strati-

fied class, where we used the schizophrenia PRS calculated at

p = 5 3 10�5 to group the subjects into three classes. Class I

were those subjects whose PRSs were smaller than or equal to

themean of PRS of the diagnosed subjects minus 0.25 SD; class

III were those subjects whose PRSswere greater than or equal to

the mean of PRS plus 0.25 SD; and class II were those subjects

whose PRSs were between classes I and III. Using the 4,096 set I

SNVs, which were selected based on GWAS p value and LD

pruning, the classification accuracy was 0.678 ± 0.007 and the

AUC was 0.738 ± 0.008 for the diagnostic phenotype. For the

PRS-stratified phenotype, while the overall average accuracy

and AUC were similar to the diagnostic phenotype, the categor-

ical accuracy and class-specific AUC for classes I and III were

significant improved, reaching 0.747 ± 0.065 and 0.937 ±

0.006; and 0.839 ± 0.021 and 0.873 ± 0.012, respectively (Table

1). Using the 44,100 set II SNVs, which were selected based on

GWAS p value and minor allele frequency, the classification re-

sults were similar, accuracy was 0.685 ± 0.021 and AUC was

0.708 ± 0.030 for the diagnostic phenotype. For the PRS-strati-

fied phenotype, the categorical accuracy and class-specific

AUC for classes I and III were 0.806 ± 0.032 and 0.930 ±

0.017, and 0.820 ± 0.049 and 0.867 ± 0.040, respectively (Table

2). Compared with the RF and SVMmodels using PRS to predict

schizophrenia, the AIO-based classification model performed

about 4% better. In the literature, there were multiple studies

that used genetic markers to predict schizophrenia diagnosis,17

including a study from our group.18 Most of these studies used

an SVM algorithm, and the variables were mostly individual

SNVs. Only two studies, one of which was our previous study,

used external validation samples. The AUCs from these studies

varied substantially, from 0.54 to 0.95. The AIO results reported

here fared better than most the studies reviewed, including our

previous study,18 which used not only the PRSs of schizophrenia

but also PRSs from other comorbid traits. These results indi-

cated that genetic data, once transformed into AIOs, could be

used effectively to classify the diagnosed patients and unaf-

fected controls. We evaluated the effect of sex and potential

population stratification on model performance. We found that

the models with the inclusion of sex and 20 principal compo-

nents had similar performance as the models without these con-

founders. One possible reason might be that the influence of

confounders on SNVs had changed after the SNVs were trans-

formed into pixels.

The performance of the PRS-stratified classeswas interesting.

For both classes I and III, the categorical accuracies were better

than 0.80 and class-specific AUC values were better than 0.85

when set II SNVs were used (Table 2). For set I SNVs, except

for the categorical accuracy for class I, all other measures

were similar to the set II performance. This raised an interesting

question. If we could define schizophrenia with some objective
(D) The saliency maps for the three PRS classes by averaging the saliency

maps of correctly classified subjects for each class (class I, class II, and class

III). The fourth image in the panel was the difference in pixel intensity between

class I and class III.
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Table 2. Classification of schizophrenia diagnosis and PRS class by set II SNPs

Phenotype Group/Class Accuracya AUCb Precision Recall f1-score

Diagnosis CTRL 0.687 ± 0.027 0.690 ± 0.032 0.688 ± 0.016 0.690 ± 0.013

SCZ 0.685 ± 0.014 0.680 ± 0.010 0.680 ± 0.054 0.683 ± 0.034

average 0.685 ± 0.021 0.708 ± 0.030 0.685 ± 0.021 0.684 ± 0.035 0.686 ± 0.024

PRS class class I 0.806 ± 0.032 0.930 ± 0.017 0.808 ± 0.030 0.815 ± 0.035 0.810 ± 0.006

class II 0.376 ± 0.026 0.730 ± 0.052 0.373 ± 0.026 0.570 ± 0.114 0.450 ± 0.017

class III 0.820 ± 0.049 0.867 ± 0.040 0.823 ± 0.035 0.605 ± 0.115 0.688 ± 0.065

average 0.667 ± 0.036 0.842 ± 0.037 0.668 ± 0.031 0.663 ± 0.088 0.649 ± 0.029
aFor PRS classes, categorical accuracy is reported.
bFor PRS classes, class-specific AUC is reported.
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measures, such as PRS, wewould be able to predict the disorder

with good confidence.

When the predicted feature patterns, the saliency maps, were

examined, the distinctions between individual subjects were

clear, and this was true for both the diagnostic and PRS class

phenotypes (see Figures 2, 3, 4, 5, and S2). However, when

we tried to find the common feature patterns for a group, the

group-wise or class-wise feature patterns became more com-

plex (see the difference panels in Figures 2, 3, 4, and 5).

Group-wise distinctions seemed unclear; instead, the differ-

ences between groups were mostly seen as change of signal in-

tensities for many pixels. It was possible, maybe likely, that

there were multiple patterns for each group; when we took an

average of multiple subjects, this would make the distinction

between groups less clear. This was consistent with the obser-

vation in image classification, where the same object label, such

as a dog or a cat, could present multiple feature patterns and

these patterns did not have to have common features. Geneti-

cally, the same diagnostic group or class could have multiple

variant profiles. In fact, there was ample evidence that schizo-

phrenia is genetically heterogeneous; therefore, it should be

no surprise that schizophrenia patients as a group did not

show different predicted feature maps or saliency maps as

observed at individual level. In the fields of image classification

and computer vision, model performance was measured by ac-

curacy, AUC, precision and recall, and model generalization, we

believed that it should be appropriate to apply the same mea-

surements when we adopted the AI algorithm to AIO classifica-

tion. It might not be necessary to discover the common feature

maps for a group or class.

From our study, we concluded that, by transforming genetic

data into AIOs, we could apply advanced image classification

algorithms to analyze these data. This approach had several ad-

vantages over regression and other ML models. First, the AIO

approach could use a large number of SNVs to predict/classify

a trait of interest. In this study, we used two sets of SNVs, set I

had 4,096 SNVs and set II had 44,100 SNVs. For most regres-

sion or RF and SVM models, it would not be easy to incorporate

so many SNVs into a single model. An AIO of 1,000 3 1,000

pixels would use one million SNVs and it could be easily

analyzed with a desktop computer with a GPU. The ability to

analyze a large number of variables efficiently was advanta-

geous to other approaches. Second, there was no need to

conduct variable selection because, in image analysis, pixel
6 Patterns 2, 100303, August 13, 2021
correlation had no impact on the results of classification. In

this study, we did use GWAS p value and LD pruning to screen

SNVs, the purpose was to demonstrate the principle of the AIO

technique with a reasonable number of SNVs without exhaust-

ing our computational resources. Our selection of the SNVs was

categorical, not on individual SNVs, which was a prerequisite

for most prediction/classification models because variable cor-

relation or collinearity had significant impacts on the outcomes.

The set I SNVs were the first 4,096 SNVs out of the 4,109 SNVs

sorted by chromosome number and position without consider-

ation of their effects to the disease. Third, the association found

with the AIO approach would be a two- or three-dimensional

multi-pixel pattern association (i.e., the saliency map) where

each pixel represented a single SNV. The pixels that made

the unique association pattern could be traced back to the orig-

inal pixel map of the AIO, identifying those SNVs that were

necessary and sufficient to classify the subject. Biologically,

this would be equivalent to the identification of multi-factor

interaction and association. This opened a new window for

multi-factor gene-gene interaction analysis.

We noticed that the classification results from set I and set II

SNVs were similar (accuracy 0.678 ± 0.007 and 0.685 ± 0.021),

but the number of SNVs in set II was 10 times more than that

in set I. This was somewhat surprising and interesting. Set I

SNVs were selected based on GWAS p % 5 3 10�5 and pair-

wise LD pruning (r2 % 0.5), and set II SNVs were selected

based on the same GWAS p value and minor allele filtering

(minor allele frequency R0.05). Based on these conditions,

most SNVs in set I should be included in set II. Our initial

plan was to test whether additional SNVs with high LD would

affect model performance. The results indicated that these

additional SNVs did not impact the overall performance, and

neither improved nor deteriorated the performance (the differ-

ence in performance was not statistically significant). The re-

sults also suggested that, once transformed into pixel signals,

the SNVs lost their property as individual markers, the

high correlation among the SNVs, a collinearity issue that

confounded regression analysis, would not impact image clas-

sification analysis. Instead, the SNVs were treated as struc-

tural elements that contributed to a signature pattern or image

object for which the labels were trained for and classified by.

The SNV to pixel transformation, therefore, made it easier to

pick the SNVs to form the AIO, because the correlation among

the individual SNVs could be ignored.



Figure 4. Classification of normal controls

and diagnosed schizophrenia patients by

set II SNVs

(A and B) Comparisons between the original AIOs

and model-derived saliency maps for a control and

a patient. The label and pred in (A and B) listed the

labels (0 for control, and 1 for schizophrenia patient)

and prediction probabilities for the individuals.

(C) The group-wise saliency maps from averaging

saliency maps of all correctly predicted subjects for

each group (CTRL and SCZ). The pixel intensity

differences between the two groups were shown in

the Diff btwn SCZ & CTRL image.
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However, the categorical selection of SNVs merited some dis-

cussion. In this study, we used a p value threshold of 53 10�5 to

select SNVs. Some researchers would use a more stringent p

value threshold, such as GWAS significance level, and others

might use a more lenient threshold. In the literature, there were

many examples that used a variety of thresholds to select SNVs

for modeling disease risks and classification.19–21 We believed

that the selection criterion should depend on the objectives of

the study and the nature of the problem intended to solve. In

our case, we intended to demonstrate the analytic capacity of
the AIO technique in classification models,

and the threshold we used gave us tens of

thousands SNVs to work with. Should we

use the GWAS significance threshold,

there were not enough SNVs for us to

work with (just about 100 SNVs reaching

p = 5 3 10�8 for the GWAS used in this

study). Furthermore, the inherent feature

extraction function of the CNN algorithm

provided us the luxury to include more

SNVs tomaximize ourmodel performance.

This was because that GWAS tested SNVs

individually and did not consider multi-lo-

cus interactions. In contrast, CNN algo-

rithms worked by learning the spatial

patterns that were multi-locus by nature.

Some SNVs, they might not show signifi-

cant association with schizophrenia diag-

nosis individually, but when they were

placed in a network of higher-order interac-

tions, such as the multi-locus spatial pat-

terns learnedby theCNNmodel, theycould

make significant contribution to these

signature patterns, leading to better model

performance.

In summary, in this study we demon-

strated that a set of SNVs selected from

GWAS could be used to form an AIO and

the AIO could be classified by advanced

AI algorithms, such as CNN image classifi-

cation. With two sets of SNVs selected by

GWASp =% 53 10�5, we obtained similar

classification accuracies (0.678 ± 0.007;

0.685 ± 0.021) and AUCs (0.738 ± 0.008;

0.708 ± 0.030). Our approach, the AIO
technique that transformed individual genetic markers into im-

age pixel signals, allowed us to analyze a significant number of

SNVs jointly to evaluate their utility in diagnosis classification.

Compared with the RF and SVM models that used PRS calcu-

lated at the same GWAS p value threshold, our AIO approach

had about 4% better performance. We believed that other types

of genomic data, such as gene expression and methylation,

could be transformed into AIOs and classified by AI algorithms

as well. The AIO method, therefore, had the potential to build

classification models for clinical applications.
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Figure 5. Classification of PRS-stratified classes by set II SNVs

(A–C) Comparisons for the three classes between the original AIOs andmodel-

derived saliencymaps for the three classes, respectively. The labels and preds

listed the labels and prediction probabilities for each class.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Request for information and resources used in this article should be addressed

to Dr. Xiangning Chen at this email: va.samchen@gmail.com.

Materials availability

There were no physical materials associated with this study.

Data and code availability

The genetic and clinical data used in this study were from the Genetics Repos-

itory of the National Institute of Mental Health (https://www.nimhgenetics.org/).

This is a controlled access data available for qualified researchers. Please refer

to the website for the policies for data access application. The codes used in the

paper are available at the Github website: https://github.com/mdsamchen/

AIO_scripts.

Genetic data

We applied for and obtained the genotype and clinical data for the MGS,12

SCCSS,13 and CATIE14,15 datasets from the NIMH Genetics Repository

(https://www.nimhgenetics.org/). The MGS dataset had 2,681 affected sub-

jects and 2,653 controls. The SCCSS had 2,895 affected subjects and 3,836

controls. The CATIE had 741 affected subjects and 751 controls. All subjects

used in the 3 datasets were of European ancestry. The MGS and CATIE data-

sets were genotyped with Affymetrix 6.0 microarray with 906,600 SNVs. The

SCCSS was typed with Illumina OmniExpression array with 713,599 SNVs.

To have the same markers across the MGS, SCCSS, and CATIE datasets,

we used the IMPUTE222 to impute the missing genotypes using the 1000

Genome haplotypes as reference. Markers with the INFO value <0.4 were

filtered out. Details of imputation were described previously.23 In this study,

we combined the MGS and SCCSS data as training data for model training.

The CATIE was used to validate the models trained with the MGS and SCCSS

data.

The rationale for AIO design

For most SNVs, there are two alleles, A and a. Since humans have two chro-

mosome copies, for a given SNV, therefore, there are three possible geno-

types, AA, Aa, and aa. In this study, we propose a new approach to improve

the efficiency for SNV analysis by adapting image classification algorithms.

We consider an SNV as a pixel in an image, and its value takes the genotype

for the given individual at the specified SNV locus. This would allow us to

arrange a collection of SNVs from an individual to create an AIO (Figure 1B).

In the AIO, the physical distance and relationship of SNVs on chromosomes

could be indexed because each SNV occupies a specific address on the

AIO just like each pixel occupies a specific address in an image, the spatial

relationship between any two pixels, therefore, is clearly defined. Since the

same SNV from different individuals has the same address on the AIOs, the

relationship among the SNVs would be preserved across individuals. This

arrangement would allow us to not only analyze the relationship between a sin-

gle SNV and the trait of interest (analogous to traditional single-point associa-

tion analysis), but also identifying the complex relationship between a specific

pattern made of multiple SNVs and the trait (multipoint interaction and associ-

ation). This multi-SNV, spatial pattern or signature is the target that image

classification algorithms are designed to discover and used for object classi-

fication. With this signature, we would be able to classify and distinguish

people with different disease status if the disease is indeed caused by these

genetic variations. In addition, other variables such as sex, age, family history,

ethnicity, and computed principal components, can be recoded and organized

as an ancillary AIO, and integrated into the classification models.

Selection of SNVs to make AIOs

First, we downloaded the summary statistics of the schizophrenia GWAS2

from the Psychiatric Genomics Consortium (PGC) website (www.med.unc.
(D) Saliency maps for the three classes by averaging the saliency maps of

correctly predicted subjects for each class (class I, class II, and class III). The

fourth image in the panel was a plot showing the intensity difference between

class I and class III pixel by pixel.

mailto:va.samchen@gmail.com
https://www.nimhgenetics.org/
https://github.com/mdsamchen/AIO_scripts
https://github.com/mdsamchen/AIO_scripts
https://www.nimhgenetics.org/
http://www.med.unc.edu/pgc/results-and-downloads


Figure 6. Performance comparison of the CNN, RF, and SVMmodels

RF, random forest; SVM, support vector machine; CNN, convolutional neural

network. Among the three models, the CNN model had the best performance.
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edu/pgc/results-and-downloads). SNVs with association p % 5 3 10�5 were

selected. The main reason for using this p value threshold was to select a

reasonable number of SNVs that could demonstrate the analytic capacity of

our AIO approach. Based on the GWAS summary statistics, there were

51,855 SNVs with p % 5 3 10�5. Since many of these SNVs are in high LD

with each other, we further pruned the SNVs to exclude SNVs with pairwise

LD (r2) R 0.5 using the PLINK program24,25 (plink command –indep 100 10

2). The reason that we used LD pruning was that we wanted a list of SNVs

well spaced (by LD) across the chromosomes. For a linkage region, theremight

be more than one SNV selected, which was different from the LD clumping

technique where only the best SNV would be selected from an LD region.

The pruning produced 4,109 SNVs with p % 5 3 10�5. For the 4,109 SNVs

with p % 5 3 10�5, we selected the first 4,096 SNVs as ordered by chromo-

some number and position, referred to as set I SNVs, to make a 64 3 64 pixel

AIO for each of the individuals in the MGS, SCCSS, and CATIE datasets. To

evaluate the effect of allele frequency on the AIO classification, we further

selected SNVs with minor allele frequency R0.05 from the 51,855 SNVs with

p % 5 3 10�5, this produced 44,320 SNVs. From these frequency-filtered

SNVs, we selected the first 44,100 SNVs as ordered by chromosome number

and position, referred to as set II SNVs, to make a 210 3 210 pixel AIO for the

subjects in the 3 datasets. For all the AIOs, the genotypes of the SNVs, i.e., AA,

Aa, and aa, were converted to the values of 0, 154, and 254, respectively, the

AIOs made from set I and set II SNVs could be considered grayscale images

(Figure 1B). The values used for the 3 genotypes were intended to approximate

pixel intensity range (1 byte), other values, such as 0, 0.5, and 1, could be used

as long as the three genotypes could be separated clearly.

PRS calculation

Wecalculated PRS at p = 53 10�5 for all the subjects in theMGS, SCCSS, and

CATIE samples using the PRSice2method26,27 and the same GWAS summary

statistics2 we used to select SNVs for AIOs. The PRSice2 allowed users to

specify parameters to clump LD, genetic model and scoring algorithm. We

used these default parameters to calculate the PRS: –clump-kb 250,

–clump-p 0.500, –clump-r2 0.100, –interval 0.001, –lower 5 3 10�5, –upper

0.5, –model add, –score avg. With these parameters, the best p value

threshold identified was 0.3171, explaining 0.5145 (R2) of the phenotype vari-

ations and containing 235,931 SNVs. At a p value threshold of 53 10�5, 1,397
SNVs were included in the PRS calculation, explaining 0.1468 (R2) of the

phenotype variations. The PRS medians of the case and control in the training

(MGS and SCCSS combined) samples were 0.0011 and 0.0017, and that for

the validation (CATIE) samples were 0.0014 and 0.0020. The distributions of

the PRSs for the training and validation samples were shown in Figure S1.

AIO classification with CNN algorithms

In this study, we used the TensorFlow (www.tensorflow.org/),11,28 keras

(https://keras.io/api/), and the CNN architecture29,30 to classify and predict

AIOs generated from selected SNV data. In these analyses, we used two phe-

notypes or labels. One was the diagnosis provided by the investigators from

the MGS, SCCSS, and CATIE studies. The normal controls (ctrl), were coded

as 0, and the diagnosed patients (case) were coded as 1. The second pheno-

type was based on PRS stratification. We calculated the mean (M) and

standard deviation (SD) for the diagnosed subjects in theMGS and SCCSSda-

tasets. The new phenotype, or PRS-stratified classes was defined as the

following:

Class I: PRSi % (M � 0.25 3 SD), Ti = 0;

Class II: (M + 0.25 3 SD) < PRSi > (M � 0.25 3 SD), Ti = 1;

Class III: PRSi R (M + 0.25 3 SD), Ti = 2.

where PRSi is the individual’s PRS and Ti is the assigned phenotype. Please

note that the diagnosed individuals from the CATIE dataset were not included

in the calculation of the mean and SD for this new phenotype. For this new

phenotype, referred to as PRS-stratified classes, there were 5,000 (41.4%)

class I subjects, 2,854 (23.7%) class II subjects, and 4,211 (34.9%) class III

subjects in the combinedMGS andSCCSS datasets (train data). For the CATIE

dataset (test data), there were 483 (32.4%) class I subjects, 325 (21.8%) class

II subjects, and 684 (45.8%) class III subjects, respectively. There were some

differences in class distribution between the training (MGS and SCCSS) and

the testing (CATIE) samples. Since the differences were relatively small, they

would not have too much impact on model performance.

Once the AIOs were made, and phenotypes or labels were assigned to the

subjects in the three datasets, we used the TensorFlow and keras packages to

conduct image classification analyses. For these analyses, we combined the

MGS and SCCSS datasets and used them to train the models. Since the

possible combinations of parameters for a CNN model were extremely large,

we started out with the architecture and hyperparameters from the examples

reported in recent literature.31,32 We first tested the CNN architectures with

varying numbers of convolutional layers, fully connected layers, and the

number of filters (neurons) in each layer. We then tested initial learning rate

(0.1–0.0001), epsilon value (1.05–10�10), kernel regularizer value (0.1–

0.00001), and kernel size value (5–15). Based on these screening of architec-

tures and hyperparameters, we settled on the architectures that consisted of

three convolutional layers and three fully connected layers. Each convolutional

layer was followed with a batch normalization layer and average pooling layer.

The specific parameters were detailed in the scripts (https://github.com/

mdsamchen/AIO_scripts). After the training, we used the CATIE samples to

evaluate the performance of the models. For the binary phenotype, the diag-

nosis, we reported the binary accuracy ([true positive + true negative]/[true

positive + false positive + true negative + false negative]), precision (true pos-

itive/[true positive + false positive]), recall or sensitivity (true positive/[true

positive + false negative]), f1-score ([23 precision3 recall]/[precision + recall])

and the AUC of the ROC for the training processes as defined in the scikit-learn

library.33 For the multi-label PRS classes, we reported categorical accuracy

and class-specific AUC.

Classification of diagnosis with RF and SVM

To compare the performance of CNN classification of AIOs, we used the PRSs

calculated at the same threshold, i.e., p % 5 3 10�5 to classify schizophrenia

diagnosis with RF and SVM. The classifications were conducted with the R

packages randomForest and e1071. For these analyses, we calculated 20

principal components for the 3 datasets using the PLINK program,24,25 and

used the principal components and sex along with the PRS in the classification

models. For RF analyses, we set the number of trees to 2,000, and conducted

grid search for optimal values of the mtry (number of variables at the split, 6–

12), node size (number of samples at terminal node, 20–40), and sample size

(the fraction of samples used in training, 0.55–0.80) with the R package

Ranger, which was a fast version of RF. Based on the results of grid search,
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we set on an RF model with mtry of 6, node size of 28, sample size of 0.80. For

SVM, we did a grid search for the penalty factor C (10�3 to 103) and gamma

(2�10 to 28) with the RBF kernel. Based the results of the grid search, we set

on the C of 3 and gamma of 0.0175, and used 5-fold cross-validation to build

the models with the training data (MGS and SCCSS combined). Once the

models were established, we run the model 5 times to evaluate its perfor-

mance on the independent CATIE samples.
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