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Abstract: Maintenance of genome integrity is a key process in all organisms. DNA polymerases (Pols)
are central players in this process as they are in charge of the faithful reproduction of the genetic
information, as well as of DNA repair. Interestingly, all eukaryotes possess a large repertoire of
polymerases. Three protein complexes, DNA Pol α, δ, and ε, are in charge of nuclear DNA replication.
These enzymes have the fidelity and processivity required to replicate long DNA sequences, but DNA
lesions can block their progression. Consequently, eukaryotic genomes also encode a variable number
of specialized polymerases (between five and 16 depending on the organism) that are involved in
the replication of damaged DNA, DNA repair, and organellar DNA replication. This diversity of
enzymes likely stems from their ability to bypass specific types of lesions. In the past 10–15 years,
our knowledge regarding plant DNA polymerases dramatically increased. In this review, we discuss
these recent findings and compare acquired knowledge in plants to data obtained in other eukaryotes.
We also discuss the emerging links between genome and epigenome replication.
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1. Introduction

Maintenance of genome integrity is crucial to achieve faithful transmission of the genetic
information in proliferating cells and from one generation to the next. DNA polymerase (Pol) enzymes
play a key role in this process because they perform DNA synthesis during the replication phase of the
cell cycle and DNA repair.

The genome of each organism encodes several DNA polymerases. To date, five DNA polymerases
were characterized in Escherichia coli, eight in Saccharomyces cerevisae, and as many as 16 in human [1].
In Arabidopsis thaliana, 10 orthologues of human polymerases were identified, plus two additional
polymerases that are involved in the replication and repair of the organellar DNA [2]. DNA polymerases
are generally classified into different families (A, B, X, and Y) depending of the primary structure of
their catalytic subunit [3]; non-replicative polymerases involved in translesion synthesis (TLS, a process
that allows DNA replication to proceed passed DNA lesions), organelle DNA metabolism, or nuclear
DNA repair are found in all families, whereas eukaryotic replicative polymerases all belong to the B
family. Replicative and TLS DNA polymerases can differ broadly in terms of error rate and processivity.
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The latter is defined as the number of bases added in a single contact event, since DNA polymerases
constantly associate to and dissociate from their template. Replicative DNA polymerases that need to
synthesize large amounts of DNA within a short period of time and generate as few errors as possible
typically show the lowest error rate and highest processivity, whereas TLS polymerases have a more
open active site that allows them to accommodate lesions, resulting in a higher error rate [4,5]. In this
review, we do not discuss the complex structural properties of DNA Pol families that were recently
reviewed elsewhere [1].

In humans, mutations affecting DNA Pols contribute to various disorders, including cancer and/or
developmental defects [6,7]. Although carcinogenesis does not occur in plants, inadequate DNA
replication and repair lead to growth inhibition and developmental defects. Therefore, exposure to
various types of stresses that can compromise DNA replication or induce DNA damage can reduce
the plant’s fitness. The last review about plant DNA polymerases was published 12 years ago by
Garcia-Diaz and Bebenek [2], when the experimental evidence was scarce in the field. During the last
decade, the roles of plant DNA polymerases were investigated into more detail, shedding light on their
conserved and unique roles. Here, we describe our current understanding on plant DNA polymerases,
discussing both common features with their homologues in animals or yeast and unique specificities
to highlight the questions that remain open in the field.

2. Replicative DNA Polymerases, Guardians of the Genome and Epigenome Integrity

As mentioned in the introduction, despite the availability of numerous DNA polymerases, only
three of them are responsible for genome duplication. Pol δ and Pol ε are the main eukaryotic
DNA replicases, and together perform the bulk of DNA replication, following priming by Pol α [8].
These polymerases are actually protein complexes that comprise a large subunit harboring the catalytic
activity, and accessory subunits, some of which are dispensable for the DNA synthesis activity. Table 1
shows the formal nomenclature for eukaryotic replicative DNA polymerases in human, yeast (S. pombe
and S cerevisiae), and Arabidopsis.

Table 1. Nomenclature for replicative DNA polymerases (Pols) in human, yeast (Saccharomyces
cerevisiae and S. pombe), and plant (Arabidopsis thaliana) orthologues. Catalytic subunits are indicated in
bold characters.

DNA Pol Human (Gene/Protein) S. Cerevisiae/S. Pombe
(Gene/Gene) A. Thaliana

Pol α/primase

POLA1/p180 POL1/pol1 POLA1 (ICU2, AT5G67100)
POLA2/p70 POL12/pol12 POLA2 (AT1G67630)
PRIM1/p49 PRI1/pri1 PRIM1 (AT1G67320)
PRIM2/p58 PRI2/pri2 PRIM2 (AT5G41880)

Pol δ holoenzyme

POLD1/p125 POL3/pol3 POLD1 (AT5G63960)
POLD2/p50 POL31/cdc1 POLD2 (AT2G42120)
POLD3/p68 POL32/cdc27 POLD3 (AT1G78650)
POLD4/p12 - /cdm1 POLD4 (AT1G09815)

Pol ε holoenzyme

POLE1/p261
POLE2/p59
POLE3/p17
POLE4/p12

POL2/cdc20
DPB2/dpb2
DPB3/dpb3
DPB4/dpb4

POL2A (ABO4/ESD7, AT1G08260)
DPB2 (AT5G22110)

DPB3 (NF-YC13, AT5G43250;
NF-YC10, AT1G07980)

DPB4 (NF-YB11, AT2G27470)

These three polymerases are members of the B family, characterized by conserved amino-acid
motifs within the polymerase catalytic sites and exonuclease domain. Pol δ and ε are characterized
by a high fidelity, due to the tight conformation of their active site that allows the incorporation
of mismatched nucleotide with a frequency around 10−7, as well as to their proof-reading activity
that improves fidelity by about 100–1000 [9,10]. Both polymerases associate with the sliding clamp
proliferating cell nuclear antigen (PCNA; see below) that enhances their processivity, notably that of
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Pol δ. By contrast, Pol α, being only responsible for the synthesis of the primers that are then elongated
by Pol δ [11], is a DNA polymerase of moderate fidelity that lacks 3′→5′ exonuclease activity [4].

In addition to their role in DNA synthesis, replicative DNA polymerases are involved in the
surveillance of stalled forks that may be generated by constraints on the replication machinery such as
G-quadruplexes, DNA lesions, or collisions between transcription and replication. In yeast, at least Pol
ε and α participate in the activation of the synthesis (S)-phase checkpoint [12,13]. Moreover, replicative
DNA polymerases are directly implicated in transferring the epigenetic information to the newly
synthesized daughter chromatin strands, thereby maintaining the epigenetic status of the replicated
loci [14]; this mechanism allows re-establishing transcriptional silencing once the replication fork
passes certain genomic regions [15,16]. In the next section, we describe the subunit composition of
plant replicative polymerases and mutant lines that allowed the functional characterization of these
proteins, and summarize our current knowledge of these polymerases involvement in DNA replication,
DNA repair, and chromatin replication.

3. Division of Labor between Replicative Polymerases at the Replication Fork

Replicative polymerases are associated into a large protein complex called the replisome that
encompasses all the core activities required for high-fidelity DNA replication [17]. In addition to
replicative DNA polymerases, the replisome comprises an 11-subunit helicase complex. The helicase
activity is brought by the MCM2–7 (mini chromosome maintenance) heterohexamer that forms a ring
unwinding unreplicated DNA. To be activated, the MCM complex needs to associate with the GINS
(consisting of four proteins Sld5–Psf1–Psf2–Psf3 also called “go–ichi–ni–san”, from the Japanese for
5–1–2–3) and CDC45. Altogether these subunits form the CMG complex (CDC45, MCM, GINS). Finally,
the replisome also comprises the sliding clamp PCNA that is a processivity factor of DNA polymerases
δ and ε and the sliding clamp loader RFC (replication factor C), as well as the single-strand DNA
binding protein RPA (replication protein A) that coats and protects single-stranded DNA behind the
helicase [18]. Replicative Pols play complementary roles during the replication process, and each
polymerase, thus, interacts with distinct genetic networks [19]. Firstly, DNA Pol ε is unique in that
it is required for the pre-initiation steps of DNA replication, by allowing replisome assembly [20],
while Pol α and δ are recruited later on chromatin. Once the replication fork is opened by the CMG,
an RNA/DNA primer produced by the DNA Pol α/primase complex initiates leading-strand synthesis
and each Okazaki fragment on the lagging strand (reviewed in Reference [21]). Polymerase δ was
recently shown to elongate these primers on both strands [22]. Next, the generally accepted view is
that Pol δ synthesizes the lagging strand [17], while Pol ε is responsible for the synthesis of the leading
strand [23]. Recent work proposed that Pol δ could normally replicates both strands of the DNA,
and that, occasionally, a switch to Pol ε on the leading strand could be induced by replication errors,
thereby coupling checkpoint signaling to repair of the DNA damage [24]. Such a mechanism would
also account for the observation that Pol ε preferentially ensures leading-strand fidelity [25], but it is
highly debated [26] and it not supported by other recent studies [22]. Finally, replication termination
involves a switch from Pol ε to Pol δ [27]; thus, the commonly accepted model is that Pol δ performs
initiation and termination on both strands, as well as the synthesis of Okazaki fragments, whereas Pol
ε elongates only the leading strand.

Most of our knowledge on eukaryotic DNA replication was acquired in yeast and animal cells.
In plants, homologues of the proteins required for the different steps of replication were identified,
especially in Arabidopsis and rice [28]. Among the plant replisome proteins that were already studied
through genetic approaches are some MCM subunits, CDC45, PCNA, RFC, and RPA [29–34]. Likewise,
the flap endonuclease and ligase involved in the processing of junctions between Okazaki fragments
were identified [35]. The study of protein–protein interactions or biochemical activity of replisome
components is still in its infancy but, given the conservation of the essential coding sequences, it is
generally assumed that these processes do not differ significantly in plants from what is described in
other eukaryotes [36].
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In Arabidopsis, like in other eukaryotes, knockout mutants of the main subunits of the three
replicative DNA polymerase are lethal. However, hypomorphic alleles of catalytic subunits were
isolated in genetic screens for mutants deficient for processes as diverse as embryo development,
epigenetic silencing, and hormone signaling [37–40]. This fact illustrates the crucial importance of
DNA replication for all aspects of plant development, but also points to the diversity of the functions
encompassed by plant replicative DNA polymerases. Like other eukaryotes, DNA Pol α, δ, and ε not
only replicate the genome, but also have multiple functions in the maintenance of the genome and
epigenome integrity (Table 2).

Table 2. Known functions of Arabidopsis replicative and specialized polymerases. HR—homologous
recombination; DSB—double-strand break; TLS—translesion synthesis; UV—ultraviolet;
NHEJ—non-homologous end-joining.

Polymerase Cellular Function References

B-family (Pol α, δ, ε, and ζ in human)

Pol alpha (α)

Deficiency induces HR [41]
DSB repair in meiosis [42]

Maintenance of histone marks [38,41,43]
Maintenance of telomeres [44]

Response to abscisic acid (ABA) [45]

Pol delta (δ)

Deficiency induces HR [40,46]
DSB repair in meiosis [47]

Maintenance of histone marks [40,48]
Response to DNA-damaging agents [48]

Pol epsilon (ε)

Checkpoint signaling [49,50]
DSB repair in meiosis and meiotic checkpoint [50,51]

Deficiency induces HR [39]
Maintenance of histone marks [39,52,53]

Response to abscisic acid (ABA) [39]

Pol zeta (ζ)
REV3 (AT1G67500)
REV7 (AT1G16590)

TLS (UV-induced lesions)
Repair or intra and inter-strand crosslink

[54–59]
[57]

X-family (Pol λ, β, µ, and TdT in human)

Pol lambda (λ) TLS (8-oxo-G) [32]
(AT1G10520) DSB repair [60,61]

Pol eta (η)
POLH (AT5G44740) TLS (UV-induced lesions) [54]

Y-family (Pol κ, ι, η, and REV1 in human)

Pol kappa (κ)
(AT1G49980) [62]

Pol Rev1 (AT5G44750) TLS (UV-induced damage) [54,55]

A-family (Pol θ, γ, and ν in human)

Pol theta (θ) TLS (required for normal progression of DNA
replication) [63,64]

POLQ (AT4G32700) DSB repair through alternative NHEJ [65]

Archaeo-eukaryotic primase family PrimPol

PRIMPOL (AT5G52800) Not functionally characterized yet, putative
role in organelle DNA replication [66]

Plant organelle polymerases (POPs)

Pol1-like A
(Pol γ1, AT3G20540)

Organellar replication and repair, potentially
more specifically involved in DNA replication [67–69]

Pol1-like B
(Pol γ2, AT1G50840)

Organellar replication and repair, potentially
more specifically involved in DNA repair [67–69]
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4. Subunit Composition of Plant Replicative Polymerases

4.1. DNA Pol ε

In all eukaryotes, DNA Pol ε is a four-subunit complex comprising a catalytic subunit
(POLE1/POL2A) and three accessory subunits DPB2, 3, and 4 (DNA PolII subunit B), of which
only DPB2 is required for cell viability [70], although it does not seem to be required for the polymerase
activity per se [71]. In yeast, the other accessory subunits, DPB3 and 4, are dispensable for cell
viability, but their inactivation leads to genetic instability, suggesting that they affect Pol ε fidelity [72].
By contrast, in mouse, the DPB4 subunit is essential for embryo survival because the absence of this
subunit destabilizes the whole complex [73].

The Arabidopsis genome encompasses two isoforms of the catalytic subunit (POLE1A and
POLE1B, also called AtPOL2A and AtPOL2B) [37,74]. The AtPOL2A gene, also known as
TIL1/ABO4/ESD7 [37,39,52], encodes a protein of 2161 amino acids, with a predicted molecular
mass of 261 kDa. The AtPOL2B protein sequence is 79% identical (84% similar) to AtPOL2A. [37,52,74].
Both Arabidopsis AtPOL2 proteins possess each of the motifs necessary for a functional DNA Pol ε
catalytic subunit. Only AtPOL2A is an essential gene [74], and it is expressed at detectable levels;
loss of function of AtPOL2B does not affect plant growth or development, suggesting that AtPOL2A
is the main active isoform during DNA replication [74]. Nevertheless, analysis of double mutants
revealed that AtPOL2B is partially redundant with AtPOL2A [37,52,74]. To date, four hypomorphic
alleles for AtPOL2A were isolated (Figure 1A): tilted 1-4 (til1-4) [37], abscisic acid oversensitive (abo)
4-1 and 2 [39], and early in short days 7 (esd7) [52], three of which harbor point mutations close to
the catalytic site, whereas the fourth one (abo4-2) is a transfer DNA (T-DNA) insertion line that
accumulates several truncated transcript in which one or two exons are spliced out, likely leading to
the accumulation of an incomplete protein [50]. Partial loss of Pol ε results in prolonged cell cycle
and S-phase [37,50], likely due to hampered fork progression. All AtPOL2A hypomorphic alleles
display similar developmental alterations including early flowering (see below), reduced stature,
and disorganized meristems, with the exception of til1-4 in which vegetative growth after germination
is less compromised than in abo4 or esd7 mutants, and flowering is only slightly delayed, probably
because the activity of the protein is less severely compromised in this mutant [37].

Loss-of-function mutants for the DPB2 gene arrest growth early during embryo
development [37,74]. Using an over-expression strategy, we showed that excess DPB2 accumulation
impairs DNA replication and causes endogenous DNA stress [49], corroborating its involvement
in DNA replication. Since DPB2 is known to mediate the interaction of Pol ε with the GINS [75],
our finding that altering the stoichiometry of DPB2 and POL2 affects DNA replication suggests that
this role is conserved in plants. This hypothesis is corroborated by the observation of spontaneous
formation of double-strand breaks (DSBs) in DPB2 over-expression (DPB2OE) lines that could result
from fork collapse due to replisome destabilization [49]. Additional functions and regulation levels of
DPB2 in other eukaryotes are reviewed in Reference [76], but whether they are conserved in plants
remains to be tested. Interestingly, in Arabidopsis, an interaction between the CDT1 protein (a subunit
of the pre-replication complex involved in the initiation of DNA replication [28]) and DPB2 was
found [77]; this result is consistent with the role of Pol ε in the initiation of replication. However,
this interaction was never described in other eukaryotes and its role remains unclear.

According to phylogenetic analyses, two putative homologues of DPB3, DPB3-1 (NF-YC10, nuclear
factor-Y10) and DPB3-2 (NF-YC13), and one homologue of DPB4 (NF-YB11) were identified. The three
proteins are part of the NF-Y family, which are sequence-specific transcription factors harboring a
histone fold [78]. To date, there is no experimental data supporting the role of any of these factors
as subunits of DNA Pol ε, and the plant DPB3-1 protein appears to participate in the transcriptional
regulation of heat-stress genes [79,80]. How this latter function relates to DNA replication is unclear,
suggesting (i) that the DPB3-1 is a bona fide NF-Y transcription factor rather than a subunit of a
replicative polymerase or (ii) that it is a bifunctional protein that can participate in the two processes,
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like the human DPB4 subunit that is also part of the CHRAC (chromatin accessibility complex) [81].
Because the plant DPB3 and four subunits are not yet clearly identified, their function in DNA
replication remains to be studied.

ATG TAG

abo 4-2
12th intron abo 4-1

Gly 534 Arg
13th Exon

Til 1-4
Gly 472 Arg

12th Exon

esd 7-1
Gly 992 Arg

26th Exon

18 039 bp

2161 aa
POLB

exo DNA  PolB ε

DUF1714

POL2A

ATG TGA

2806 bp

pol α
Gly 1135 Arg

20th Exon

icu2-1
Arg 1272 Cys

24th Exon

1499 aa

exo DNA PolB

POLA1/ICU2

A)

B)

ATG TGA

polδ1/gis5
Ala 707 Val
18th Exon

7255 bp

1112 aa

POLD1

ATG TGA

2876 bp

pol 2-1
Gly 1170 Ala
splicing site

5th intron- 6th Exon

441 aa

OB PDE

C)

exo DNA PolB

POLD2D)

Figure 1. Hyphomorphic alleles of replicative DNA polymerases (Pols) in Arabidopsis thaliana. On all
panels, orange boxes represent exons, and the black line represents introns and regulatory sequences.
Below the gene structure, the schematic organization of the corresponding protein is shown. (A) The
AtPOL2A gene also known as TIL1/ABO4/ESD7 is annotated to be 18,039 bp, with 48 exons, accounting
for an open reading frame of 6818 bp. The til1-4 plants contain two G-to-A mutations: one at position
3927 (counting from the first ATG) in exon 12 and one at position 5005 in intron 14. The former mutation
changes a conserved Gly (position 472) into Arg [37]. The abo4-1 mutation changes Gly (position 534)
to Arg (G to A in position 4171 counting from the first putative ATG, in the 13th exon). The abo4-2 Salk
transfer DNA (T-DNA) insertion line (SALK 0963441) was also found to be viable: in the abo4-2 mutant,
the T-DNA is inserted at position 3972 (in the 12th intron), counting from the first putative ATG of
the genomic coding sequence [39]. In the mutant, messenger RNAs (mRNAs) lacking exons 12 and
13 (represented in yellow) are produced [50]. The esd7-1 mutation consists of a guanine-to-adenine
transition in the 26th exon, which substitutes Gly (G) with Arg (R) at amino-acid position 992, a residue



Int. J. Mol. Sci. 2019, 20, 4814 7 of 25

located in the catalytic domain [52]. (B) Structure of the POLA1/ICU2 gene and corresponding protein.
The POLA1 gene is 2806 bp long and encodes a 1499-amino-acid (a.a.) protein. The icu2-1 mutant
harbors a point mutation in a C/T transition in the 24th exon, at nucleotide position 6762 from the
initiation codon, which substitutes Arg (R) with Cys (C) at amino-acid position 1273 [38]. The polα
mutation consists of a guanine-to-adenine transition in position 5996 counting from the first putative
ATG within the 20th exon, which substitutes Gly (G) with Arg (R) at amino-acid position 1135, a residue
in the catalytic domain [41]. (C) Structure of the POLD1 gene and corresponding protein. The POLD1
gene is 7255 bp long and encodes a protein of 1112 amino acids. The gis5 mutation is located within
the polymerase domain in the 18th exon causing a C-to-T transition which leads to an Ala 707 Val
substitution [40]. (D) Structure of the POLD2 gene and corresponding protein. The gene is 2876 bp
long and encodes a 441 amino-acid protein. The pold2-1 mutation changes G to A at position 1170
counting from the first putative ATG, and the mutated nucleotide is located at a splicing site between
the fifth intron and the sixth exon [48].

4.2. DNA Polymerase α

In all eukaryotes analyzed to date, the Pol α–primase complex is formed by four subunits, all of
which are essential for cell survival. The largest subunit (POLA1/POL1) contains the DNA polymerase
activity and the POLA2/POL12 subunit has no known enzymatic activity, but performs a regulatory
role, likely linking the Pol α holoenzyme to components of the replication fork [82]. The other two
smallest subunits harbor the DNA primase activity (PRIM1 and PRIM2, also known as PRI1 and PRI2,
respectively) [83].

In plants, the first studies performed to characterize this enzyme were focused on its purification
and in vitro activity. DNA Pol α was purified from several plants such as maize, wheat, pea,
and cauliflower (reviewed by Bryant et al. [36]). The catalytic function of plant Pol αwas demonstrated
in vitro, revealing that it is capable of initiating the synthesis on single-stranded templates and of
extending primers on primed templates [36]. Later, the genome sequence analysis of Arabidopsis and rice
allowed the identification of the four putative subunits of the Pol α complex. The plant Pol α sequence
is conserved compared to its yeast and animal homologues [84]. In Arabidopsis, POLA1 (also known as
INCURVATA2/ICU2) encodes the catalytic subunit, and its inactivation leads to zygotic lethality [38].
To date, only two hypomorphic alleles for the POLA1 subunit were isolated: incurvata 2-1 (icu2-1)
and polα (Figure 1B [38,41,85]), and whether the genes encoding the three other subunits are essential
remains to be investigated.

4.3. Polymerase δ

Pol δ complex is a heterotetramer in fission yeast and animals (POLD1–4), but only three subunits
were identified in budding yeast (POLD1–3) [86]. The Arabidopsis genome encompasses four POLD
subunits (POLD1 to D4), whereas rice has two POLD4 genes [84]. POLD1 is the catalytic subunit with
polymerase and exonuclease activity, while the other subunits are involved in complex stabilization
and interaction with PCNA. Pol δ also contains an associated 3′–5′ exonuclease activity, which confers
a proofreading ability, and is highly stimulated by PCNA [28]. Plant Pol δ subunit expression in
proliferating tissues was reported in rice and maize [87,88]. In Arabidopsis, as in other eukaryotes,
the deletion of POLD1 and POLD2 genes is lethal [40,46,48]. So far, only one hypomorphic allele for
Arabidopsis POLD1 was isolated [40] and it harbors an amino-acid substitution in the polymerase
domain (Figure 1C). This pold1 mutant also known as gis5 (gigantea suppressor 5) is a thermosensitive
mutant, which displays early flowering and curly leaves when grown at 24 ◦C and is unable to complete
development at 28 ◦C, while these plants are identical to the wild type at 18 ◦C [40].

Recently, a mutation in POLD2 (pold2-1 mutant) was isolated [48]. This mutation changes a G to
an A at a splicing site between the fifth intron and the sixth exon (Figure 1D). Consequently, pold2-1
generates several forms of transcripts. Among them, four transcripts produce premature stop codons,
and one transcript misses 6 bp, which might result in the translation of a protein with altered function.
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Like the pold1 mutant, pold2-1 plants display early flowering and are much smaller than the wild
type [48].

The above-described data indicate that the subunit composition of replicative polymerases
is conserved in plants like in all organisms. In addition to the developmental defects caused by
impaired cell proliferation, one shared feature of the isolated mutants partially deficient for replicative
polymerases is enhanced homologous recombination (HR) in somatic tissues, and upregulation of
genes involved in DNA repair [39–41,46]. These cellular responses could be mere consequences of
impaired DNA replication. However, in other eukaryotes, Pol ε and α play a direct role in replicative
stress signaling (see below for details). The isolation of Arabidopsis hypomorphic mutants for these
polymerases allowed testing the conservation of this function in planta.

5. Role of Plant Replicative Pols in Replicative Stress Signaling

In yeast, Pol ε (and more specifically the Pol2 subunit) is involved in the activation of the S-phase
checkpoint upon replication defects such as replication fork stalling, collapse, or DNA damage [12].
Indeed, genetic analysis of various yeast mutants revealed that only the C-terminus of Pol2 that
harbors no catalytic activity is essential to cell viability, notably because it mediates DNA damage
response (DDR) signaling [12,89]. Pol ε is, thus, a key component of the DDR when progression of
the replication fork is hampered. Pol α is also involved in the DDR [90,91]; some pri1 mutants are
unable to slow-down S-phase progression in response to DNA damaging agents [13], and later studies
revealed that Pol α interacts genetically and physically with the DDR signaling machinery [91,92].
Recently, a more refined model emerged involving the activity of all three replicative polymerases in
replicative stress response activation, according to which the whole replication machinery would be
used to synthesize additional RNA/DNA primers and that the initial accumulation and elongation of
these primers at a stalled fork would trigger checkpoint activation [93].

The DDR is highly conserved between eukaryotes with some plant-specific variations that are
not detailed here as they were reviewed recently [94]. Activation of the replicative stress response
relies on the ATR kinase (ATM (ataxia telangiectasia mutated) and Rad3-related, also called “Mec1” in
yeast, [95]) that initiates a signaling cascade leading to cell-cycle arrest and DNA repair [94,96]. In yeast,
ATR/Mec1 activation is mediated via two independent pathways, one triggered by single-stranded
DNA (ssDNA) accumulation and the other requiring the C-terminal domain of Pol2a [12,97]. In plants,
major contributors to the DDR acting downstream of ATR are the SOG1 (Suppressor Of Gamma 1)
transcription factor, which is a master regulator of DNA repair and cell-cycle genes, and the WEE1
kinase, which inhibits cyclin-dependent kinases and stops cell-cycle progression [94].

The direct involvement of plant Pol α in DDR signaling was not investigated to date. However, we
showed that the plant DNA Pol ε plays a role in replicative stress sensing upstream of ATR, as observed
in budding yeast [49,50]. Indeed, the viability of abo4 mutants and, to some extent, of DPB2OE

mutants depends on the components of the DNA damage checkpoint ATR and WEE1 [50]. In addition,
abo4/esd7 plants are highly sensitive to MMS (methyl-methane sulfonate, an alkylating agent) [39]
and zeocin (a DNA intercalating agent causing DNA breaks), but insensitive to HU (hydroxy-urea,
an inhibitor of nucleotide synthesis that causes fork stalling) [50]. These results indicate that three
of the AtPOL2A hypomorphic alleles (abo4-1, abo4-2, and esd7-1) and excess accumulation of DPB2
trigger constitutive checkpoint activation by endogenous replicative stress, possibly by gumming up
replication. Nevertheless, it is worth noting that the til1-4 mutant also shows a prolonged cell cycle
during embryo development [37], but displays contrasting features in terms of sensitivity to genotoxic
agents, since it is hypersensitive to HU [50], indicating that the replicative stress response is not
constitutively active in this mutant. This atypical behavior compared to all other pol2A mutants may
be due to the fact that the mutation is within the endonuclease domain [37] and may, thus, affect the
protein function differently.

Enhanced HR or activation of the DDR, as well as synthetic lethality with mutations affecting the
replicative stress response, are expected consequences of DNA replication defects and are, therefore,



Int. J. Mol. Sci. 2019, 20, 4814 9 of 25

not sufficient to conclude that Pol ε plays a direct role in DDR signaling. Final confirmation of the direct
role of AtPOL2A in replicative stress sensing came from the observation that AtPOL2A knock-down
plants do not display constitutive activation of the replicative stress checkpoint but, on the contrary,
are hypersensitive to HU [50]. Detailed genetic analysis revealed that the DNA Pol ε-dependent
pathway involves ATR, SOG1, and WEE1 to activate the replicative stress response; ATR and WEE1,
but not SOG1 or ATM (the DDR kinase involved in DSB sensing), are required for the viability of
the abo4 mutants, and their tolerance to HU is at least partly mediated by SOG1 [50]. Altogether,
these results indicate that the plant Pol εmay be directly involved in replicative stress sensing upstream
of ATR, triggering checkpoint activation via the two SOG1-dependent and independent pathways
previously described, leading to the induction of cell-cycle arrest and DNA repair [96,98]. The model
for Pol ε contribution to the plant DDR is shown in Figure 2. How it functions at the molecular level in
plants remains to be established. In yeast, the sensor role of DNA Pol ε likely involves its ability to
interact with the checkpoint protein Rad17 [99] and the mediator protein Mrc1/Claspin [100]. However,
this mechanism may differ in plants since Rad17 [101], but not claspin, seems to be conserved in
plant genomes.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 9 of 24 
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Figure 2. Model for Pol ε function in plant DNA damage repair (DDR). Pol εmay be directly involved in
replicative stress sensing upstream of ATR to trigger checkpoint activation via the two SOG1-dependent
and independent pathways, allowing the expression of genes involved in cell-cycle arrest, DNA repair,
and nucleotide biosynthesis. In parallel, WEE1 contributes to arrest the cell cycle. The activation of all
these mechanisms ultimately leads to fork stabilization and completion of DNA replication and cell
survival [49,50].
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6. Putative Roles of Replicative Polymerases in Somatic and Meiotic DNA Repair

In all eukaryotes, Pol ε and Pol δ also participate in different DNA repair mechanisms that require
long patches of DNA synthesis, such as base excision repair (BER), nucleotide excision repair (NER),
and DSB repair (reviewed in References [81,102]). In plants, the involvement of plant Pol ε and δ in DNA
repair remains to be directly investigated. Nevertheless, both Pol ε and Pol δ hypomorphic mutants
are hypersensitive to DSB-inducing agents [48,50]. In addition, the AtPOL2A gene is upregulated by
ATM in response to gamma irradiation [103], and was recently identified as a direct target of SOG1 [44].
Interestingly, DPB2 over-expression does not compromise DSB repair but, on the contrary, enhances
tolerance to DSB inducing agents such as zeocin [49]. This finding would imply that the stoichiometry
of the Pol ε complex [104] is less crucial for DNA repair than for DNA replication, possibly because it
does not require interaction with the full replisome. Consistently, in yeast, Dpb2 is not required for
Pol2A catalytic activity in vitro, although it improves its stability [105] and enhances the fidelity of
DNA replication [70].

Similarly, in rice, POLD1 is upregulated in response to ultraviolet (UV) treatment, indicating a
function in response to DNA damage in somatic cells [87]. POLD4 was also found to be upregulated in
response to bleomycin or gamma-irradiation [103,106], and only the POLD4 gene is a direct target of
SOG1. Interestingly, in human, two forms of Pol δ exist, Pol δ3 and Pol δ4; Pol δ3 is more abundant
during S-phase due to specific degradation of p12 (the human POLD4), and Pol δ4 seems to be involved
in HR (reviewed in Reference [107]). This control of Pol δ activity could allow regulating HR during
DNA replication to avoid illegitimate recombination events. Whether the same mechanism operates in
plant cells remains to be tested, but the observation that POLD4 is a target upregulated in response to
DSBs in an SOG1-dependent manner argues for a conservation of the role of Pol δ during HR.

All plant replicative polymerases were also reported to play an important role during meiosis,
providing further evidence for their probable contribution to DSB repair; AtPOL2A mutation (abo4-2)
and meiosis-specific POL2A RNAi, as well as DPB2 over-expression, led to an extensive chromosomal
fragmentation during meiosis [50,51], and a similar phenotype was reported in hypomorphic Pol δ
and Pol αmutants [42,47]. In most of these cases, the meiotic DNA fragmentation was shown to be
largely dependent on SPO11-1 (SPORULATION11), which is the enzyme responsible for the formation
of DSBs required for the HR process driving chromosome pairing during meiotic prophase I [42,47,51].
The authors, therefore, concluded that these polymerases are required for the repair of programmed
DSBs. Although this finding is not surprising in the case of Pol δ and ε, it is unexpected for Pol α as it
is not required for HR, and its involvement in DSB repair is still debated [108]. How it contributes
to meiotic DSB repair in plants will, thus, require further investigation. It is also worth mentioning
that the spo11 mutation only partially rescues meiotic defects in hypomorphic DNA pol mutants and
DPB2OE lines [42,49,50]. In addition, the sog1 mutation partially rescued the fragmentation phenotype
of both DPB2OE and abo4-2 mutants [49,50], suggesting that the DNA fragmentation results at least
partly from the SOG1-dependent activation of programmed cell death (PCD), rather than of failure
to repair SPO11-dependent breaks. Interestingly, similar SPO11-independent meiotic defects were
reported in various mutants deficient for replisome subunits such as CDC45 RNAi lines and rpa
mutants [31,34], and POLE4/DPB4 subunit deficiency in mice [73] leads to p53-dependent embryonic
lethality, suggesting that activation of PCD in response to defects in DNA replication is a conserved
feature in all eukaryotes.

Finally, plant Pol α contributes to the stability of the genome by ensuring telomere maintenance.
In Arabidopsis, an impaired function of Pol α leads to shorter and more heterogeneous telomeres,
impacting their structure and maintenance [44]. In yeast, during telomere replication, telomerase and
Polα are recruited to the chromosome termini through the (CTC1–STN1–TEN1) complex. Telomerase
can catalyze the addition of telomeric repeats at the 3′ end of a telomeric sequence, and Pol α can start
the synthesis of the opposite strand to generate new complete telomeres (reviewed in Reference [109]).
Consistently in Arabidopsis, disruption of STN1 leads to telomeric defects similar to the ones observed
in icu2-1, supporting the notion that STN1 and Pol αmay act in the same telomere maintenance process



Int. J. Mol. Sci. 2019, 20, 4814 11 of 25

in plant cells. Interestingly, the stn1 pol α double mutant displays more severe developmental defect
and genome instability than each single mutant, suggesting that STN1 and Pol α can also function
separately in plant [44].

Overall, the data summarized above highlight the conserved role of replicative DNA Pols in the
maintenance of genome integrity. Interestingly, there is accumulating evidence that they also play a
crucial role in the replication of chromatin marks and, thus, in the maintenance of the epigenome.

7. Role of Plant Replicative Polymerases in the Maintenance of the Epigenetic Information

One striking observation about plant DNA polymerases is that most hypomorphic mutants
deficient for these enzymes were identified in genetic screens that were completely unrelated to DNA
replication. Indeed, the esd7 and pold1 (also known as gis5 for suppressor of gigantea 5) mutants
were isolated while searching for regulators of flowering time [40,52], while polα and pold2-1 were
isolated in a genetic screen aimed at identifying components of the transcriptional gene silencing
(TGS) machinery [41,48], and abo4 mutants were initially characterized for their increased sensitivity to
abscisic acid (ABA) [39]. Detailed analysis revealed that ABA sensitivity and defects in the control of
flowering time are also observed in Pol α mutants [43,45], and release of TGS was reported in Pol ε
mutants [39,110] (Table 2).

One possible explanation for these seemingly unrelated phenotypic defects could be that they
reflect the role of replicative Pols in the replication of chromatin marks. Indeed, during DNA
replication, chromatin is disrupted ahead of the replication fork, and the epigenetic information
must be restored behind the fork (Figure 3A), in order for chromatin marks to be inherited through
DNA replication [111,112]. Detailed genetic analysis of the abo4-1 and esd7-1 mutants revealed
that their early flowering phenotype is due to changes in the expression of key flowering genes,
as a consequence of defects on the deposition of the repressive histone mark H3K27me3 [39,52].
Likewise, Polα deficiency results in an early flowering phenotype [38,41] that was shown to
originate from loss of H3K27me3-dependent repression of several flowering-specific genes [38,43].
This mark is deposited by polycomb repressing complex (PRC) proteins [113]. Interestingly, AtPOL2A
interacts genetically with genes encoding proteins involved in chromatin dynamics such as LHP1
(LIKE-HETEROCHROMATINPROTEIN1), encoding a component of the PRC, and FAS2. The latter
encodes a subunit of the CAF-1 (chromatin assembly factor) complex, a histone chaperone involved in
chromatin packaging and DNA replication. The fas2 mutation suppresses the esd7-1 early flowering
phenotype, whereas the lhp1 mutation aggravates it [52]. The epistatic relationship established between
FAS2 and AtPOL2A indicates that, in the absence of a functional CAF-1 complex, gene de-repression
could not take place in esd7-1, suggesting that the CAF-1 complex acts downstream of AtPOL2A by
facilitating the assembly of nucleosomes on newly replicated DNA [52]. More recently AtPOL2A was
reported to interact both genetically and physically with PRC2 components such as CURLY LEAF (CFL),
the catalytic subunit, EMF (EMBRYONIC FLOWER), and MSI1 (MULTICOPY SUPRESSOR OF IRA1).
A domain of the C-terminal region of AtPOL2A mediates the binding to the different PRC2 components,
and this interaction is necessary for the proper recruitment of PRC2 to flowering gene loci such as FT
and SOC1, thereby regulating flowering time through the maintenance of the H3K27me3 mark on these
genes (Figure 3B [53]). This observation is consistent with the recent finding that polycomb-dependent
gene silencing is maintained through replication-coupled histone modification [114]. POLA1/ICU2
also genetically interacts with LHP1, CLF, and FAS1 [38], and deficiency in POLA1 results in reduced
LHP1 binding at some of its target loci [43]. Nevertheless, direct interaction in vivo between LHP1 and
Pol α catalytic subunit was not detected [43], and it, thus, remains to be determined whether plant
Pol α directly associates with chromatin modifiers like Pol ε, or whether the reported defects in the
maintenance of epigenetic marks are an indirect effect of disturbed DNA replication. In fission yeast,
the DNA Polα catalytic subunit physically interacts with proteins involved in genes silencing, and loss
of this interaction results in the de-repression of heterochromatin loci [115–117], suggesting that yeast
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Pol α directly contributes to the inheritance of chromatin marks, and that such a mechanism could be
conserved in plants.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 12 of 24 
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Figure 3. Roles of replicative DNA polymerases in the maintenance of epigenetic information.
In addition to replicating DNA, the three plant replicative DNA Pols are involved in the replication
of chromatin marks. (A) During DNA replication, chromatin is disrupted ahead of the replication
fork, and the epigenetic information must be restored behind the fork, in order for chromatin marks to
be inherited through DNA replication. (B) Hypomorphic mutants for replicative DNA polymerases
showing early flowering caused by de-repression of flowering genes, due to defects in the maintenance of
the inhibitory histone marks H3K27me for mutants of three polymerases [38–41,43,48,52,53]. In addition,
loss of Pol δ mutants also affects the active H3K4me mark [40].

In addition to the detailed analysis of the impact of replicative Pol deficiency on H3K27me3
deposition at loci controlling flowering time, there is some evidence that other chromatin marks are
also impacted in hypomorphic pol mutants; H3K4me3 levels are modified at flowering loci in Pol
δ mutants [40], transposable elements are re-activated in all replicative Pol mutants [39,41,48,110],
and POLA1 regulates TGS through the deposition of H3K9me2 [41]. Furthermore, the Arabidopsis
POL2A protein interacts with various chromatin modifiers aside of PRC components [53]. In fission
yeast, Pol2 interacts with the CLCR complex [118] that mediates H3K9 methylation [119], and this
interaction is crucial for assembly of heterochromatin during S-phase; disruption of the Pol ε complex
results in severe loss of H3K9me and heterochromatin silencing [118,120]. Very recently, the yeast
Pol ε complex and, more specifically, its accessory subunits DPB3 and 4 were shown to provide a
platform for the recruitment of chromatin modifiers and remodelers including the CLCR complex
during DNA replication, which in turn ensures the accurate inheritance of heterochromatin marks [120];
plant DPB3 and DPB4 may, thus, function in a similar way. Unlike Pol α and Pol ε, a role of Pol δ in
the replication of chromatin marks was not reported in other eukaryotes and could, thus, be unique
to plants. However, a dysfunctional Pol δ may disturb the entire replication machinery including
recruitment of chromatin modifiers, which may in turn influence the reproduction of chromatin
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states. In line with this hypothesis, a number of mutants deficient for replisome subunits are deficient
for TGS [121–123]. Further studies will be needed to dissect the molecular mechanisms via which
components of the DNA replication machinery participate in this process.

Although Yin and colleagues reported that exogenous ABA application induced DNA damage
accumulation in abo4 mutants and not in the wild type, suggesting that ABA hypersensitivity could also
result from DNA damage accumulation [39], it is tempting to speculate that the relationship between
Pol ε and α and PRC-dependent gene silencing may also account for the ABA sensitivity phenotype
observed in abo4 and icu2-1 mutants. Indeed, the lhp1 mutant was recently found to be hypersensitive
to ABA [124], suggesting that mis-regulation of ABA-responsive genes could be the primary cause of
the ABA sensitivity of Pol ε- or α-deficient lines. Interestingly, microarray analysis of icu2-1 revealed
that genes involved in salicylic acid (SA) biosynthesis and accumulation were also mis-regulated in
this mutant [45], again reminiscent of defects recently described in the lhp1 mutant [124].

Why Pol ε orαdeficiency specifically affects flowering time or stress responses is unclear. However,
only a few loci and chromatin marks were studied in these mutants. It is, therefore, possible that
other loci or chromatin marks are affected but were overlooked because they do not result in obvious
phenotypic modifications. We are, thus, missing a more global view of how replicative Pol deficiency
impacts the epigenome landscape in plants.

8. Future Directions for Replicative Polymerase Research

Overall, recent data regarding the roles of replicative polymerases highlight several common
features found in mutants deficient for either of them. These include reduced growth, increased HR
that likely reflects HR-mediated rescue of blocked forks, activation of the DDR and synthetic lethality
with DDR components involved in the replicative stress response, and defects in the maintenance
of chromatin marks. The above-listed phenotypes can be explained either by the negative effect of
the mutations on DNA replication per se, or by a more direct role of the analyzed proteins in the
altered processes. To date, there is some evidence for the direct contribution of plant Pol ε to DNA
damage sensing and chromatin mark replication [50,53], but the underlying molecular mechanisms
remain largely elusive. The main challenge in the years to come will, thus, be (i) to dissect the
respective role of each protein at the molecular level to understand which replicative polymerases
directly contribute to replicative stress signaling and how they perform this function since several
components playing this role in other eukaryotes appear to be missing from plant genomes, and (ii) to
improve our understanding of the mechanisms connecting the reproduction of histone marks to DNA
replication. Indeed, only the reproduction of the repressive mark H3K27me3 was really associated
with DNA replication [114], but the H3K27me1 mark was also proposed to be reproduced during DNA
replication because the histone methyl-transferases that deposit this mark bind to PCNA [125,126].
In yeast, it is clear that some marks are reproduced concomitantly with fork progression while others
are re-established later during the cell cycle [127]. Dissecting how this happens in plant cells and
how DNA polymerases contribute to the process will clearly be a key objective in the years to come,
especially to improve our understanding of stress memory in plants [128].

It is worth noting that the depletion or deficiency of DDR components or chromatin remodeling
machinery was found to be lethal in other eukaryotes but does not necessarily interfere with the viability
of plants, possibly due to their amazing developmental plasticity. Indeed, they can regenerate damaged
tissues through the reactivation of cell division in neighboring cells [129]. Such a mechanism could allow
them to cope with a defective DDR through the replacement of cells that are damaged. This feature
of plants, combined with the availability of various hypomorphic mutants, allowed in-depth genetic
analysis that would be difficult to perform in other models. For instance, genetic interactions between
replicative polymerases were reported; pol2a polα plants do not have additive effects on plant growth,
suggesting that both work in the same pathway [48,52]. By contrast, pold2-1 polα plants were smaller and
exhibited more severe growth phenotypes than single mutants, suggesting that the two polymerases
have additive effects on plant growth and development. Finally, the pold2-1 pol2a double mutant is
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phenotypically similar to pold2-1, indicating that POLD2 has an epistasis effect on Pol ε for controlling
plant development [48]. However, a synergistic effect was observed during meiotic recombination in
a POLD1 RNAi pol2a double mutant, suggesting that these polymerases have different roles in this
process [47]. These double mutants could be investigated in more detail to unravel the shared and
unique roles between the three DNA polymerases, whose study in other eukaryotes is limited.

9. Non-Replicative DNA Polymerases, Shared and Unique Functions

In all eukaryotes, non-replicative polymerases are more numerous than the replicative ones.
They fulfil two main functions: (i) they contribute to DNA repair independently of DNA replication,
and (ii) they allow DNA replication to proceed pass DNA lesions through a process called
translesion synthesis.

10. Role of Non-Replicative Polymerases in TLS

A huge diversity of DNA lesions has the potential to stop fork progression. These impediments
to DNA replication can be overcome in different ways. Firstly, DNA replication can be re-initiated
beyond the lesion, a mechanism that is particularly frequent on the lagging strand since its synthesis
is already discontinuous. PRIMPOL seems to play a critical role in this process in human cells [18].
One PRIMPOL homologue was recently identified in Arabidopsis, but it remains to be functionally
characterized [66].

Alternatively, replacement of the replicative polymerase by a TLS polymerase with a looser
catalytic site can allow the fork to progress through the lesion; this process frequently involves two
TLS polymerases, one allowing the synthesis of DNA opposite the lesion, and the other performing the
elongation of the DNA strand before the replisome switches back to the replicative polymerase [18].
In human, all non-replicative polymerases are involved in TLS, with Pol κ and ζ being specialized in
the extension step of the TLS, whereas the others perform the TLS reaction per se, with their diversity
allowing the cell to deal efficiently with a wide variety of DNA lesions [1]. Because their ability to
accommodate modified nucleotides in their catalytic site is the intrinsic propriety that allows them to
perform TLS, most of these polymerases are error-prone [1].

Compared to human, plant genomes encompass fewer putative TLS polymerases (seven vs.
13 in human, Table 2), but have at least one member of each DNA polymerase family. Because
DNA-damaging agents all generate fork-blocking lesions, it can be difficult to determine whether a
DNA polymerase is required for TLS, DNA repair, or both. However, a number of reports provide
evidence for the involvement of several different DNA Pols in TLS. One of the most common DNA
lesions occurring in cells is the oxidized base 7,8-oxoguanine (8-oxo-G) that is generated by reactive
oxygen species. Like in human, the Arabidopsis Pol λwas demonstrated to efficiently incorporate a C
opposite (8-oxo-G) in vitro [32]. Pol λ interacts with the PCNA2 protein that enhances its fidelity and
efficiency, further confirming the probable role of Pol λ during replication [32].

Other relatively common lesions are bulky adducts induced by UV. In Arabidopsis, rev3 mutants
that are deficient for the catalytic subunit of the Pol ζ are hypersensitive to UV exposure but show no
defect in the elimination of UV-induced lesions; by contrast, they show reduced BrdU incorporation into
DNA after UV exposure, suggesting that plant Pol ζ is a TLS polymerase [56]. Likewise mutants lacking
the REV1 polymerase or the accessory subunit of Pol ζ (REV7) were found to by hypersensitive to
various DNA-damaging agents [55]. Consistently, simultaneous inactivation of Pol ζ and RAD5, which
is involved in lesion skipping through template switching, resulted in extreme sensitivity of plants to
genotoxic stress [58]. Furthermore, UV treatment severely inhibits cell division and induces PCD in root
meristems of both Pol η and ζmutants, providing further evidence for their significant contribution
to TLS [130]. The respective roles of these TLS polymerases were confirmed by the observation that
rev7 and rev1 mutants show a reduced mutation rate after UV exposure, whereas the mutation rate
increases in Pol η-deficient mutants, indicating that Pol ζ and REV1 are involved in an error-prone
bypass mechanism, whereas Pol η is involved in an error-free pathway [54]. In addition, REV1 is
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a direct target of SOG1, providing further evidence for its role in tolerance to DNA damage [131].
Pol η and Pol ζ tightly cooperate for TLS and may usually be enough to complete DNA replication.
TLS by Pol η is activated as a first alternative to bypass the lesion; its function does not depend on
DDR kinases. By contrast, ATR appears to promote TLS by facilitating recruitment of Pol ζ and may
indirectly promote damage tolerance [59].

Plant genomes also encode homologues of Pol θ that is involved in both TLS and an alternative
non-homologous end-joining (NHEJ) pathway of DSB repair (see below) [1]. Unlike other mutants
lacking TLS polymerases that develop normally, tebichi mutants that are deficient for Pol θ display
severe developmental defects such as reduced growth, and altered leaf shape and meristem function,
likely due to a gap 2 (G2) arrest of the cell cycle [64]. Further genetic analysis of the Pol θ function
revealed that the G2 cell-cycle arrest observed in teb mutant is dependent on ATR, and that inactivation
of homologous recombination aggravates the developmental defects of teb mutants [63]. These findings
led to the conclusion that Pol θ is likely required for normal S-phase progression and accounts for most
of the TLS in the absence of externally applied stresses.

Thus, like other eukaryotes, plants possess a wide repertoire of TLS polymerases that are likely
recruited to specific types of lesions, although this was not systematically investigated. Surprisingly,
much less is known regarding the role of the non-replicative polymerases in DNA repair.

11. Role of Non-Replicative Polymerases in DNA Repair

In plants, like in all other eukaryotes, a large diversity of DNA repair mechanisms exists, most of
which involve the activity of one or several DNA pols, depending on the type of lesion that needs
to be repaired. These mechanisms were reviewed elsewhere [132] and are, therefore, be only briefly
summarized. Lesions affecting a single nucleotide such as apuric/apyrimidic (AP) sites, oxidized or
deaminated nucleotides, single-strand breaks, etc. are repaired through base excision repair (BER),
whereas bulky lesions induced by UV can be repaired through direct reversal or NER (a process that
also contributes to DNA demethylation) [132]. Both BER and NER leave a gap in the DNA that is
ultimately filled by a DNA polymerase. In the case of BER, this gap can be filled by the incorporation
of a single nucleotide (single-nucleotide or short-patch repair, SP) or a few nucleotides (long-patch
repair, LP) [132]. In human, LP repair is performed by the replicative polymerases Pol δ and ε, whereas
Pol β is the main gap-filling polymerase for the SP pathway of BER [1], but no homologue of this
enzyme was found in the Arabidopsis or other plant genomes. This could suggest that Pol δ and
ε are the only plant polymerases involved in BER. However, biochemical investigation of the BER
pathway using total extracts of plant cells indicated that the gap-filling activity is insensitive to the
replicative polymerase inhibitor aphidicolin, but sensitive to the Pol β-like polymerases inhibitor
2′,3′-dideoxycytidine 5′-triphosphate (ddCTP) [133]. This suggests that at least one non-replicative
polymerase is involved in BER in plants, but it remains to be identified. At the end of the NER process,
gap-filling can be performed in human either by Pol δ, Pol ε, or Pol κ [132]. One homologue of Pol
κ was described in Arabidopsis [62], and the corresponding gene is a direct target of SOG1 [131,134],
but it is not characterized functionally.

In addition to modified nucleotides that accumulate notably due to oxidative stress (e.g., 8-oxo-G)
or UV exposure (e.g., CPD), cells also have to deal with mismatches that can arise through replication
errors or deamination of methylated cytosines [132]. The mismatch repair pathway, MMR, involves
a sophisticated machinery that recognizes the mismatch, discriminates between the parental and
daughter strand, and excises the nucleotides on the daughter strand [132]. DNA resynthesis is thought
to be performed by Pol δ, although bioinformatics analyses using the STRING database [135] predict
that Pol ε interacts with the MMR machinery [136].

Another type of lesion is the formation of intra- or inter-strand crosslink. These lesions can be
skipped by the replisome through re-initiation downstream of the lesion and repaired after DNA
replication [18]. Pol ζ is clearly involved in the repair of all these types of lesions as it interacts
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genetically with several components of the repair machinery such as the MUS81 endonuclease that is
involved in the excision of the lesion [57].

Finally, plant cells also have to deal with DSBs that are considered as particularly dangerous
lesions since they can result in complete loss of genetic information. They can be repaired through HR
(especially when an undamaged template is available in the G2 phase of the cell cycle), non-homologous
end joining (NHEJ, which can be divided into classical and alternative NHEJ), and single-strand
annealing (SSA) [132]. Again, in plants, it is not clear how the labor is distributed between replicative
and non-replicative polymerases. As mentioned above, replicative polymerases all appear to play a
role in the repair of meiotic DBSs. In addition, mutants deficient for DNA Pol λ are hypersensitive
to DSB-inducing agents such as γ-irradiation or bleomycin [60]. Expression of Pol λ is high in
meristems and meiotic cells, and it is induced by a variety of stress conditions [137–140]. The protein
physically interacts with NHEJ components [61], further confirming its role in DSB repair. Consistently,
these mutants show reduced efficiency of T-DNA integration, a process that is also considered as using
the cellular machinery involved in DSB repair [60]. However, Pol θ was recently shown to be the main
DNA polymerase involved in T-DNA integration through alternative NHEJ, a DSB repair mechanism
in which minimal homology on a short sequence allows Pol θ to capture the single-stranded T-DNA
and use it as a template to repair a pre-existing DSB in the genome [65]; strikingly, T-DNA integration is
completely abolished in tebichi mutant, at variance with other mutants lacking DNA repair polymerases
in which frequency of integration was only reduced [60]. Pol θ is also an important player of DSB
repair in the absence of T-DNA as, in moss, its expression is induced by bleomycin-induced DNA
damage [141].

12. Organellar DNA Polymerases Are Involved both in DNA Replication and Repair

Due to their endosymbiotic origin, plastids and mitochondria have their own genome, which is
replicated by a dedicated machinery. The history of our understanding of organelle genome replication
is very interesting and was reviewed recently [142]. Based on what is described in bacteria, and because
of the evolutionary origin of organelles, organelle genomes were initially assumed to be circular, and to
be replicated through a rolling circle mechanism. This model is now abandoned, because circular DNA
is rare in organelles, and most of the organellar genome is actually found in the form of linear and
highly complex branched molecules [142]. In this context, organellar DNA replication was proposed
to be initiated through at least three mechanisms that likely co-exist: (i) recruitment of the replisome
through origin binding protein and subsequent double-helix unwinding, (ii) transcription-dependent
replication in which replisome recruitment is permitted by transcription-associated DNA unwinding,
and (iii) a recombination-dependent process initiated by single-strand annealing [142].

Whatever their relative importance, all these initiation pathways lead to the recruitment of the
organellar replisome. Like the nuclear replisome, it comprises the helicase, primase, and polymerase
activities, as well as single-strand DNA-binding proteins and proteins involved in the release
of mechanical constraints called gyrases. The mechanisms for organelle DNA replication were
reviewed recently [142,143], and we, therefore, only briefly describe them here. The organellar
replisome is relatively simple compared to its nuclear counterpart; the helicase and primase activities
are likely brought by a single polypeptide called TWINKLE that has a dual targeting to plastids
and mitochondria [144]. Likewise, photosynthetic eukaryotes possess one or two organellar DNA
polymerases, all of which are dually targeted to plastids and mitochondria [143]. Indeed, with the
exception of a few repair-related proteins, most enzymes involved in DNA metabolism are shared
between plastids and mitochondria [142]. The evolutionary origin of plant organelle DNA polymerases
is debated, since they appear to share more sequence identify with the E. coli polymerase I than with the
human Polγ protein involved in mitochondrial DNA replication; the authors, therefore, proposed to call
them POPs (plant organelle DNA polymerases) [143]. Arabidopsis, like all other angiosperms analyzed
to date, has two POP proteins called POL1A and POL1B or POPs [143]. Mutants lacking either protein
are viable, but display a reduction in the organellar DNA content, whereas double mutants are lethal,
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suggesting that POL1A and POL1B function redundantly to allow organellar DNA replication [67].
By contrast, although the maize genome also encompasses two dually targeted POPs, loss of only one of
them is sufficient to essentially abolish chloroplast DNA replication, while mitochondria genome copy
number is only mildly affected, indicating that the POPs may have specialized differently in various
plant species [145]. In Arabidopsis, only pol1b mutants show hypersensitivity to the gyrase inhibitor
ciprofloxacin that induces DSBs in organelles, as well as genetic interaction with the ssDNA-binding
proteins WHIRLY that are involved in DSB repair, indicating that it plays a more prominent role than
POL1A in organelle DNA repair [67]. This model is consistent with the more recent finding that the
two proteins differ in terms of fidelity, with POL1A showing an almost 10 times lower error rate
compared to POL1B [68]. Both POL1A and POL1B interact with TWINKLE in the yeast two-hybrid
system, and domains required for the interaction, as well as conserved amino acids likely involved
in this interaction, were mapped [66], further confirming that both polymerases can insert into the
replisome. Surprisingly, the same study revealed that twinckle null mutants are viable and show
no alteration of genome copy number [66]. This result indicates that another primase can function
in organelles. The authors listed a number of potential candidates including a newly identified
homologue of the human PRIMPOL protein that is involved in the maintenance of both nuclear and
mitochondrial genome integrity [1]. However, primpol single mutants are also unaffected for organellar
DNA replication, and further genetic analysis will be required to determine if these two proteins
function redundantly or whether other factors are involved.

Finally, contrarily to what is described for the nucleus where polymerase switching is required
for DNA replication to proceed past various DNA lesions, the organelle POPs are responsible for
both normal DNA replication and lesion bypass; both Arabidopsis POPs can efficiently replicate
DNA past apurinic/apyrimidic sites [69]. Thus, the mechanisms involved in the maintenance of the
organellar genome integrity involve a much more limited number of proteins than those protecting
nuclear genome integrity. Interestingly, the organellar genome copy number inside one cell can
vary drastically, as well as the integrity of these DNA molecules; for example, genome copy number
increases dramatically early in differentiating leaf cells, whereas it decreases in older leaves, while the
amount of damaged molecules increases, illustrating that the requirement for replication and repair
capacity of organellar DNA varies over time, as well as between cell types and tissues [142].

13. Concluding Remarks

Altogether, recent findings on plant DNA polymerases demonstrate the conservation of their
function compared to what is known in mammals or yeast. One limitation of the available data so
far is the paucity of biochemical studies that preclude the clear identification of each polymerase’s
activity. Indeed, most of our knowledge stems from the genetic analysis of mutants and tests of their
sensitivity to various genotoxins, all of which directly or indirectly induce several types of DNA
lesions. These kinds of approaches do not allow discriminating between TLS or DNA repair activities,
or pinpointing the specific type of damage handled by a given polymerase. Future work would, thus,
require developing more biochemical assays to obtain a full picture of each polymerase’s function.

Another promising direction for future research will be to consider the replication and repair
process of chromatin as a whole instead of focusing only on DNA. Indeed, recent findings provide
evidence for the role of the replication machinery in the maintenance of chromatin marks, but deeper
analyses are needed to dissect the molecular mechanisms involved, and more specifically to determine
which DNA replication complexes play a direct role in the replication of chromatin states. Likewise,
DNA damage signaling and DNA repair both modify chromatin locally, and how the epigenetic status
of the locus is restored after DNA repair is still largely unknown. This issue is emerging in the animal
field, but receives little attention in plants, opening new research avenues for the years to come.
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