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a b s t r a c t 

Deep learning and computer vision revolutionized a new method to automate medical image diagnosis. However, 

to achieve reliable and state-of-the-art performance, vision-based models require high computing costs and 

robust datasets. Moreover, even with the conventional training methods, large vision-based models still involve 

lengthy epochs and costly disk consumptions that can entail difficulty during deployment due to the absence of 

high-end infrastructures. Therefore, this method modified the training approach on a vision-based model through 

layer truncation, partial layer freezing, and feature fusion. The proposed method was employed on a Densely 

Connected Convolutional Neural Network (CNN), the DenseNet model, to diagnose whether a Chest X-Ray (CXR) 

is well, has Pneumonia, or has COVID-19. From the results, the performance to parameter size ratio highlighted 

this method’s effectiveness to train a DenseNet model with fewer parameters compared to traditionally trained 

state-of-the-art Deep CNN (DCNN) models, yet yield promising results. 

• This novel method significantly reduced the model’s parameter size without sacrificing much of its 

classification performance. 
• The proposed method had better performance against some state-of-the-art Deep Convolutional Neural 

Network (DCNN) models that diagnosed samples of CXRs with COVID-19. 
• The proposed method delivered a conveniently scalable, reproducible, and deployable DCNN model for most 

low-end devices. 
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Specifications table 

Subject Area: Computer Science 

More specific subject area: Deep Convolutional Neural Networks and Medical Image Diagnosis 

Method name: A Non-Conventional Approach in Training a Deep Convolutional Neural Network based 

on Layer Truncation, Partial Layer Freezing, and Feature Fusion 

Name and reference of original 

method: 

Not applicable – the proposed method relies on multiple approaches where the 

article had the following discussed and cited in the method section. 

Resource availability: Source code and links to data used : 

https://github.com/francismontalbo/fused- densenet- tiny 

Method Details 

Deep Learning (DL) recently became one of the forefront solutions for conducting an automated 

medical image diagnosis of Chest X-Rays (CXR). However, with the sudden emergence of the recent

Coronavirus, SARS-CoV-2, or specifically COVID-19, this automation process began to experience 

further struggles [1] . Compared to CXRs, diagnosing the COVID-19 virus from an individual using

the real-time Reverse Polymerase Chain Reaction (rRT-PCR) provides better reliability. Unfortunately, 

though, such equipment can become costly and difficult to acquire. Only medical experts with 

specialized training can use it, making these requirements unavailable in most developing or less 

fortunate countries, having them rely on CXR diagnosis as an alternative [2] . Also, not all experts

can immediately detect the presence of the new COVID-19 virus from CXRs as it becomes confusing

due to its similarity with severe Pneumonia. Such a struggle had led to false results or late diagnoses.

Through DL, specifically vision-based DL, researchers figured out a solution to employ such a method

in automating the process to identify CXRs with the COVID-19 virus and distinguish it apart from

someone with Pneumonia [3] . Though considered adequate, such a solution still inhibits some 

drawbacks as most proposed methods require the use of vast and complex models that require

specialized equipment or infrastructure to operate. 

Moreover, some models also tend to become unreproducible due to the lack of resources [4 , 5] .

Therefore, this work proposed a solution that will maintain the reliability of large state-of-the-art 

models without the need for high-end devices or equipment to run and reproduce. With that said,

developing countries and medical institutions lacking such resources can attain a faster and more 

accurate diagnosis of a patient’s CXR infected by COVID-19 with less cost and effort. 

The proposed method focuses on pre-training a DenseNet model through transfer learning 

(ImageNet weights) [6] , truncation of its layers, replicating the truncated model, partial layer freezing

its replicated version, and feature fusing both models. This work’s base model focuses on the

DenseNet121 model [7] that employed the mentioned methods to provide a lightweight yet a reliable

model for diagnosing CXRs. Illustrated in Fig. 1 , a DenseNet model’s concept allows the propagation

of features from every layer through concatenation. Such a design of the DenseNet resulted in lesser

parameters compared to the summation method used in Residual Networks (ResNet) [8] . Findings

also show that it reduced or somehow diminished the performance saturation problem with its 

architectural connectivity. As identified, training a DenseNet model even at greater depths maintained 

a significantly smaller parameter size than other recent state-of-the-art DCNNs [9] . 

Fig. 2 illustrates the input, dense, and transition blocks for a detailed specification of the

model. The input block has a sequence of a 7 × 7 Convolution (Conv) → Batch Normalization

(BN) → Rectified Linear Unit (ReLU) → 3 × 3 Max-Pooling (MP). The following block, called the 

dense block, has a sequence of BN → ReLU → 1 × 1 Conv → BN → ReLU → 3 × 3 Conv. For the

last component, the transitional block follows a sequence of a BN → ReLU → 1 × 1 Conv → 2 × 2

https://github.com/francismontalbo/fused-densenet-tiny
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Fig. 1. Visual Concept of a Densely Connected Convolutional Model. 

Fig. 2. DenseNet blocks specifications. 

A  

f  

i  

t  

b  

f  

r  

t

verage Pooling (AP). The given set of sequences for each block generated significant improvements in

eature extraction or generation compared to a less recent model like VGG [10] or GoogleNet [11] . The

nput block directly connects to a dense block, while the subsequent dense blocks tend to concatenate

hemselves with each other depending on the number of k blocks in the network . The transition

lock serves as the downsampling layer of the model where it contains a similar set of layers except

or a 2 × 2 AP that reduces the feature size in half, which prevents the exhaustion of computing

esources without much effect on its performance. The transition block has connections directly from

he previous and succeeding dense blocks [9] . 
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Table 1 

Chest X-Ray dataset specification. 

Class label Train (80%) Validation (20%) Total (100%) 

Normal 2616 654 3270 

COVID-19 1025 256 1281 

Pneumonia (Bacterial and Viral) 3726 931 4657 

Total 7367 1841 9208 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Materials and Methods 

Chest X-Ray Dataset 

Because of the support of large DL communities and other related fields, the curation of CXRs

became more accessible for researchers. This work selected a readily prepared and reliable dataset 

from Sait et al. [12] . Their dataset contains various Joint Photographic Group (JPG) formatted CXRs

segregated into three cases, a Normal CXR without any infections, a CXR infected with severe

Pneumonia, and the other with COVID-19. The samples came from various reliable sources, therefore, 

having each class with a non-standard dimension. 

Table 1 presents the dataset’s specifications where the Normal CXR had 3270 samples, 4657 for

Pneumonia, and 1281 for COVID-19. As observed, the dataset has an imbalanced characteristic due 

to the problematic acquisition of COVID-19 CXRs. Nonetheless, with the proposed method, such a 

problem will analyze if the imbalanced data will skew the model’s performance towards the superior

class. In training the model, the dataset had divisions of a train and validation sets where the

train data for each class consists of 80% of its entire samples, having its remaining 20% used to

validate each. Before the images entered the model to train, the images resized into 299 × 299 for a

standardized training approach and prevented inconsistencies as some images have larger dimensions 

than the others. 

Truncation 

For the first part of employing the proposed method, this work selected the DenseNet121 as

the base model with its head eliminated, ending layers truncated, leaving the model only with its

input block, fewer dense blocks of 9 connected with a transition block. The model only retained the

mentioned layers leaving it without a dedicated output layer. The purpose of not having an output

layer is to prepare its fusion with another to produce the fused version with a shared output layer

that will efficiently handle the fused features. The fusion approach aims to increase the network’s

width and trainable parameters without elongating or expanding it. 

Fig. 3 illustrated the layers and connections of the proposed truncated DenseNet. The truncated 

version shows that the network consists of six dense blocks connected to a transition block followed

by another set of 3 dense blocks. Unlike its larger DenseNet family counterparts, the proposed model

significantly decreased its network size by 93%, where the base model DenseNet121 had about 8

million parameters, while the proposed truncated DenseNet model has only half a million. 

Further, the truncation method significantly pertains to layer reduction, which decreases the 

parameters and overall weight size of a neural network model [13] . However, to utilize such an

approach effectively, this proposed method identified a reasonable cut-point based on the number 

of features to preserve while maintaining a short end-to-end network and maintaining the original 

layer arrangement to prevent issues during transfer learning. As a result, the truncated model still

attained 224 depth of features at the dense block 3-3. Also, the proposed truncation point maintained

the entire entry block from the input block up to the dense block 2-6 concatenated to a transition

block and another dense block from 3-1 to 3-3. Therefore, indicating that the proposed cut-point

maintained the state-of-the-art core design of the DenseNet with a significantly lesser network yet a

substantial feature depth, making it feasible to train via transfer learning and still conduct most of its

initial feature extraction capabilities. 
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Fig. 3. Layers and Connections of the Truncated DenseNet Model. 

Fig. 4. Feature Fusion and Fine-Tuning of the Truncated DenseNet Models. 
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It is worth mentioning that the truncation initiates a shallower network to provide a faster

ropagation of weights during training and saves a significant fraction of computing cost [13] .

owever, in this work, the said advantage came with a significant disadvantage as well. Having fewer

ayers for feature generation or extraction reduced the model’s performance due to fewer trainable

arameters than a base DenseNet121 model. Hence, the proposed method included the approach of

eature fusion. 

irroring and Feature Fusion 

After truncation, the model had significantly reduced in size, leading to lesser performance when

earning features. For the model to increase its trainable patterns, the proposed method produced a

irrored version of the truncated DenseNet, as shown in Fig. 4 . With a generated mirrored version of

he truncated DenseNet, the models became concatenated into a single pipeline through an Add layer

hat expanded the range of features within the entire network. With the expanded feature depth and

horter network, the possibility of overfitting from the robust flow of generated features can occur.

hus, the employment of a proposed set of feature handling layers during fine-tuning counteracts

verfitting issues. 

The techniques employed can alleviate the problem of the reduced trainable parameters caused by

he truncation approach. However, having similar models may only cause redundancy of generated

eatures and an increased computing cost without much improvement. Therefore, the proposed

ethod employed varying techniques to train each truncated model and provide feature diversity. 

artial Layer Freezing and Fine-Tuning 

With the potential scenario of redundant feature generation from the similar truncated DenseNet

odels during fusion, the proposed method employed partial layer freezing and fine-tuning
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techniques to alleviate such a problem. Beforehand, both models acquired readily available features 

from the ImageNet dataset through transfer learning to leverage their image recognition capability 

without prior training [14] . After the pre-training process, the models proceeded to partial layer

freezing and fine-tuning to accommodate the selected tasks of classifying CXRs. 

Partial layer freezing in the proposed method pertains to one of the models having its layers set to

a frozen state, preventing the overwriting of the pre-trained weights from ImageNet during training 

and only updating its concatenation layer and the proposed set of ending layers. The concept of

freezing layers came from fine-tuning that allows the model to adjust its pre-trained weights towards

its newly replaced ending layers to solve specific tasks effectively. For example, in recent findings,

fine-tuned models had proven to work better towards the classification of images than the random

initialization approach and consumed shorter training durations that produced a robust set of features 

for a neural network and a classifier [15 , 16] . However, providing the same technique for the other

model may generate similar outputs without feature contribution. Hence, in contrast, the other layer 

had layers set in a thawed state that allowed the flow of new weights and generated varied features

through its entire network. Thus, with the combined approach of fine-tuning and re-initialization of 

new weights, the fused pipeline curated a broad spectrum of diverse features. 

It is worth mentioning that the fusion approach also focused on producing a wide variety of

features rather than just doubling the feature depth, 224 into 448. Thus, if the truncated models

employed the same feature generation approach, it will only increase the feature depth but not

entirely provide feature diversity. On the other hand, training both truncated models through random 

generation also falls into the same idea but may yield a far lesser performance due to the lack of

features that the pre-trained weights provide. Therefore, instigating that random feature generation 

fused with pre-trained features from ImageNet integrated into a single pipeline can induce diversity 

and robustness for the model. 

With the newly produced fused features, a set of tuning layers provides a counteractive approach

to prevent potential overfitting and reduce misclassifications. The proposed layers consist of a Global 

Average Pooling (GAP) layer that replaces the traditional Fully Connected (FC) layers that averages

the total pixel values of an image without deducting most of its feature importance. Compared to

a standard flattened FC, the GAP also provides a better class interpretation for the neural network

layers as it provides a corresponding feature towards a specific class [17] . Successively, an added Dense

layer with an arbitrary number of 512 neurons provides additional trainable parameters. Activated 

by a Rectified Linear Unit (ReLU), the layer provides non-linearity and limits the output values into

ones and zeros, leading to better efficiency due to an increased computation speed and lesser cost

[18] . The other Dense layer activated by a softmax consists of only three neurons that correspond

to the classes of interest, where the softmax acts as the multi-class logistic classifier of the model

that assigns decimal values to each corresponding class. Thus, the diagnosis with the highest decimal

value from the entire 100% becomes the diagnostic result. Finally, the proposed set of layers also has a

Dropout layer with a rate of 0.5. The Dropout layer provides a stochastic reduction of neurons within

the FC portion of the network, reducing overfitting and providing better regularization during training 

[19] . 

Fig. 5 illustrates the discussed process of having the truncated models pre-trained with the 

ImageNet weights, partial layer freezing of the other half, and the initialization of the other’s new

weights. 

Model Compilation and Training 

With the proposed method employed, the model does not train separately compared to an 

ensemble approach. Instead, it trained entirely as a whole, similarly to most DCNN models. During

compilation, the model included a loss function and a set of configured hyper-parameters. For the

production of results, the model employed an arbitrary and commonly selected value for each hyper-

parameter. This approach highlights the proposed method to train in a more casual and less tedious

approach without stringent optimizations yet produce competitive results against other state-of-the- 

art DCNNs. On the other hand, the accompanying loss function calculates and reduces errors during

the training process. 
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Fig. 5. Pre-training, Partial Layer Freezing, and Fine-Tuning of the Fused Models. 

Table 2 

Hyper-parameter configuration. 

Hyper-Parameter Value 

LR 0.0 0 01 

BS 16 

Optimizer Adam 

DR 0.5 

Epochs 25 
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As discussed, the task consists of three classes, Normal, COVID-19, and Pneumonia infected CXRs.

his work selected to use the Categorical Cross-Entropy Loss ( CCE Loss ) as an appropriate loss function

o accomplish the task, as it involves a multi-class classification rather than a binary classification

20] . In Eq. (1) , the CCE Loss uses M as the classes with c instances from one to three, corresponding

o the three CXR conditions. The calculation of loss differs from one class to another based on each

bservation o of the CXRs. The results of the prediction or classification p depend on the value of y .

C C E loss = −
M ∑ 

c=1 

y o,c log ( p o,c ) (1)

Table 2 presents the following configured hyper-parameters: the optimizer, Learning Rate (LR),

atch Size (BS), and epochs. The optimizer provides an increased probability of attaining the lowest

ossible errors. This work selected the Adam optimizer as it consumes less memory than most

ptimizers and is starting to become a go-to optimization algorithm in most image classification tasks



8 F.J.P. Montalbo / MethodsX 8 (2021) 101408 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

involving medical images [21 , 22] . Due to Adam’s fast convergence capability, this work had set its

LR to 0.0 0 01, making it lower than a model that trains with a standard Stochastic Gradient Descent

(SGD) [23] . The given LR can prevent heavy distortions that may cause the model to learn too fast and

overfit during early training periods yet maintain a rapid convergence. A converged network usually 

entails that the model did not commit to overfitting or underfitting [24] . With the reduced network

length due to the proposed method, the models managed to train rapidly even with a minimal BS

of 16. Having a higher BS tends to train large models with robust datasets faster and induces slight

performance improvements [25] . However, it does require tremendous amounts of memory and can 

deplete the resources early, wherein this work prevented such an event from occurring. With the

Adam optimizer, an LR of 0.0 0 01, and a BS 16, the selected epochs landed at 25, where it had

shown the most efficient results based on training duration and performance. During the experiments, 

having more than the given epochs tends to cause lengthier training periods without performance 

improvements. On the other hand, training with fewer epochs limited the model to achieve higher

accuracies. 

Results 

Evaluation metrics 

To evaluate and compare the model’s overall performance with the proposed method against 

other state-of-the-art models that trained conventionally, this work selected to use the standard 

metrics, including accuracy, precision, recall, and f1-score. The following metrics rely on the number 

of diagnosed CXRs distributed into the following descriptions, True Positive (TP), False Positive (FP), 

True Negative (TN), and True Positive (TP) [26] . TP refers to a correctly diagnosed CXR that has

a specific infection, whether Pneumonia or COVID-19. TN, on the other hand, refers to a correctly

diagnosed CXR without any infections as Normal. FP refers to a misdiagnosed Normal CXR with an

existing infection, while FN presents the result the other way around. This work selected to use a

confusion matrix to visualize the instances of diagnoses from the CXRs. 

In the following equations below, the trained model with the proposed method had its overall

accuracy, precision, recall, and f1-score calculated using the validation data. 

accuracy = 

T P + T N 

T P + T N + F P + F N 

(2) 

precision = 

T P 

T P + F P 
(3) 

recall = 

T P 

T P + T N 

(4) 

f 1 − score = 

2 ∗ precision ∗ recall 

precision + recall 
(5) 

Confusion Matrix 

The confusion matrix graphically presents the diagnoses performed by the trained model. 

According to the results, the following images from the validation data had fallen into a specific

category [27] . Therefore, each value that belongs to the diagonal palettes identifies a correctly

classified image, whether TN (Normal) or TP (Pneumonia or COVID-19). Otherwise, it indicates that 

the model had made a misdiagnosis towards a specific CXR. 

Illustrated in Fig. 6 , the model correctly diagnosed 638 Normal CXRs, 253 COVID-19 CXRs, and

913 Pneumonia CXRs. However, upon observations, the model committed misdiagnoses of 16 FPs of 

Normal CXRs, 2 FNs and 1 FP of COVID-19 CXRs, and 18 FNs of Pneumonia CXRs. 
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Fig. 6. Results of diagnoses from the validation dataset using a confusion matrix. 

Table 3 

Results of the overall performance. 

Classes Accuracy (%) Precision Recall F 1 -score Sample size 

Normal 98.04 0.98 0.97 0.97 654 

COVID-19 99.84 0.99 1.00 0.99 256 

Pneumonia 98.10 0.98 0.98 0.98 931 
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hest X-ray Diagnosis Performance 

With the validation dataset diagnosed by the trained model, the equations provided can measure

he model’s performance towards a specific CXR class. 

In Table 3 , the trained model had acquired the best performance with COVID-19 with a 99.84%

ccuracy, followed by 98.10% and 98.04% from Pneumonia and Normal, respectively. Thus, even with

he unbalanced sample size and class superiority of Pneumonia samples, the model still managed to

ttain unbiased results towards each class, having an indistinct result. 

iscussion 

Even with a truncated network, the DenseNet model managed to attain adequate trainable

arameters to produce a wide range of features through transfer learning, feature fusing, partial layer

reezing, and fine-tuning layers. Upon evaluation, the model’s overall performance achieved 97.99%

ccuracy, 98.38% precision, 98.15% recall, and 98.26% f1-score. Justifying that even with the reduction

f feature generators and model depth, the proposed method still trained the DenseNet model through

 non-conventional method and attained competitive results. 

Table 4 compares its performance against other state-of-the-art DCNNs trained through a

onventional transfer learning and fine-tuning to validate the proposed method further. As presented,

he proposed method did not achieve the highest scores compared to EfficientNetB0 and its base
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Table 4 

The comparison of performance with the proposed method against conventionally trained models 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

DenseNet121 [7] 98.48 98.71 98.59 98.48 

EfficientNetB0 [28] 98.21 98.59 98.18 98.39 

Proposed Method 97.99 98.38 98.15 98.26 

InceptionV3 [29] 97.99 98.31 98.23 98.26 

ResNet152V2 [30] 97.88 98.25 98.09 98.17 

Xception [31] 97.61 97.92 97.83 97.87 

MobileNetV2 [32] 97.12 97.46 97.75 97.58 

VGG16 [10] 96.58 97.06 96.94 96.97 

InceptionResNetV2 [33] 96.14 94.48 96.90 95.59 

Fig. 7. Comparison of parameter size with other state-of-the-art trained conventionally. 

 

 

 

 

model, the DenseNet121. However, it outperformed most of the other well-known models that did 

not train with the proposed method. 

The feature depth of only 224 from the proposed method limited the trained DenseNet model

to attain higher results than its larger counterpart, the DenseNet121 model, which had 1024.

Nonetheless, the proposed method’s primary focus and aim significantly lean towards a lighter, easily 

reproducible, and deployable model for low-end devices in developing countries or medical facilities 

lacking the specialized equipment for the task. Further analysis and understanding of the proposed 

method can be found in [34] . 

In Fig. 7 , the DenseNet model trained with the proposed method outshined the entire set of DCNN

models with the lowest number of parameters, exactly 1,231,235 million. Compared with the largest 

model, the ResNetV2-152, with a 97.88% accuracy and 58,329,603 million parameters, the DenseNet 

model trained with the proposed method achieved the best performance to parameter size ratio. 

With EfficientNetB0 and DenseNet121, even with a slight difference in performance, the proposed 

method still had a massive advantage with its lower number of parameters. With a minimal trade-off

in performance, the lightweight yet reliable model can become easily deployable to possibly assist 

experts struggling to diagnose cases of CXRs with COVID-19 infections. 

Conclusions 

In conclusion, though the method originated from various combined approaches, the entire process 

still elevated as a novel approach that trained a DCNN like the DenseNet model and diagnosed CXRs
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nvolving COVID-19 effectively and cost-efficiently. The variated and curated method had yielded

emarkable performance compared to conventionally trained DCNNs with a significantly reduced

arameter size. The slight trade-off still managed to pull through with a competitive performance

ielded from the proposed method, justifying its effectivity towards CXR diagnosis involving COVID-19.

ot only that the model works effectively, but it can also scale effortlessly. Re-training the DenseNet

odel with the proposed method with additional data will still consume less computing cost, training

uration, and disk space than the larger models presented. Training models with a massive depth of

ayers will eventually require expensive equipment, long hours, and large disk capacities. However,

his method’s major drawback lies in its unorthodox preparation and lack of validation with other

atasets. 

Nonetheless, future researchers can reproduce this method through this article and conduct

enchmark studies to test its full potential for other datasets and models. It is worth remembering

hat this method does not aim to replace other medical diagnostic methods. Instead, it aims to

evelop an effective and lightweight assistive tool for medical experts that may improve diagnosing

OVID-19 in CXRs and other related conditions in the future. 
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