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External beam radiotherapy is indicated in approximately 50-60% of human cancer
patients. The prescribed dose of ionizing radiation that can be delivered to a tumor is
determined by the sensitivity of the normal surrounding tissues. Despite dose
intensification provided by highly conformal radiotherapy, durable locoregional tumor
control remains a clinical barrier for recalcitrant tumor histologies, and contributes to
cancer morbidity and mortality. Development of target-based radiosensitization strategies
that selectively sensitizes tumor tissue to ionizing radiation is expected to improve
radiotherapy efficacy. While exploration of radiosensitization strategies has vastly
expanded with technological advances permitting the precise and conformal delivery of
radiation, maximal clinical benefit derived from radiotherapy will require complementary
discoveries that exploit molecularly-based vulnerabilities of tumor cells, as well as the
assessment of investigational radiotherapy strategies in animal models that faithfully
recapitulate radiobiologic responses of human cancers. To address these requirements,
the purpose of this review is to underscore current and emerging concepts of molecularly
targeted radiosensitizing strategies and highlight the utility of companion animal models for
improving the predictive value of radiotherapy investigations.
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INTRODUCTION

Radiotherapy is instrumental in treating many cancer types and can be used in curative intent
treatments alone or in combination with surgery, chemotherapy, immunotherapy, and hormone
therapy. In the setting of advanced cancer, radiotherapy can be used to stabilize and provide analgesia
to patients, such as in the management of skeletal metastasis. Overall, it is estimated that external
beam radiotherapy is indicated in approximately 50-60% of human cancer patients (1, 2). Owing to
the diverse utility of radiotherapy in curative intent protocols or palliative settings, a significant
number of cancer patients can benefit from new strategies that improve radiotherapy effectiveness.
Technological innovations over the last few decades have improved radiotherapy efficacy by more
precise deposition of radiation energy into tumorous lesions, while decreasing exposure of the normal
surrounding tissue (3). Radiotherapy has also been successfully combined with chemotherapy, termed
chemoradiotherapy, and serves as first-line treatment for many human cancers including head and
neck cancer, brain cancer, and lung cancer (4). Chemoradiotherapy affords spatial cooperation, with
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radiotherapy directed at the primary tumor site and chemotherapy
targeting metastatic cancer cells. Certain chemotherapeutics can
also enhance the sensitivity of cells to radiotherapy, and this
radiosensitization effect has become more leverageable with the
ability to provide highly conformal radiotherapy. Despite these
advancements, chemotherapy-induced radiosensitization is
constrained by normal tissue toxicity within the irradiated field.

With intent to improve radiotherapy responses, considerable
focus has been to identify mechanistic and specific molecular
targets to sensitize tumor tissue to radiotherapy. The clinical
success of targeted radiotherapy is dependent on a thorough
understanding of molecularly-driven radiobiologic responses,
detailed preclinical investigation and appropriate clinical trial
design. Despite recognizing these necessary benchmarks, many
targeted radiotherapies end in disappointment, failing to provide
favorable outcomes in clinical trials. In general, the failures
observed in oncology clinical trials suggests the need to improve
molecular target evaluation and standard preclinical modeling
systems. This review will highlight several targets for
radiosensitization, the necessity of appropriate in vivo modeling
systems, and emphasize key qualities of preclinical animal models
that would be expected to increase the predictive value of
investigations involving radiotherapy.
PERTURBING DNA DAMAGE RESPONSE
AND DNA REPAIR

Every cell within the body experiences an astonishing degree of
genotoxic stress each day (5), threatening genomic integrity and
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risking the development of cancer. The DNA damage response
(DDR) is a collection of intricate and evolutionary conserved
signaling pathways that are essential to detect sites of DNA
damage and facilitate DNA repair (6, 7). The DDR, when
activated, halts cell cycle progression and allows for DNA to be
effectively repaired, preventing the transfer of altered DNA to
daughter cells. When DNA damage is severe and cannot be
faithfully repaired, the DDR induces cell death through
apoptosis. Ionizing radiation (IR) damages many biomolecules
within cells, with DNA damage being the most notable link to
radiation-induced cytotoxicity (Figure 1A). The DNA damage
induced by IR includes base damage and single strand breaks
(SSBs) that are repaired by the base excision repair (BER) and
single strand break (SSB) repair pathways, respectively. The most
severe forms of DNA damage induced by IR are double strand
breaks (DSBs), which may be repaired through homologous
recombination (HR) or non-homologous end joining (NHEJ).
Cell survival following irradiation is dependent on the function
of sensor, mediator, transducer, and effector molecules of the
DDR, and increased sensitivity to ionizing radiation has been
documented in people with germline mutations of the DDR
proteins (Figures 1B, C) (8). This clinical observation has led to
the development of targeted therapies that perturb the DDR,
with the goal of sensitizing tumor cells to irradiation and
improved radiotherapy efficacy. With defective DDR, cells
progress through the cell cycle with damaged DNA, with the
segregation aberrant chromosomes leading to mitotic
catastrophe and ultimately cell death.

Inhibiting the function of molecules operative in the DDR,
such as ataxia telangiectasia and Rad3-related (ATR), ataxia
A

B D

C

FIGURE 1 | The DNA damage response and DNA repair. (A) Ionizing radiation results in DNA base damage, single-strand breaks, and double-strand breaks that
are repaired using base excision repair (BER), single-strand break repair (SSBR), or double-strand break repair (DSBR), respectively. The types of DSBR include non-
homologous end-joining (NHEJ), which can occur through all phases of the cell cycle, or homologous recombination (HR), which requires cells to have completed
synthesis phase. (B) Table of DNA repair disorders (gene deficiencies) that are associated with clinical radiation sensitivity, and (C) cell survival curves of normal cells
and cells with such DDR/DNA repair deficiency. Cells with defective DDR/DNA repair pathways are more sensitive to radiation injury, as exemplified by a narrow
shoulder region of the survival curve and lower radiation dose to achieve lethality. (D) Cell survival curves highlighting the effect of targeted strategies directed at
inhibiting the “back-up” repair pathway. An example of doubly deficient cells could be BRCA1/2 deficient tumor cells (loss of DSBR) and selective PARP inhibition
(loss of SSBR).
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telangiectasia mutated (ATM), and DNA-dependent protein
kinase (DNA-PK), have successfully sensitized cancer cells to
ionizing radiation (9–12). Blocking DNA repair increases DNA
damage in irradiated cells leading to increased cytotoxicity.
Intuitively, the non-selective perturbation of the DDR would
increase the radiosensitivity of tumor cells and normal tissues
alike. Consequently, any indiscriminate increase in sensitivity of
normal tissue would preclude improvement in therapeutic index
and likely result in dose limitations of radiotherapy and the
resultant radiotoxicity profile may limit clinical utility. Even
though the DDR is not specific to tumor cells, exploitable
mechanisms exist to selectivity sensitize tumor cells compared
to normal surrounding cells. One way to target tumor cells is by
leveraging their rapidly dividing nature and considering the
mechanism of DSB repair. HR is a highly accurate DSB repair
pathway, however this process requires a sister chromatid to
serve as a template to repair the DNA damage. Therefore, tumor
cells that are in the S or G2 phase of the cell cycle can attempt to
repair radiation-induced DSBs by HR (13). Owing to the rapidly
dividing nature of cancer cells, inhibition of HR is expected to
differentially sensitize tumor cells more so than normal tissues
that are not rapidly dividing.

More sophisticated and selective targeting of tumor cells can be
achieved by performing strategic molecular profiling, highlighting
specific targets of the DDR and DNA repair pathways to enhance
the radiosensitivity of tumor tissues. Impaired cell cycle regulation
is a common feature of cancer and most often exemplified by
mutated or altered regulatory status of p53, which hampers the
tumor cells’ ability to respond to DNA damage. In cells with
functional p53, DNA damage results in G1/S checkpoint
activation and arrest; allowing time for DNA damage to be
faithfully repaired prior to DNA synthesis, and preventing
accumulation of DNA damage and its mutagenic consequences.
In p53 deficient tumor cells, the G1 checkpoint is not activated,
and chromosome replication is initiated despite the existence of
DNA damage. With the cell cycle continuing unabated, inhibition
of SSB repair (such as PARP inhibition) would ultimately result in
augmented DSBs in tumor cells as the replication fork meets the
sites of SSBs (14). Additionally, similar to synthetic lethality in
which a “doubly deficient” cell is lethal, tumor cells that have
doubly perturbed SSB and DSB repair pathways are expected to
suffer greater DNA damage following irradiation (Figure 1D).
Underscoring these vulnerabilities, it has been demonstrated that
cytotoxicity generated in tumor cells with SSB repair inhibition
and subsequent increase in DSB formation is exaggerated in
tumors already deficient in HR (such as BRCA1/2 or RAD51
mutations) (15, 16). With recognition of these co-dependent
pathways, molecular profiling can allow for the rational selection
of PARP inhibition strategies for tumors identified to have G1/S
checkpoint disturbances and deficient DSB repair pathways.
Alternatively, targeted therapies perturbing the G2/M
checkpoint can be rationally selected when tumor cells are
deficient in the G1/S checkpoint. Cells lacking a functional G1/S
checkpoint rely more heavily on other checkpoints to avoid
premature mitotic entry and segregation of mutated
chromosomes. Checkpoint kinase 1 (Chk1) is an essential
Frontiers in Oncology | www.frontiersin.org 3
protein in G2 checkpoint activation (17, 18), and the disruption
of the ATR-Chk1 axis can force checkpoint deficient tumor cells to
proceed through the cell cycle harboring lethal DNA damage
caused by IR (11, 19), with consequent activation of cell death
programs. Differentially, normal tissues in the irradiated field, with
normal G1/S checkpoint function, would be spared from apoptotic
pathway activation.

Drawing upon analogous strategies used to identify druggable
targets that mitigate the development of chemotherapy
resistance, the targeted disruption of molecular radioresistance
mechanisms can serve as a synergistic avenue for improving
radiotherapy efficacy. Enhanced DNA repair mechanisms may
allow tumor cells to resist injury by IR. Overexpression of factors
involved in NHEJ (20–23) and HR (24, 25) have been
documented in various cancers types, though pan-inhibition
strategies to disrupt NHEJ and HR responses may hinder DSB
repair in tumor cells and normal tissue leading to a narrow
therapeutic window. Similarly, AP endonuclease 1 (APE1), a
protein traditionally implicated in BER, has been shown to be
overexpressed in tumor tissues compared to normal cells (26).
The basis of developing APE1 inhibitors has been to overcome
the repair capacity following genotoxic treatment. This is
illustrated by the association of nuclear APE1 overexpression
in head and neck cancer with poor clinical outcome and
resistance to IR (27). More specific radiosensitization has been
described for tumors overexpressing POLQ (also known as
POL), a DNA polymerase that is error-prone and appears to
provide a survival advantage for some cancers. POLQ
overexpression has been shown to be a negative prognostic
indicator in human cancers, including breast cancer (28, 29)
and ovarian carcinomas (30). POLQ serves a role in end-joining
of DSBs, separate from the canonical NHEJ described above.
This alternative-end joining [also known as error-prone
microhomology-mediated end-joining (MMEJ)] directed by
POLQ occurs in cells when components of the canonical
NHEJ are absent or fail to recognize the sites of DSBs (31).
Intriguingly, POLQ has RAD51 binding motifs that hinder HR
and a synthetic lethality relationship exists between HR and
POLQ-mediated repair (30). Therefore, POLQ inhibition
strategies for tumors with POLQ overexpression and deficiency
in HR are expected to sensitize tumor cells to radiotherapy while
sparing normal tissue.
MODULATING SIGNAL
TRANSDUCTION PATHWAYS

Cells possess signaling pathways that govern cell survival,
growth, and proliferation. Signals may be received at the cell
surface, or may arise intracellularly, and the response follows a
cascade of events in the cytoplasm and nucleus of the cell.
Signaling pathways are often dysregulated in cancer cells and
these aberrant pathways have been investigated for targeted
therapy and the development of personalized medicine. Key
signaling pathways harboring potential targetable options to
improve radiotherapy response include the PI3K-AKT, MAPK,
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and NFĸB pathways. A common theme among these pathways
is their dysregulated activation favors apoptosis resistance in
irradiated cells (32–34). Interestingly, several signal transduction
pathway disturbances are associated with DNA repair
mechanisms and will be discussed in each section.

PI3K-AKT Pathway
The PI3K-AKT pathway is traditionally known as a cell survival
pathway, though it also plays a role in cell growth and
proliferation. In this pathway, Ras phosphorylates and activates
PI3K leading to the formation of PIP3 on the inner leaflet of the
plasma membrane. AKT recognizes PIP3 and ultimately
becomes phosphorylated, activating its kinase function. This
pathway can be dysregulated by multiple different mechanisms,
and tumor cells with activating mutations in Ras are
radioresistant as a consequence of PI3K-AKT pathway
activation (35, 36). Alternatively, the loss of PTEN function
(negative regulator of PI3K), PI3K activating mutations, and
overexpression of receptor tyrosine kinases (such as EGFR) are
other ways the PI3K-AKT pathway can be overactivated, leading
to radioresistance (37). While the mechanisms by which
inhibitors of the PI3K-AKT pathway promote radiosensitivity
remain to be fully elucidated, existent evidence suggests that
DNA repair is impaired following pathway inhibition, and
renders cells more sensitive to IR (38).

Translating these foundational radiobiologic investigations to
clinical practice, PI3K inhibition in a human breast cancer study
resulted in HR deficiency by downregulating BRCA expression
(39). This led to proposing the dual inhibition of PI3K and PARP
as a synthetic lethality approach. Furthermore, tumors with loss
of function mutations of PTEN have reduced HR capability,
associated with reduced RAD51 expression, also suggesting the
utility of PARP inhibitors (40). The dual inhibition of RAD51
and PARP sensitized tumor cells with wild type PTEN,
confirming this as a targeted strategy (41). As mentioned
above, cells doubly deficient in SSB and DSB repair are
expected to suffer greater DNA damage following irradiation.

In addition to the activation of the PI3K-AKT by EGFR,
ionizing radiation can cause EGFR, without activating its kinase
domain, to be imported into the nucleus where it can directly
bind and activate DNA-PK leading to DSB repair by NHEJ (42,
43). Interestingly in laboratory studies, cells pretreated with an
antibody directed against EGFR (cetuximab) inhibited nuclear
translocation and successfully increased their radiosensitivity
(43). This unique nuclear action of EGFR suggests that
tyrosine kinase inhibition (TKI) may not be sufficient to
radiosensitize tumors with EGFR overexpression and other
proteins required for EGFR translocation into the nucleus
should be furthered explored as druggable targets (44).

MAPK Pathway
In the MAPK pathway, ligand binding to a receptor tyrosine
kinase (RTK) leads to a series of phosphorylation events from
Ras! Raf!Mek! Erk1/2, which then results in the activation
and production of transcription factors (inclusive of Fos and Jun)
that stimulate cell growth and proliferation. There is conflicting
evidence about the significance of the MAPK pathway in
Frontiers in Oncology | www.frontiersin.org 4
modulating radiotherapy response, with some evidence
suggesting no role of the MAPK pathway (35), whereas other
reports suggest overactivation of this pathway appears to regulate
cell survival by modulating DSB repair mechanisms. Erk has
been described to be a positive regulator of ATM, and thus
increases DNA repair ability (45). Moreover, both NHEJ and HR
repair mechanisms can be increased in tumor cells with apparent
MAPK pathway activation (46, 47); and therefore inhibition of
aberrant MAPK pathway activation in tumor cells may decrease
their DNA repair ability and improve radiotherapy efficacy.

NFkB Pathway
The nuclear factor-kappa B (NFkB) signaling pathway plays
critical roles in inflammation, immune function, and has
implications in the development and progression of cancer (34).
(NFkB) is a transcription factor that is negatively regulated by
(IkB). In the absence of signaling, IkB binds to and retains (NFkB)
in the cytoplasm, preventing its nuclear translocation and
transcriptional activity. Following stimulation, (IkB) can be
phosphorylated (through the action of IKK) marking it for
destruction, and (NFkB) is released and enters the nucleus to
activate various target genes. (NFkB) leads to the expression of
anti-apoptotic proteins including Bcl-2 and inhibitor of apoptosis
proteins (IAPs) and this effect along with concurrent mitogenic
signaling highlights the ability of this pathway to contribute to
cancer pathogenesis. IR was previously found to increase the
signaling of this pathway as a protective response, making it a
prime target in radiosensitization strategies (48). Multiple
investigations have shown improved radiotherapy responses
following (NFkB) signaling inhibition (49–51). Additionally, the
(NFkB) pathway may be activated and thus contribute to
radioresistance through the action of other aberrant signaling
pathways, including the PI3K/AKT. Blocking the cooperative
activity of these converging pathways may provide an alternative
strategy of regulating (NFkB) signaling (52).

Other Signaling Pathways
While the mechanisms remain to be fully elucidated, other
signaling pathways commonly dysregulated in cancers may be
targets of radiosensitization strategies. (TGFb) exerts pleiotropic
and complex actions in cancer cells; however, there is evidence
that (TGFb) inhibition can impair DDR, possibly through
reduction of ATM kinase activity (53). Pathways often
associated with cancer stem cell properties, including NOTCH
and Wnt/b-catinin, have also been targets of radiosensitizing
strategies (54–57). It should be expected that novel mechanisms
to modulate key signaling pathways will be discovered as the
intersection of cancer and radiation biology continue to expand
through ongoing and future research efforts. As an example,
increased knowledge of the molecular pathways that are involved
in the response to hypoxia have revealed the role of the unfolded
protein response (UPR). Under hypoxic conditions, which is
common in tumors, the UPR is activated and this in turn
enhances autophagy allowing cells to better cope with hypoxic
stress (58). Therefore, inhibitors of the UPR or autophagy render
tumor cells more radiosensitive by decreasing their hypoxic
tolerance (58, 59).
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MODIFYING THE TUMOR
MICROENVIRONMENT

Research targeting tumor cells directly has traditionally served as
the cornerstone strategy for improving radiotherapy response.
This approach may be in part attributed to the ease of
performing in vitro experiments and highly manipulatable
murine models. However, over the last few decades, a broader
horizonal view for improving radiotherapeutic outcomes has
been realized based upon the understanding that tumors are
complex tissues containing multiple cell types that participate in
heterotypic interactions. These scientific revelations now
recognize the importance of the tumor microenvironment
(TME) in cancer treatment strategies. Figure 2 provides an
overview of tumor microenvironmental targets, including
vasculature, stroma, and the immune system. By reviewing
these topics, awareness can be heightened regarding the
myriad of microenvironmental targets that can be leveraged
for improving anticancer radiotherapy responses.

Vascular and Hypoxia Effects
The most extensive investigation of the TME revolves around
tumor vasculature and hypoxia. Intra-tumoral hypoxia
dynamically evolves during tumor growth and the distribution
of hypoxia is determined by the distance to the nearest perfused
capillary, the interstitium composition, and oxygen consumption
by cells. These factors contribute to diffusion-limiting, or chronic
hypoxia. Another form of hypoxia in tumors, referred to as
perfusion-limiting or acute hypoxia, occurs as a consequence of
having haphazard and abnormal structure of vasculature.
Hypoxia occurs frequently in solid tumors and hypoxic cells
within tumors are up to three-fold more radioresistant (60, 61).
The lack of oxygen reduces the production of reactive oxygen
species (ROS) following IR, ultimately decreasing radiation-
induced DNA damage and consequent cancer cell death. In the
Frontiers in Oncology | www.frontiersin.org 5
absence of robust ROS generation, the induction of sublethal
damage may then contribute to the tumor cell genomic
instability leading to additional radiotherapy resistance.
Furthermore, the degree of hypoxia has been shown to
negatively influence prognosis and radiation response in
multiple human cancers, including head and neck (62–64),
uterine (65, 66), cervical (67), and prostate cancer (68). The
association of hypoxia and prognosis serves as the foundation for
investigating underlying mechanisms of hypoxia-mediated
radioresistance and guides the development of targeted
treatments. The strategic targeting of the hypoxic response
intuitively appears to be selective to tumors, given that hypoxia
is not a normal physiologic limitation in healthy non-
cancerous tissues.

In response to hypoxia, cells stabilize hypoxia inducible factor
(HIF)-1a through decreased activity of prolyl-4-hydroxylases
(PDH), which regulates HIF-1a’s half-life. PDH functions to
hydroxylate proline residues on HIF-1a in normoxic conditions,
allowing it to be recognized by the tumor suppressor protein Von
Hippel-Lindau (VHL). VHL ubiquitinates the hydroxylated form
of HIF-1a, marking it for proteosomal degradation and
preventing its action. The stabilized HIF-1a under hypoxic
conditions binds HIF-1a and the heterodimer acts as a
transcription factor, binding to hypoxia responsive elements
(HRE) and increases the transcription of target genes (69). It is
worth mentioning that HIF-1a levels may also be increased in
cancer cells through overactivation of signaling pathways
(oxygen independent mechanism), including PI3K/AKT and
MAPK, or through loss of VHL (70, 71).

One of the many different target genes upregulated by HIF-1a
is vascular endothelial growth factor (VEGF). VEGF is a ligand
for a RTK (VEGFR) on the surface of cells. In the case of
endothelial cells, VEGF signaling promotes survival and
proliferation leading to angiogenesis. Tumors must build a
vascular network to provide nutrients and oxygen to permit
FIGURE 2 | Microenvironmental targets for radiosensitization strategies. CAF, cancer associated fibroblast; ECM, extracellular matrix; TIL, tumor infiltrating
lymphocytes; NK, natural killer; MP, macrophage; DC, dendritic cell.
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growth. Given the dependence of oxygen for radiation-induced
ROS generation, it seems counterintuitive that inhibiting the
VEGF signaling pathway would result in an improved antitumor
effect when combined with radiotherapy. In fact, evidence
suggests that inhibiting angiogenesis in preclinical models
results in an increase in the oxygenation of tumors (72–74).
Mechanistically, this paradoxical response has been linked to
antiangiogenic vascular pruning effects (75), which essentially
eliminate the aberrant tumoral microvasculature resulting in a
net increase in tumoral oxygen concentration, with consequent
increased oxygenation status improving radiotherapy responses.
In addition to increasing oxygenation of the tumor and
radiosensitization, this microvascular effect may also improve
tumor response to systemic treatment by improving perfusion
and enhancing drug delivery.

This notion has led to the concept of normalizing tumor
vasculature to improve combination therapies (76), which
remains an active area of study. Numerous strategies have been
explored to mitigate VEGF signaling, including the development
of blocking antibodies, “trapping” fusion proteins, and TKIs (77).
The effects of these antiangiogenic strategies are somewhat
transient given redundancy of angiogenic peptides and the
clinical phenomena known as “rebound activation”. As such,
hurdles to improve the clinical success of this combination
strategy, including the optimal timing of antiangiogenic
therapy in relation to radiation and evaluating other inhibitors
playing a role in angiogenesis, such as inhibiting downstream
effectors of VEGF signaling, remain to be fully evaluated (77). In
response to antiangiogenic treatment, tumor cells have been
shown to imitate tumor blood vessels. This process has
been termed vascular mimicry and a review defines molecules
and signaling pathways involved in this angiogenic-like
behavior (78). The role that vascular mimicry has on
radiotherapy response has not been well established; however,
a glioblastoma investigation revealed that glioblastoma cells
participate in tumor vasculature formation and contributes to
radioresistance in a preclinical murine model (79). Last,
vasculogenesis is an alternative mechanism of tumor vascular
formation that appears to be driven by tumor hypoxia.
Vasculogenesis involves the formation of tumor vasculature
from cells primarily derived from the bone marrow (80). HIF-
1a leads to the expression of CXCL12 in the TME, which acts as a
chemotactic factor for bone marrow derived cells (BMDCs).
Vasculogenesis has been thought to be a critical step to promote
tumor growth following radiotherapy and its specific inhibition
effectively prevented local tumor recurrence in a preclinical
murine model (81).

Interestingly, HIF-1a activity increases following radiotherapy
as a result of tumor reoxygenation and the formation of
reactive oxygen species. The resulting increase in HIF-1 target
gene expression has been shown to promote endothelial
cell radioresistance, and HIF-1a inhibition enhanced radiotherapy
response due to enhanced vascular destruction (82). This suggests
HIF-1a blockade strategies can promote radiosensitization
through anti-vascular effects (83). This is not the only role HIF-
1a plays in regulating tumor response to radiotherapy. Deletion of
Frontiers in Oncology | www.frontiersin.org 6
HIF-1a has sensitized cancer cells to radiotherapy, and this
suggests HIF-1a promotes radiation resistance in a cell
autonomous manner (84). The targeting of non-malignant
cells within the TME, such as the tumor vasculature and cells
involved in angiogenesis or vasculogenesis, has the distinct
advantage of uniform targetability compared to tumor tissues
that are genomically unstable and heterogeneous in nature.
Nevertheless, it is expected that further investigation of
additional HIF-1 target genes [reviewed in (70)], such as
those involved in cell survival, metabolism, ROS modulation,
and apoptosis will identify more targeting strategies for
intrinsic tumor cell radiosensitization.

Stromal Effects
Representing an interesting and underdeveloped field is the
influence of radiotherapy-induced tissue stiffness on tumor cell
biology. Cells are continuously exposed to physical forces
and they respond by modifying their own behavior and remodel
the surrounding environment (85). Such “outside-in” signaling
circuits operative in cancer cells and their immediate surroundings
highlight the interfacial connectivity that exist between the
extracellular matrix (ECM) and intracellular signaling responses.
A review discusses ECM remodeling within tumors and the
mechanisms whereby tumor stiffness can modulate tumor cell
proliferation, migration, and invasion (86). Tumor stiffness, or
rigidity, is determined by the composition of extracellular matrix
(ECM) components. Central to the production of ECM
components are cancer-associated fibroblasts (CAFs) and TGFb
signaling. Radiotherapy induces TGFb signaling and a review
discusses the action of this multifaceted cytokine in terms of
radiotherapy response (87). TGFb has been identified as a major
contributor of fibrosis, or abnormal deposition of collagen and
other extracellular matrix components. Therefore, instances
where locoregional treatment is not curative, the alteration of
ECM caused by radiotherapy may contribute to a more
malignant phenotype. Proposed targets to mitigate the process
of radiation-induced stiffening include inhibiting TGFb signaling
pathways and other processes leading to the activation of CAFs,
including other cytokines within the TME. Limiting radiation-
induced tumor stiffness may not only favorably alter tumor
biology, but could also have the added benefit of enhancing
drug delivery to the TME and may limit morbidity or altered
quality of life that some patients experience following
radiotherapy treatment.

Immunological Effects
Modulating the immunologic responses of radiotherapy is of great
interest as recent investigations have not only shown improved
locoregional control, but also systemic effects that result in
clinically meaningful anti-cancer immune activities. The
systemic effect, or radiation-induced regression of cancerous
lesions distant from the primary site of radiotherapy, is referred
to as the abscopal effect, and antitumor immune cell activation is
central to this phenomenon. Irradiated cancer cells release their
tumor antigens that may then be taken up by antigen presenting
cells (APCs) and be presented to effector T cells. In a form of cell
October 2021 | Volume 11 | Article 768692
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death referred to as immunogenic cell death, irradiated tumor cells
display and liberate molecules (damage associated molecular
patterns, DAMPs) to enhance this APC activation. The key
immune activating molecules liberated or displayed by tumor
cells during radiation-induced immunogenic cell death include
calreticulin, high mobility group box protein 1 (HMGB1), and
ATP (88–92). The immune activating potential of radiotherapy
heightens interest in developing and optimizing concurrent
strategies of localized immune activation within the TME as an
in situ vaccine strategy (93).

Perhaps the best studied and most exciting combinations
involving immunotherapy and radiotherapy are checkpoint
blockade strategies. Checkpoint inhibitors currently in use are
immunomodulatory antibodies, and are so named because they
block normal negative regulators of T cell immunity,
consequently removing their brake system (94). The targets of
current checkpoint inhibitors include CTLA4 and PD1/PD-L1.
This immunotherapy strategy exerts monotherapy activity in
different types of malignancies; however, not all patients
experience significant clinical benefit. This observation has
paved interest for future studies to investigate predictive
biomarkers and to evaluate checkpoint blockade with other
treatment modalities (95). Particularly interesting is the
combination treatment with radiotherapy where remarkable
abscopal effects have been observed (96–98).

Evasion of immune recognition is a hallmark of cancer (99),
and this can be accomplished in multiple ways. Downregulation
of MHC class 1 molecules on cancer cells is one such strategy,
making tumor cells undetectable by CD8+ cytotoxic T
lymphocytes (CTLs) (100). Studies have shown that radiation
therapy can increase MHC class 1 expression to help overcome
this immune-evasion strategy (101–103). While it is clear that
radiotherapy can have immunostimulatory roles, there are also
immunosuppressive actions that must be recognized and
overcome. HIF stabilization, secondary to inherent tumor
hypoxia or as a response to radiotherapy, can promote
immune evasion through the expression of CD39, CD47,
CD73, and PDL1 (104). Thus, perturbing HIF activity may
reduce the immunosuppressive consequence of radiotherapy. It
has also been recognized that HIF-1a can actually improve
function of some immune cells; therefore, exploration of HIF
modulation in terms of improving immune recognition of cancer
is an active area of research (105).

The contrasting immunostimulatory and immunosuppressive
effects of radiotherapy are related to the co-existence of pro-
tumor and anti-tumor immune cells within the TME. CTLs, M1
macrophages, and natural killer (NK) cells are considered to be
the most effective anti-tumor cells within the TME; whereas pro-
tumor immune cells include T regulatory cells (Tregs) and M2
macrophages (106). Multiple factors can contribute to a shift in
the balance of these immune cells in response to radiotherapy,
which may include their inherent radiosensitivities or alteration
of cytokine profiles within the TME. Investigations have shown a
relative increase in the immunosuppressive immune cell profile
following radiotherapy (107–110). A notable cytokine is TGFb,
which is known to be upregulated by radiotherapy and has
Frontiers in Oncology | www.frontiersin.org 7
pronounced immunosuppressive effects (87). Briefly, this
cytokine can be secreted from CAFs, dying cancer cells, or
specific immune cells and it has been found to influence many
of the cells within the TME. For immune cells, TGFb tends to
favor formation of Treg cells and the transition of macrophages
into the M2 phenotype. Additionally, TGFb appears to inhibit
the release of IL-2 which subsequently prevents proliferation of
CTLs and NK cells. Therefore, the effects of TGFb signaling is
considered a major obstacle to overcome and numerous TGFb
blockade investigations are underway to leverage the beneficial
immunological effects of radiotherapy (111).
UTILITY OF COMPANION ANIMAL
MODELS IN RADIOTHERAPY-
DRUG DEVELOPMENT

Comparative oncology involves the study of naturally occurring
cancers in nonhuman species that function as a complementary
model for advancing human cancer research (112–114).
Companion animal models, mainly pet dogs, are the focus of
the NCI Comparative Oncology Program (https://ccr.cancer.
gov/comparative-oncology-program) and there is an increasing
awareness of the value of spontaneous tumor models in drug
development (115). The Comparative Oncology Trials
Consortium (COTC) network (https://ccr.cancer.gov/
comparative-oncology-program/consortium) is made up of 22
comparative oncology centers, many of which are equipped with
state-of-the-art radiotherapy technology. With such a
collaborative network in place, companion animal models are
uniquely positioned to advance drug-radiotherapy combination
development. While strong translational value can be gained
through purposeful inclusion of companion animal models in
radiotherapy-drug development, studies in companion pets
should not be viewed as a substitute for traditional preclinical
investigations. Instead, companion animal models are expected
to improve the predictive value of preclinical investigations.

Figure 3 defines key qualities of a preclinical modeling system
to improve the predictive value of combination therapies
involving radiotherapy, and underscores how companion
animals are uniquely capable of fulfilling these qualities. The
spontaneous nature and the coevolution of tumor and
microenvironment, tumor heterogeneity, and intact immune
systems are intuitive reasons why companion animal models
could better predict clinical success compared with traditional
murine models. Similar radiobiologic principles and normal
tissue tolerances also favor companion animals as a better
predictive model, as this would allow for similar fractionation
and total radiotherapy dose prescriptions. Perturbations of the
DNA damage response (DDR), discussed previously, is one
major focus in targeted radiosensitization strategies and dogs
have already been suggested to be models of investigating DDR
pathways (116, 117). The diagnostic imaging and radiotherapy
capabilities available to companion animals are identical to those
used in human cancer patients, allowing direct translation of
October 2021 | Volume 11 | Article 768692
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methods and radiotherapy protocols into clinical trial design.
Intra-tumoral hypoxia gradients, which largely influence
radioresistance observed in human cancers cannot be faithfully
recapitulated in preclinical murine models due to the relative size
limitation in rodent species. Larger animal models, including cats
and dogs, better recapitulate the intra-tumoral hypoxia gradients
that naturally develop during progressive macroscopic growth as
observed in human cancers.

Additional key qualities provided by companion animal
models revolve around the relative ease of sample collection.
Companion animals, especially the dog, are frequently used in
pharmacokinetic and toxicologic studies during drug
development. This information can be used to streamline the
use of the tested species in efficacy and proof-of-concept
investigations. For the rational selection of targeted molecular
therapies, rapid data collection and interpretation of individual
tumors is imperative. The COTC previously established molecular
characterization techniques for dog tumors (118). The study
validated workflow for prospective genetic profiling of individual
canine tumors within a clinically relevant timeframe (<1 week),
and this can support the use of a heterogenous population of dogs
for preclinical modeling of personalized medicine. Biomarkers are
needed to select patients most likely to benefit from any form of
targeted therapy and to monitor response to treatment. Serial
tumor biopsies can be incorporated into companion animal trials,
and this can assist in biomarker identification that subsequently
can be incorporated into human clinical trials.

Figure 4 highlights four companion animal cancers that are
most often treated with radiation therapy, as surgical treatment is
often not possible or not elected by the pet owner. The cancers
displayed in this figure are not exclusive examples of cancers with
translational potential in radiotherapy investigations. Instead,
the panel of images are meant to provide examples of how
tumors appear in companion animals, to help the reader envision
Frontiers in Oncology | www.frontiersin.org 8
how the radiosensitization strategies reviewed in preceding
sections can be evaluated in companion animal cancers.
Companion animals have already been used to advance
radiotherapy-based investigations; with canine cancers having
been defined as a translational model of tumor hypoxia (119),
and dogs and cats have helped advance the understanding of how
hyperthermia can be combined with radiotherapy to improve
tumor control (120, 121). Radio-immunotherapy strategies have
also been investigated in dogs, including checkpoint inhibition
(122), modulation of the immunosuppressive microenvironment
(123), and enhancing NK cell cytotoxicity (124). Readers
interested in radio-immunotherapy strategies are also directed
to a review exploring the potential utility of two immunogenic
canine cancers (oral malignant melanoma and appendicular
osteosarcoma) for maximizing immunogenic cell death and
abscopal effects (125). Other radiotherapy-drug combination
studies in companion animals have evaluated synergistic
activity of a novel druggable target (126) and the use of
radiotherapy for induction of druggable target-protein
expression (127). Collectively, these examples highlight recent
successes and provide the rationale for purposeful inclusion of
companion animal models for improving the predictive value of
radiotherapy investigations.
CONCLUSIONS AND
FUTURE DIRECTIONS

This review highlights several potential molecular targets and
pathways for the rational development of radiosensitizing
strategies. Importantly, given the conserved DNA damage
responses and tumor histologies shared between human beings
and companion animals, unique opportunity is afforded by the
FIGURE 3 | Qualities of a large animal tumor model to improve the predictive value of drug-radiotherapy combination studies.
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purposeful inclusion of pet dogs and cats with naturally occurring
cancers for validating investigational radiotherapeutic interventions.
In addition to shared tumor histologies, the faithful recapitulation
and evolution of key tumor microenvironmental factors inclusive of
vasculature, immunocytes, and stroma, can be powerfully leveraged
for more accurate preclinical modeling of novel radiotherapeutic
protocols. Companion animals have already been used to advance
the understanding of tumor radiobiology and treatment. With this
proven and existing foundation, companion animals with naturally
occurring cancers will likely improve the predictive value of target
based radiosensitization strategies and accelerate the translation of
innovative radiotherapeutics regimens in human cancer patients.
Frontiers in Oncology | www.frontiersin.org 9
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