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Abstract

A diverse community of microorganisms inhabits various parts of a plant. Recent findings

indicate that perturbations to the normal microbiota can be associated with positive and neg-

ative effects on plant health. In this review, we discuss these findings in the context of under-

standing how microbiota homeostasis is regulated in plants for promoting health and/or for

preventing dysbiosis.

Defining the “core” microbiota in plants

In the past decade, many studies have surveyed microbiota composition in plants. Despite

diverse microbes found in plants, overall bacterial composition seems to be conserved at the

phylum level. In flowering plants that have been surveyed, the aboveground tissues (phyllo-

sphere) are associated with bacterial assemblages dominated by Proteobacteria, Actinobac-

teria, Bacteroidetes, and Firmicutes. These bacterial phyla are also enriched in belowground

tissues (rhizosphere) compared to bulk soil [1,2]. Nonvascular plants such as liverwort and

moss are also dominated by these phyla [3–5], suggesting possible conservation of core micro-

biota across plant lineages. It should be pointed out that, so far, most microbiota surveys have

been focused on bacterial components of plant-associated microbial communities. As fungi

[6], viruses [7], and protozoa [8] are also common residents on or inside the plant, more

efforts are needed in the future to systematically define fungal, viral, and protozoa microbiota

members across plant taxa. Additionally, biogeography plays an important role in determining

the reservoir of microbes from which a plant selects members of its microbiota [9]. Because

different microbial taxa may provide functionally redundant traits to a plant host [10], detec-

tion of dissimilar taxa in different plants, especially at lower taxonomical levels, may not neces-

sarily indicate functionally distinct microbiotas, an important topic that requires rigorous

future investigations.

Regardless of whether there is a functionally conserved core microbiome in plants, increas-

ing evidence suggests that microbiota homeostasis may be intimately linked to host processes

and, in turn, plant health. Microbiota homeostasis in eukaryotic organisms is likely dynamic

in both space and time. Here, we use eubiosis to describe the state of microbiota homeostasis

that is necessary for maintaining host health under optimal, nonstressful conditions. The
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eubiotic state for an individual plant is not static, but instead dynamic over a plant’s lifetime.

For example, microbiota of healthy plants can vary temporally based on the time of year [11]

or developmental stage [12]. Stress or other perturbations may induce changes to the micro-

biota which could disrupt eubiosis. Disruption to microbiota eubiosis can be associated with

negative impacts on host health and is often called dysbiosis in this context [13]. Deviation

from eubiosis, however, is not always detrimental and may help plants cope with various

forms of stress. Below, we focus our discussion on the interplay between microbiota homeosta-

sis and plant health and resilience.

Microbiota homeostasis shifts toward dysbiosis

In humans, dysbiosis is associated with ailments such as inflammatory bowel disease, diabetes,

allergies, and other health issues [14] and is often accompanied by a lower diversity microbial

community with altered metabolic function [15]. However, broad use of the term “dysbiosis”

in mammalian literature has come under scrutiny, particularly for its inconsistent definition

and ambiguity as often no distinction can be made between it being a cause or effect of a spe-

cific disease [16]. A recent study showed an example of dysbiosis as the causal agent for tissue

damages in plants. Several Arabidopsis immune-compromised mutants were found to harbor

an increased amount and altered composition of phyllosphere microbiota and display leaf-tis-

sue damage under high humidity [17]. The Shannon diversity index and the relative abun-

dance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched inside the

leaves of these mutant plants, bearing cross-kingdom resemblance to some aspects of the dys-

biosis that occurs in human inflammatory bowel disease. Importantly, bacterial community

transplantation experiments showed that the application of the dysbiotic leaf bacterial commu-

nity to otherwise healthy plants resulted in tissue damages, demonstrating that, in this case,

dysbiosis is causative to negative impact on host health [17].

Tissue damage-associated microbiota shifts have also been observed during insect and path-

ogen attacks, which often compromise host immune responses. For example, herbivory of bit-

tercress plants by the leaf-mining fly causes a significant shift in phyllosphere microbiota,

resulting in an increased abundance of bacteria on damaged leaves. Growth of Pseudomonas
spp. (belonging to Proteobacteria) was found to largely account for the increased abundance

of microbiota [18]. Another study found that fungal pathogen Zymoseptoria tritici suppresses

immune responses in susceptible wheat cultivars, resulting in an increase in bacteria members

of the leaf microbiome near fungal infection sites [19]. Together, these examples imply that

immune suppression during pathogen infections is associated with shifting the composition of

microbiota, similar to what is observed in immune-compromised plant mutants [17]. This

may be a broadly applicable principle. Indeed, microbiota changes have been described across

many plant species upon biotic challenge, including citrus greening in citrus [20], parasitic

nematode Meloidogyne graminicola infection in rice [21], Yellow Canopy Syndrome in sugar-

cane [21], and protist Plasmodiophora brassicae in Chinese cabbage [22]. However, in these

cases, it is not yet known whether the observed changes in microbiota contribute causally to

(or a consequence of) tissue damages in disease.

Microbiota homeostasis shifts benefiting plant stress resilience

Stress-induced deviation from eubiosis is not always associated with reduced plant perfor-

mance. Microbiota changes (referred to hereafter as meliorbiosis; from the Latin root melior-
meaning “to make better, improve”) that enable positive effects on plant performance under

stressful conditions have been described. In the case of biotic stress, the fungal pathogen Fusar-
ium graminearum was shown to induce shifts to rhizosphere microbiota of barley plants,
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including apparent recruitment of bacterial taxa that are enriched with antifungal traits [23].

In Arabidopsis, infection of leaves with oomycete Hyaloperonospora arabidopsidis, a causative

agent of downy mildew, resulted in enrichment of specific rhizosphere bacteria that were able

to induce systemic resistance against downy mildew [24]. Insect herbivory can also induce

changes to the plant microbiota. For example, aphid [25] and whitefly [25,26] feeding of

aboveground pepper plant tissues results in restructuring of rhizosphere microbiota and

enhanced resilience to belowground bacterial pathogens.

Abiotic stress can also induce microbiota shifts. Drought stress, for instance, induces a large

restructuring of belowground communities across diverse plant hosts [27–29]. This shift is

generally associated with enrichment of Actinobacteria in the root endosphere relative to the

rhizosphere or bulk soil [28]. The enrichment of specific strains under drought conditions, but

not water replete conditions, is correlated with increased plant root biomass [29] which could

contribute to improved drought resilience [30].

As is in the case of dysbiosis, the cause-and-effect relationship during meliorbiosis is still

not so clear in many cases. While changes in microbiota composition are sometimes associated

with positive effects on plant fitness, causality still needs to be demonstrated in most instances.

Plant factors regulating microbiota homeostasis

If proper microbiota homeostasis is critical for plant health, one would expect that plants

would have evolved mechanisms to prevent health-damaging dysbiosis and allow health-pro-

moting meliorbiosis under stressful conditions. Indeed, recent studies have begun to identify

host factors that are involved in mediating microbiome homeostasis in plants (Fig 1). While it

is well established that plant defense hormones salicylic acid (SA) and jasmonic acid (JA) play

an important role in limiting the growth of virulent pathogens in plants, it is becoming

increasingly evident that they also play a critical role in mediating the homeostasis of commen-

sal microbiota members. Arabidopsis mutants with constitutively elevated levels of SA-medi-

ated immune response harbor reduced bacterial diversity in the endophytic leaf microbiota,

while mutants deficient in JA-mediated immune response harbor an increased bacterial diver-

sity in epiphytic leaf microbiota [31]. Activation of JA pathways by application of methyl-JA

also alters the composition of the rhizosphere microbiota [32], further implicating the role of

JA pathways in the regulation of microbiome homeostasis in plants. A study involving multiple

hormone mutants identified defense hormone SA is required to establish a normal rhizosphere

microbiota and that SA-mediated modulation of the rhizosphere microbiota is likely to occur

at the family level, instead of impacting only a select few largely abundant strains [33]. In addi-

tion to SA and JA, Arabidopsis ein2 mutants defective in ethylene signaling harbor distinct

phyllosphere microbial communities compared to wild-type plants [34]. However, it remains

to be determined whether the observed microbiota alterations in these defense hormone

mutants causally impact plant fitness, either positively or negatively, an area of great interest

for future research.

In addition to defense hormones, recent studies have begun to show a critical role of pat-

tern-triggered immunity (PTI) in regulating modulating microbiota homeostasis in plants

[17,35,36]. PTI is a major form of plant immunity initiated by plant recognition of common

microbial patterns by pattern-recognition receptors (PRRs) [37]. An Arabidopsis quadruple

mutant lacking 3 PRRs/coreceptors (recognizing bacterial flagellin, elongation factor Tu, and

peptidoglycan, respectively) and a vesicle traffic regulator, the MIN7 protein, displayed a dys-

biotic shift in the quantity and composition of the endophytic leaf microbiota [38]. Similar

alterations in endophytic leaf microbiota were found in an Arabidopsis mutant that carries a

S205F mutation in a membrane attack complex/perforin domain protein, CAD1 [17]. The
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involvement of plant immunity in regulating some aspects of microbiota homeostasis illus-

trates a conceptual parallel to mammalian-microbiome interactions, as PRR gene mutations

(e.g., NOD2) have been shown to be linked to dysbiosis in humans [39] and members of the

MACPF protein family, such as human C9 and perforin in particular, have been shown to be

involved in innate and adaptive immunity in mammals [40].

In addition to defense-related plant processes, physical barriers and leaf-surface structures

such as the plant cell wall and trichomes may play a role in influencing microbiota homeostasis

based on a genome-wide association study examining 196 accessions of Arabidopsis grown in

the field and their associated bacterial and fungal communities [41]. Furthermore, Arabidopsis
mutants with altered cuticle formation possess altered epiphytic phyllosphere bacterial com-

munities [34,42]. A recent study further confirmed the role of physical structures in contribut-

ing to microbiota homeostasis [43]. Here, Arabidopsis mutants defective in genes controlling

the function of endodermal root diffusion barriers, including those in the Schengen pathway

required for Casparian strip formation and those involved with suberin deposition, possessed

rhizosphere bacterial communities with altered composition [43].

Fig 1. Host control of microbiota homeostasis in plants. Microbiota eubiosis represents a normal range of microbiota abundance and composition in healthy plants

grown under optimal conditions. If eubiosis is disrupted, either by host mutations, abiotic stress, or infections, or a combination thereof, homeostasis can shift toward a

dysbiotic state associated with negative impacts on plant health or toward a meliorbiotic state associated with positive impacts on plant health. Examples of host factors

that contribute to microbiota homeostasis in the phyllosphere (green) and rhizosphere (brown) are depicted in circles below. Not all known factors are depicted. CAD1,

constitutively activated cell death 1; JA, jasmonic acid; MIN7, HOPM1-interactor 7; MYB72, MYB domain protein 72; PRRs, pattern recognition receptors; PSR,

phosphate starvation response; SA, salicylic acid. Created with Biorender.

https://doi.org/10.1371/journal.ppat.1009472.g001
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Finally, pathways involved in plant nutrient response also play a role in microbiota homeo-

stasis. For instance, under iron- and phosphate-limiting conditions, plants can induce the

secretion of coumarins which, in addition to aiding in plant nutrient uptake, possess selective

antimicrobial activity and can shape the root microbiota [44]. Arabidopsis, for instance,

secretes iron-mobilizing coumarin scopoletin under iron-limiting conditions in response to

beneficial bacteria in a manner dependent on the MYB72 transcription factor and a β-glucosi-

dase, BGLU42. Scopoletin was found to have high antimicrobial activity against fungal patho-

gens Fusarium oxysporum and Verticillium dahlia, whereas many beneficial rhizobacteria are

tolerant [45]. Additionally, several Arabidopsis mutants defective in components regulating

phosphate starvation response (PSR) and inorganic phosphate availability in plant tissues were

found to harbor endophytic root microbial communities that are significantly different com-

pared to wild-type plants [46].

Future outlook

In this review, we have highlighted several examples of environmental and host influences on

microbiota homeostasis in plants, a topic that is likely to become intensively studied in the

coming decade. However, the current understanding is rather limited, and the cause–effect

relationship has not been resolved in most cases. Further advances will likely hinge on progress

in two critical areas. First, application of multiple methodologies will be needed to go beyond

taxonomic knowledge of microbiota to gain insight into functional implications of microbiota

shifts as traits rather than taxa may be selected during microbiome shifts. The application of

methodologies such as metagenomics, metatranscriptomics, or metabolomics could inform on

the functional implication of a particular microbiome. Further, incorporation of quantitative

taxonomic analyses, either by direct quantification, DNA spike-in, or normalization to host

DNA (i.e., chloroplasts and mitochondria as described in [18]), for instance, could help iden-

tify ecologically relevant fine-scale differences between microbial communities that may not

be apparent in current studies.

Second, it is now time to more clearly define the taxonomical and functional features of

eubiosis, dysbiosis, and meliorbiosis in plants and, perhaps more importantly, to resolve the

cause–effect relationship between observed microbiota shifts and plant fitness. While method-

ologies, such as shotgun metagenomics, may enable researchers to generate hypotheses related

to microbiome function, we anticipate increased use of rationally designed synthetic microbial

communities [47] and innovative gnotobiotic plant growth systems [48] in future research in

this area. Indeed, this is already happening [17,49–53], and we can expect significant progress

in the next few years to reach a better understanding of how microbiota homeostasis is con-

trolled in plants. Broad understanding of microbiota homeostasis should provide a critical

knowledge base for the development of innovative plant- and/or microbiota-based solutions

to globally improve pre- and post-harvest plant health and productivity.
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