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Abstract

Background: Phenotypic alteration of vascular smooth muscle cells (SMC) in response to injury or inflammation is an
essential component of vascular disease. Evidence suggests that this process is dependent on epigenetic regulatory
processes. P300, a histone acetyltransferase (HAT), activates crucial muscle-specific promoters in terminal (non-SMC)
myocyte differentiation, and may be essential to SMC modulation as well.

Results: We performed a subanalysis examining transcriptional time-course microarray data obtained using the A404 model
of SMC differentiation. Numerous chromatin remodeling genes (up to 62% of such genes on our array platform) showed
significant regulation during differentiation. Members of several chromatin-remodeling families demonstrated involvement,
including factors instrumental in histone modification, chromatin assembly-disassembly and DNA silencing, suggesting
complex, multi-level systemic epigenetic regulation. Further, trichostatin A, a histone deacetylase inhibitor, accelerated
expression of SMC differentiation markers in this model. Ontology analysis indicated a high degree of p300 involvement in
SMC differentiation, with 60.7% of the known p300 interactome showing significant expression changes. Knockdown of
p300 expression accelerated SMC differentiation in A404 cells and human SMCs, while inhibition of p300 HAT activity
blunted SMC differentiation. The results suggest a central but complex role for p300 in SMC phenotypic modulation.

Conclusions: Our results support the hypothesis that chromatin remodeling is important for SMC phenotypic switching,
and detail wide-ranging involvement of several epigenetic modification families. Additionally, the transcriptional coactivator
p300 may be partially degraded during SMC differentiation, leaving an activated subpopulation with increased HAT activity
and SMC differentiation-gene specificity.
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Introduction

The ability of mature vascular smooth muscle cells (SMC) to

modulate their phenotype is responsible in large part for many of

the specific manifestations and genesis of vascular diseases such as

hypertension, atherosclerosis, and post-angioplasty restenosis

[1,2,3]. Unlike skeletal and cardiac myocytes, vascular SMCs

respond to environmental cues by de-differentiating: down-

regulating SMC marker and contractile proteins (e.g. smooth

muscle [SM] a-actin, transgelin, SM-myosin heavy chain [MHC]),

migrating into the neointima, proliferating, and secreting matrix

and remodeling factors.

The molecular mechanisms underlying lineage determination

and terminal differentiation of these cells have received much

attention, but the genetic programs that regulate these processes

have not been fully defined. Experiments have identified levels of

epigenetic regulation underlying SMC plasticity, including specific

histone modifications that appear to support the SMC lineage and

alter the ability of the transcriptional regulator serum response

factor (SRF) to target SMC marker-gene promoters [4,5].

DNA in eukaryotic nuclei is packaged into repeating units of

chromatin, composed of nucleosomes, with 145–147 DNA base

pairs wrapped around an octameric core containing two molecules

each of histones H2A, H2B, H3 and H4. The core is then

stabilized into higher order structures by linker histone H1 [6,7,8].

The amino-terminal portions of core histones contain flexible

protease-sensitive tails which are evolutionarily conserved sites for

post-translational modifications, including methylation, acetyla-

tion, phosphorylation, ubiquitylation, and ADP-ribosylation [9,10,

11]. These modifications are correlated with replication, chroma-

tin assembly, and transcription [7,12]. In general, acetylation of

histones is transcriptionally activating, while mono-, di- and tri-

methylation may cause silencing or activation depending on which

particular lysine residues are modified.

Various enzymes and enzymatic complexes (e.g. histone

acetyltransferases (HATs), histone deacetylases (HDACs), histone

and DNA methyltransferases (HMTs and DNMTs) regulate

transcription through chromatin modification, partly through a

‘‘histone code’’ in which combinations of specific residue modifi-

cations regulate unique biological outcomes [13]. Numerous
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proteins and protein complexes have been identified that may

‘‘read’’ the code and recruit transcription factors or repressors.

HATs are well characterized covalent histone modification

systems, and consist of several protein families including CBP/

p300 [7]. CBP and p300 are paralogues, and act as multifunc-

tional transcriptional co-activators involved in such varied

processes as embryonic development, differentiation, proliferation

and apoptosis [14]. Expressed ubiquitously during mouse

development, they interact with numerous transcription factors,

integrating complex signal transduction pathways at the level of

gene transcription. CBP and p300 are necessary factors in skeletal

myogenesis and cardiomyogenesis [15–19]. Several studies have

indicated that p300 may be necessary for SMC differentiation, and

is likely also essential for phenotypic switching [4,20–25].

The P19-derived A404 embryonal cell line differentiates toward

the SMC lineage in the presence of retinoic acid (RA), and allows

selection for cells adopting a SMC fate through a differentiation-

specific drug marker (puromycin) [20]. We previously performed

expression profiling of differentiating A404 cells, and identified

numerous ontology-based pathways that undergo differential regu-

lation [26]. Among the most prominent pathways identified was

chromatin remodeling. We sought to further characterize the role of

chromatin remodeling and p300 in SMC differentiation. Results

support the hypothesis that chromatin remodeling factors, and p300

in particular, are important for SMC phenotypic switching.

Methods

Cell culture, RNA isolation
The A404 cell culture protocols, microarray hybridization, and

RNA isolation methods were previously published [26]. Briefly,

undifferentiated P19-A404 cells (Control) were treated with

1 mmol/L all-trans retinoic acid (RA) for 24 hours (RA24),

48 hours (RA48), 96 hours (RA96), or 96 hours followed by

puromycin (Puro). RNA was harvested from multiple replicates at

each of the four time points, isolated by chloroform extraction

followed by Qiagen RNeasy Midi Kit Protocol, and quantitated by

Nanodrop (Agilent Technologies, Santa Clara, CA).

Human coronary SMCs (Clonetics, Lonza Group Ltd.,

Switzerland) between passages 3 and 6 were propagated in

SMGM – growth medium (Clonetics) to 85% confluence (subset

harvested as control) and then placed in serum-free SMBM – basal

medium (Clonetics) for either 48 or 72 hours, with a minimum of

three plates per sample per time point. Cells were then harvested

for protein or RNA isolation as described.

HDAC inhibition with trichostatin A
Culture protocols were identical to those used previously, except

that A404 cells were treated instead for 48 hours with vehicle -

diluted 100% ethanol (Control), with 10 ng/mL of trichostatin A

(TSA) (Sigma, St. Louis, MO), with vehicle +1 mmol/L all-trans

retinoic acid (RA) (Sigma), or with trichostatin and retinoic acid

(TSA/RA). Protocol was derived from Minucci, et al [27]. Multiple

replicates and multiple plates/replicate were utilized. RNA was

harvested, isolated, and quantitated as above. A separate set of

replicates were treated identically, but instead harvested for histone

extraction using established methodology (below) [28].

Chemical p300 HAT inhibition
Lys-CoA-TAT, a cell-permeable chemical inhibitor of p300

HAT, was the kind gift of Philip A. Cole and colleagues at Johns

Hopkins [29]. A404 cells (6 RA and 6TSA) were treated for 24 or

48 hours with 20 mM Lys-CoA-TAT, using an empty TAT-peptide

as a control. They were then harvested at time 0, and at 48 h for

RNA or 24 h for protein. All medium was replenished at 24 hours.

All treatment wells were .90% confluent at time of harvest.

siRNA knockdown of EP300/Ep300
Cultured human SMC and A404 cells were transfected with

Silencer Select siRNAs targeting either EP300 or Ep300

transcripts as appropriate, as well as GAPDH (glyceraldehyde 3-

phosphate dehydrogenase) as a positive control, and scrambled

negative control siRNA (Applied Biosystems). Forward transfec-

tion was performed in 6-well plates using 3 mL/well of

Lipofectamine RNAiMAX (Invitrogen) per recommended proto-

col, using 10 nM (30 pmol) siRNA, when cells were 40–50%

confluent. Three replicates per condition were included. Human

SMCs were serum starved for 48 hours, beginning 24 hours after

transfection. A404 cells were treated with DMSO vehicle or

1 mmol/L all-trans retinoic acid (RA) for 24 or 48 hours, starting

5 hours post-transfection. Cells were then harvested for RNA.

Histone and total protein isolation
For the HDAC inhibition studies, cells were collected, washed with

ice-cold PBS, and centrifuged for 5 minutes at 6006g. The pellet was

re-suspended in ice-cold lysis buffer, centrifuged, and washed with

10 mM Tris-HCl, 13 mM EDTA. After spinning again, the pellet

was re-suspended in 0.4 N H2SO4 and acid extracted on ice for

1 hour. Centrifugation at 10,0006g was followed by acetone

precipitation at 220uC for 1 hour, and centrifuging at 10,0006g.

The histone pellet was air-dried, re-suspended in water and stored at

280uC. For some studies, histones were isolated using the Active

Motif Histone Purification Mini Kit (Carlsbad, CA) per manufac-

turer’s protocol. Protein was quantitated by either Thermo Scientific

BCA Protein Assay Kit (Rockford, Ill) or Bio-Rad DC Protein Assay

(Hercules, CA) with a bovine serum albumin standard (R2 = 0.999).

Isolation of total protein for p300 immunoblotting was

performed by rinsing with ice-cold PBS, lysing the cells with

CelLytic-M (Sigma) containing protease inhibitor cocktail (Sigma),

spinning at 15,0006g for 15 min and collecting the supernatant.

Protein was quantitated by DC protein assay.

Western blots
Western immunoblotting of HDAC inhibition samples was

performed using 1–4 mg/lane protein in Tris-Glycine SDS Sample

Buffer (Invitrogen, Carlsbad, CA) loaded onto 12% or 15% SDS-

PAGE gels. Gapdh was used as a loading control. Protein was

transferred to PVDF (polyvinylidene fluoride) membranes, blocked

with 3% PBS-milk (Upstate Cell Signaling Solutions, Waltham,

MA), and probed with 1 mg/mL rabbit anti-acetyl histone H4 or

0.5–1.0 mg/mL anti-histone H4 (Upstate) followed by 0.2 ng/mL

goat anti-rabbit horseradish-peroxidase-conjugated IgG, and de-

veloped with Visualizer Working Solution (Upstate). Membranes

were exposed using BioMax MS Film (Kodak, Rochester, NY).

Western blots of human coronary SMC and A404 p300 utilized

1 mg/mL rabbit anti-p300 (N-15, Santa Cruz Biotechnology, Inc,

Santa Cruz CA). Samples were diluted in NuPAGE LDS 46
Sample Buffer (Invitrogen) and loaded onto NuPAGE Novex 3–

8% Tris-Acetate gels with SeeBlue Plus2 Ladder for size

calibration. Other processing was similar to that described above.

Exposed films were scanned, and integrated band densities were

obtained and normalized to Gapdh and background using ImageJ

[30]. Mean 6 std dev of lane duplicates are shown in density units.

Quantitative reverse-transcription PCR
Total RNA was converted to cDNA using MMLV reverse

transcriptase. The cDNA was amplified in triplicate on the ABI

SMC Chromatin and p300
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PRISM 7900HT with Taqman primers and probes (Applied

Biosystems, Foster City, CA). Gene expression levels were

normalized to corresponding 18S internal controls. At least two

representative samples from each time point were evaluated. Fold

changes were calculated by the method of DDCt.

Data analysis
Microarray methods have been previously described [26]. All

microarray data were submitted to the Gene Expression Omnibus

(GEO) database at the NCBI (GSE1506; http://www.ncbi.nlm.nih.

gov/geo/). Array data were probed using GOMiner [31] and the

Database for Annotation, Visualization and Integrated Discovery

(DAVID) [32] to identify all genes annotated with ontology terms

related to chromatin remodeling and assembly, gene silencing, or

histone modification. These were then cross-referenced against

genes showing significant regulation (false discovery rate - FDR,1)

during A404 SMC differentiation. Relative overabundance calcu-

lations were performed using Fisher’s Exact Test. Heatmaps were

created using Heatmap Builder 1.0 (Ashley E., Spin J., Watt C.,

Stanford) [26]. Two-tailed unpaired t-tests were used to evaluate

significance for qRT-PCR results.

The p300-transcription factor interactome was derived with

PathwayAssist 3.0 (Ariadne Genomics, Inc., Rockville, MD),

which utilizes KEGG, DIP, and BIND databases and natural

language scans of PubMed to define connectivity among genes to

delineate a functionally related network.

Results

Chromatin remodeling genes show widespread
regulation with in vitro SMC differentiation

In previously published work, A404 P19 mouse embryonal

carcinoma cells were induced to differentiate into SMCs using all-

trans retinoic acid (RA) treatment for 96 hours, followed by

Figure 1. Heatmap and regulated chromatin remodeling genes. Left: Row-normalized gene expression heatmap of A404 cells treated with
all-trans retinoic acid for 96 hours, then puromycin for 48 hours, significant at FDR,1. Shown are 2,739 genes upregulated (P.C), and 2,227 genes
downregulated (C.P). C = Control replicates, n = 6. P = Puromycin group replicates, n = 6. Green: down. Red: up. One gene/row. Right: Regulated
chromatin remodeling genes during A404 differentiation. GO annotation terms for selected pairwise SAM comparisons (FDR,1) of treatment groups
were obtained, using gene lists with unique names. Values are % of total set of 171 chromatin remodeling genes on array. Downregulated and
Upregulated = vs. control A404 cells. RA48 and RA96 = RA-treated for 48 or 96 h. Puro = RA-treated 96 h, then puromycin-treated for 48 h.
doi:10.1371/journal.pone.0014301.g001

SMC Chromatin and p300

PLoS ONE | www.plosone.org 3 December 2010 | Volume 5 | Issue 12 | e14301



48 hours of puromycin (eliminating remaining cells not expressing

SM a-actin), and then RNA-harvested for microarray transcrip-

tional profiling [26]. We used a 60-mer microarray platform

(Agilent, Palo Alto, CA) with 20,280 mouse transcripts derived from

the National Institute on Aging clone set, and identified 2,739 genes

that were significantly upregulated from untreated cells after

differentiation was completed (FDR,1), as well as 2,227 downreg-

ulated genes. Temporal patterns of regulation were also identified.

In an updated analysis, ontologic pathways within these data were

scrutinized using GOMiner and DAVID. The array was found to

contain 171 unique genes related to chromatin remodeling, including

such aspects as histone tagging (acetylation, deacetylation, methyla-

tion), chromatin assembly/disassembly, and silencing. A substantial

percentage of these genes showed significant regulation (FDR,1)

during SMC differentiation, with more downward regulation than

upward overall (Figure 1). The smallest changes were seen early in

differentiation (8.2% down and 9.4% up at 48 hours of RA), while

the largest response occurred in the mid-portion of the time-course

(42.1% down and 20.5% up in cells treated 96 h with RA vs. control).

After using puromycin, 32.7% and 18.7% of chromatin remodeling

genes remained down- and upregulated respectively.

Pathway analysis of chromatin remodeling genes during
SMC differentiation shows diverse response

Seeing the extent of chromatin-related gene regulation, we next

inspected the specific biological/molecular pathways within the

set, and found a variety of patterns within individual gene classes.

One highly represented class included proteins that silence

chromatin via DNA methylation (Figure 2a), and included

chromobox genes, members of the DNMT protein family, as well

as methyl-CpG binding domain (MBD) family genes.

Another well-represented class included histone methyltransfer-

ases (HMTs). Generally speaking, methylated histones bind DNA

more tightly, which inhibits transcription (Figure 2b).

Several known HAT genes displayed significant regulation

(Figure 2c) during SMC differentiation. Some were downregu-

lated, including Ncoa3, Hat1, CBP/Crebbp, and Pcaf. In contrast,

Myst3 was upregulated by 96 h and remained so. While p300/

Ep300 was not on the array, qRT-PCR Taqman studies showed

minor gene upregulation with A404 differentiation over control:

mean 1.2-fold (24 h, RA), 1.6-fold (48 h RA), and 1.3-fold (96 h,

RA). Although p300 transcription changes were small, it should be

noted that numerous signaling pathways are known to post-

transcriptionally regulate its protein activity.

A number of regulated genes contained SWI/SNF protein

subunits, which are involved in chromatin assembly and

Table 1. HDAC expression with SMC differentiation.

Probe Retinoic Acid-96 hours Puromycin

SM a-actin 180.11 234.03

SM-MHC 25.98 84.00

Hdac1 0.58 0.47

Hdac2 0.81 1.38

Hdac3 NS 0.16

Hdac5 NS 0.13

Hdac6 0.02 0.02

Hdac7a 3.75 8.67

Hdac9 4.93 14.32

Sirt1 0.34 0.44

Sirt3 0.67 NS

Fold changes vs. control for histone deacetylase genes and SMC marker genes
during A404 differentiation time-course. NS: not significant. For significant
changes, FDR,1.
doi:10.1371/journal.pone.0014301.t001

Figure 2. Differential regulation of selected chromatin remod-
eling gene classes with SMC differentiation. A. DNA methyltrans-
ferases. B. Histone methyltransferases. C. Histone acetyltransferases. D.
SWI/SNF family. Row-normalized heatmaps are shown labeled with
gene symbols. Control = untreated A404 cells. RA48/RA96 = Retinoic
acid treated for 48 and 96 h respectively. Puro = Treated with RA for
96 hours, then puromycin for 48 hours. Green: down. Red: up.
doi:10.1371/journal.pone.0014301.g002
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remodeling and are characterized by DNA-dependent ATPase

activity. Nearly all of these genes were decreased during the

treatment course (Figure 2d). Smarcal1, Smarcb1, Smarcc1,

Smarcd1, and Smarcd3, and Smarcf1 all showed significant

downregulation by 96 h of RA treatment and remained so.

However, Smarca5 was strongly upregulated early. Transcription

then tapered downward, but remained significantly increased

throughout.

A404 SMC differentiation was also accompanied by highly

variable regulation of histone deacetylases (Table 1). Two Class I

HDACs, Hdac2 and 3, showed minimal to no significant change

until the final selection step with puromycin, and then moved in

opposite directions. Hdac1, in contrast, was downregulated by

96 h of RA-treatment and remained so. The Class II HDACs,

which are thought to be more tissue specific, displayed

dramatically different responses from each other. For example,

Hdac6 was downregulated 50-fold by 96 h, while Hdac7a and

Hdac9 both showed significant upregulation. Notably, Class III

HDAC Sirtuin 1 (Sirt1), a protein- and histone-deacetylase known

for inhibiting differentiation of skeletal muscle via its involvement

in Pcaf and p300 suppression [33,34], showed early and persistent

downregulation throughout. Another member of the same family,

Sirt3, was also significantly downregulated at 96 h.

HDAC inhibition accelerates rate of SMC marker gene
increase with differentiation

Given the varying regulation of various HDAC family

members, we investigated the effect of HDAC suppression using

Trichostatin A (TSA) during RA-induced SMC differentiation.

Immunoblotting revealed some baseline histone H4 acetylation

present in proliferating, untreated A404 cells (Figure 3a).

Treatment with TSA and RA together led to greatly increased

levels of acetyl-histone H4 compared with RA alone or untreated

control, verifying that TSA at this concentration inhibits histone

deacetylation in the A404 model. Control H4 histone levels did

not alter significantly with RA treatment, with time, or with the

addition of TSA.

As expected, treatment with retinoic acid significantly increased

expression of the SMC markers SM a-actin (Acta2), transgelin/

SM22a (Tagln), and caldesmon 1 (Cald1) markers at 48 hours

relative to vehicle-treated cells: 22.0-fold, 3.2-fold, and 4.1-fold

respectively (FDR,1, microarray). However, treatment with TSA

combined with RA further increased expression for all three

Figure 4. p300 interactome transcription factors. Transcription
factors in the p300 interactome which demonstrated significant
regulation during A404 differentiation vs. untreated cells (FDR,1).
White = unchanged. Light grey = upregulated. Dark grey =
downregulated. Gene number and % of interactome shown for each
section.
doi:10.1371/journal.pone.0014301.g004

Figure 3. Trichostatin A and SMC differentiation markers. A. Western blots of A404 cell histone extract, using anti-acetyl histone H4 or anti-
histone H4 primary antibody. Cntrl = Control; RA = retinoic acid; TSA/RA = trichostatin A+ retinoic acid. Time 0 and 48 h of treatment are shown.
B. Increased relative expression of SMC differentiation markers after 48 h in TSA + RA-treated A404 cells vs. RA-treated alone. For all ratios, p,0.05.
Acta2 = SM a-actin, Tagln = transgelin/SM22a, Cald1 = caldesmon 1.
doi:10.1371/journal.pone.0014301.g003

SMC Chromatin and p300
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markers compared with RA alone by qRT-PCR (Figure 3b).

Ratios of TSA-RA-treated expression to RA-treated were 9.1-fold

(Acta2), 1.4-fold (Tagln), and 2.3-fold (Cald1).

SMC differentiation is accompanied by widespread
regulation of the p300 transcription factor-interactome

P300/Ep300 is believed to be an important regulator of smooth

muscle-specific gene expression, and is a known key player in

epigenetic regulation during skeletal and cardiac myocyte

differentiation. PathwayAssist, a literature-based program for

mapping molecular relationships, was used to identify all

transcription factors known to interact directly with p300/

Ep300. This yielded a total of 162 genes, of which 130 were on

the array (Figure 4). During SMC differentiation of A404 cells,

72 (55.4%) of these genes showed significant differential

regulation, pathway over-representation that was highly significant

by Fisher’s Exact Test (p,0.0001). From this set, 42 (58.3%) were

up and 30 (41.7%) were down. This supports the idea that p300

Figure 5. p300 protein levels with SMC differentiation/serum-starvation. Plots of scanned, digitized Western blots probed with anti-p300,
and representative blots. A. Top: A404 cells treated with retinoic acid for up to 96 hours. Bottom: A404 p300 Western blot. Two lanes per time point,
same order as plot. B. Top: primary human coronary artery SMCs, serum starved for up to 72 hours. Bottom: CASMC p300 Western blot. Two lanes per
time point, same order as plot. Integrated band densities were normalized to Gapdh and background. Mean 6 standard deviation of lane duplicates
are shown in density units.
doi:10.1371/journal.pone.0014301.g005
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may be central to SMC differentiation, although it does not specify

the precise nature of its involvement.

P300 protein levels decrease with SMC differentiation
Having established that minimal transcriptional regulation of

p300 accompanies SMC differentiation, but that the majority of

the p300 interactome shows significant change, we next used

Western blotting to examine p300 protein levels. P300 protein

levels decreased dramatically during the 96 hour retinoic acid

time-course (Figure 5a). Nearly all of this change occurred within

the first 48 h of treatment.

We sought to confirm this finding in another model of SMC

differentiation. Primary vascular smooth muscle cells rapidly de-

differentiate in vitro, a process that partially reverses under

conditions of serum-starvation [2]. Human coronary smooth

muscle cells were serum starved in basal medium for 48 and

72 hours and then harvested for RNA or protein. Taqman qRT-

PCR showed the expected increases in ACTA2 and MYH11 (SM-

MHC) with starvation, while p300 showed similar regulation to

A404 differentiation (a mild 1.4-fold increase) (Figure 6). Western

blotting results paralleled those in A404 cells, with p300 levels

decreasing substantially during the time course (Figure 5b).

Direct chemical inhibition of p300 histone
acetyltransferase activity blunts SMC differentiation

Because p300 possesses other functions beyond acetyltransferase

activity, we sought to confirm that p300’s HAT activity is

important in SMC differentiation. Several small molecule

chemical inhibitors have been developed which act as bisubstrate

analogs [35,36,37]. A potent and selective cell-permeable inhibitor

of p300 HAT activity, Lys-CoA-TAT, was previously developed

by Philip A. Cole and colleagues[29].

A404 cells (6 retinoic acid) were treated over 24 or 48 hours with

20 mM Lys-CoA-TAT, using an empty TAT-peptide as a control.

Neither Lys-CoA-TAT nor TAT-peptide alone had any significant

impact on A404 cell expression of SMC markers by qRT-PCR.

(Figure 7). At both time points Lys-CoA-TAT treatment

significantly (p,0.05) decreased the effects of retinoic acid on

SMC marker expression (Figure 8). Suppression was 46.9% for

Acta2 and 28.0% for Tagln at 24 hours. Further, co-incubation of

A404 cells with TSA, RA and Lys-CoA-TAT (Figure 9) confirmed

that the HAT inhibitor was effective at the dose used, as it

successfully blunted the increase in TSA-induced histone H4

acetylation seen with RA-induced SMC differentiation by 43%.

Knockdown of p300 with siRNA accelerates SMC
differentiation

Since p300 protein levels decreased during SMC differentiation,

we also investigated the impact of EP300/Ep300 knockdown using

siRNA in both the human SMC and A404 models. The

transfection protocol used produced an average 95.4% reduction

in expression of the GAPDH positive control. In human SMCs,

EP300 expression was decreased 66.8% in serum-fed cells and

75.7% in cells serum-starved for 48 h (p,0.05 for both vs.

negative control siRNA). A404 cells also demonstrated significant

knockdown: 66.3% in untreated cells, 57.6% in 24 h RA-treated

cells, and 70.1% at 48 h of RA-treatment (p,0.05 for all vs.

negative control siRNA).

Serum-starvation in human SMCs transfected with negative

control siRNA led to the expected increases in ACTA2 and

MYH11 expression. However, cells transfected with siEP300

showed significantly higher expression of both markers after

48 hours of serum-starvation (p,0.05) (Figure 10a).

A404 cells displayed similar behavior, with expression levels of

SMC differentiation markers Acta2, Myh11 and Tagln incremen-

tally increasing with RA-treatment over time, despite transfection

with negative control siRNA. As seen in previous studies, rises in

Acta2 and Tagln were already significant at 24 hours, while the

increase in Myh11 was delayed. As with the human SMCs, marker

expression levels increased significantly beyond negative control

siRNA-transfected samples by 48 hours of RA-treatment (p,0.05

for all) (Figure 10b).

Figure 6. Gene regulation in human coronary SMCs by qRT-PCR. Cells were serum starved in basal medium for up to 72 h to induce
differentiation. P300 = EP300 HAT, ACTA2 = SM a-actin, MYH11 = SM-MHC. 48 and 72 h time points are shown as fold change from baseline 6

standard error. All values are significantly increased vs. control (p,0.05).
doi:10.1371/journal.pone.0014301.g006

SMC Chromatin and p300
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Discussion

Epigenetic regulation is a key determinant of SMC
phenotypic state

SMC phenotypic change is a varied and complex process.

Evidence has been steadily accruing that epigenetic regulation is a

vital element in the determination of SMC differentiation state,

particularly in the areas of histone acetylation and methylation.

Just as critical to SMC plasticity is the removal of inhibitory/

chromatin compacting complexes from SMC-marker gene

promoters, such as certain HDACs and other factors such as

Klf4 [4]. These mechanisms already have established involvement

in skeletal and cardiac muscle differentiation and hypertrophy

[15,38]. Further, it is necessary for SMC differentiation that SRF

(a ubiquitous protein capable of activating transcription for many

gene subclasses) be specifically denied to growth and proliferation

genes, and that those genes remain silenced while the cells are

quiescent.

Various histone methyl-lysine patterns are able to distinguish

SMCs from non-SMCs [5]. Recruitment of SRF, and in particular

the activating SRF/myocardin complex, to conserved CArG

boxes in SMC-specific gene promoters has been associated with

acetylated H3 and H4, dimethylated H3K4, and methylated

H3K79 [4,20–23]. A study from Lockman et al. found that a

histone demethylase (Jmjda1) bound all three myocardin family

members, and when overexpressed in 10T1/2 cells decreased

mono- and di-methyl H3K9 while stimulating the transgelin and

SM a-actin promoters [39].

Major chromatin remodeling families undergo regulation
with SMC differentiation

This study demonstrates that widespread regulation of chroma-

tin modifying and remodeling genes takes place during SMC

differentiation in vitro. At the maximum level observed (96 h of

retinoic acid treatment), over 60% of all chromatin remodeling

genes identified on the array showed significant changes in

transcription from control, dramatically increasing in the second

48 h of treatment (from 17.6%). While numbers of positively and

negatively regulated genes started at similar levels, by far the

majority of this increase was driven by downregulated genes. As

would be expected with such sweeping changes in expression,

numerous classes of epigenetic regulators were represented,

including DNA methyltransferases, histone methyltransferases,

and others. A few highlights are presented below.

Figure 7. p300 HAT inhibition controls. A404 cells were treated for 24 hours with: 1) retinoic acid (RA), 2) 20 mM Lys-CoA-TAT (LysCoAT),
or 3) 20 mM control TAT peptide (TAT). Expression levels obtained by qRT-PCR for SMC markers are shown as fold change from baseline untreated
cells 6 standard error. * = significantly (p,0.05) different from control.
doi:10.1371/journal.pone.0014301.g007
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One interesting finding was the downregulation of chromobox

homologs Cbx1 and Cbx3. The products of these genes (HP1beta

and HP1gamma) recognize tri-methylated H3K9 and mediate

silencing through conversion to heterochromatin [40,41]. Lock-

man et al. suggests that H3K9 demethylation at SMC-marker

gene promoters may trigger conversion to euchromatin [39].

Prmt1 acts as an H4R3 arginine methyltransferase, a modifica-

tion which facilitates p300-mediated histone acetylation [42], and

showed mild down-regulation. A homologous gene, Prmt2, binds to

the retinoic acid receptors RARa and RXRa [43,44]. It interacts

with a HAT, steroid receptor coactivator 1 (SRC-1), and might

relate to RA-mediating triggering of A404 differentiation, as it is

upregulated at the earliest time point and then remains unchanged.

Vire et al. [45] showed that the silencing pathways of the

Polycomb group and DNA methyltransferase systems are

mechanically linked. Our data imply that relief from Dnmt3a-

and Dnmt3b-associated DNA methylation may be essential to

preventing HDAC recruitment to SMC-specific genes during

differentiation via methyl-CpG-binding proteins such as Mecp2

and Mbd2. Somewhat surprisingly, these latter two genes showed

upregulation in our model, possibly reflecting a compensatory

response to DNMT repression or increased protein degradation,

or a redirecting of the silencing machinery toward growth and

proliferation genes that could be targeted by Dnmt1 and Dnmt2

(both upregulated late in this study).

HDAC inhibition promotes SMC differentiation: seeking
the key regulators

Histone deacetylases are divided into three classes. Class I

HDACs (1–3, 8) are similar to yeast RPD3 and localize to the

nucleus. Class II HDACs (4–7, 9–10) resemble yeast HDA1 and

are found in both nucleus and cytoplasm, while Class III HDACs

are NAD-dependent enzymes similar to yeast SIR2 proteins [46].

These proteins inhibit transcription through removal of key acetyl

groups. In addition to their effects on histones, some HDACs are

also believed to exert effects in the cytosol through protein

deacetylation. For example, HDAC8 reportedly associates with

the smooth muscle actin cytoskeleton and may regulate the

contractile capacity of smooth muscle cells [47].

Relief from Class II HDAC inhibition is necessary for

differentiation of both skeletal and cardiac myocytes, and evidence

exists for a similar role in SMCs [48]. Global HDAC suppression

with trichostatin A inhibits SMC proliferation, accelerates

differentiation in P19 cells, and stimulates acetylation at the

transgelin locus in fibroblasts [21,27,49]. Qiu et al. overexpressed

Figure 8. p300 HAT inhibition and A404 SMC differentiation markers. A404 cells were treated for 24 or 48 hours with retinoic acid (RA)
620 mM Lys-CoA-TAT. Shown are qRT-PCR expression values for Acta2 and Tagln, calculated as a percent of the RA-induced marker level for that time
point. An RA-treatment bar is shown for comparison. * = significantly (p,0.05) different from cells treated with RA alone.
doi:10.1371/journal.pone.0014301.g008
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HDACs 1–6, and found that all of them suppressed transactivation

of transgelin by Smad3 and myocardin in their cell systems [50].

Another study, however, showed that Class II HDACs 4 and 5

suppressed the ability of myocardin to activate SM a-actin and

transgelin, while Class I HDACs 1 and 3 had no effect [23].

Notably, they also observed that A7r5 SMCs expressed HDACs1–

2, and 4–7, but not HDAC3 or 9.

We found that A404 cells, in contrast, expressed both Hdac3 and

9. However, Hdac3 was suppressed with differentiation while Hdac9

showed progressive upregulation over time. Hdac6 essentially

disappeared with SMC differentiation. Loss of marker expression

SMCs in Klf4 over-expression assays has been associated with the

appearance of the H4 deacetylase HDAC2 [4], but in A404 cells

Hdac2 showed minimal change in expression during differentiation.

Differences between the various experimental models might explain

some of these results. We did identify a notable drop in Hdac5

transcription with advancing differentiation, consistent with relief of

suppression of myocardin. Further, we showed that inhibition of

HDACs with trichostatin A accelerated A404 SMC differentiation.

It remains to be established which HDACs play exactly which roles

in regulating SMC plasticity.

HAT activity of p300 plays a key role in SMC
differentiation: evidence for an activated subpopulation

Previous research has offered hints that acetylation of SMC-

specific promoter loci is crucial for differentiation, and evidence

suggests that p300 is involved in accomplishing this [20]. Studies

have identified acetyl-H3K9, -H3K14 and -H4 as distinguishing

marks in SMCs (vs. non-SMCs), although it is notable that while

myocardin increased acetylation of H3K9 it did not increase

H4Ac, implying a separate activation step [4]. Myocardin requires

SRF to activate SMC genes, and SRF has been reported to

associate with the p300-related HAT CBP during c-Fos activation

[51], however p300 is able to enhance myocardin independently

of SRF association [23]. Further, p300 interacts with the SMC

differentiation-promoting transcription factor GATA6, and the

combination activates the SM-MHC promoter [24]. The ability of

myocardin to activate SMC genes is enhanced by p300, which

binds to its transcriptional activation domain in a separate location

from HDAC5 [23].

The paralogues CBP and p300 are present in limiting amounts

in mammalian cells, and signaling pathways may regulate

transcription based on their ability to compete for these factors

[52–55]. While CBP and p300 are known as HATs they may also

act as transcriptional co-factors, and additionally may regulate via

acetylation of non-histone proteins [14]. Numerous signaling

pathways utilize these factors. Using PathwayAssist we identified

162 different proteins which have been shown to interact with

p300, of which 130 were present on our microarray. In concert

with the large scale transcriptional regulation of chromatin

remodeling genes which occurred during the A404 time course,

over half of the available p300 interactome showed significant

changes. It therefore seems highly probable that global alterations

in p300-based signaling accompany SMC differentiation.

Figure 9. p300 HAT inhibition and trichostatin A. Area-under-the-curve (AUC) pixel densitometry was calculated for scanned, digitized anti-
acetyl-histone H4 Western blots (shown at bottom) of A404 cells either untreated (Cntrl), or treated with trichostatin A+ retinoic acid (RA/TSA) or
trichostatin A+ retinoic acid + Lys-CoA-TAT (LysCoA/RA/TSA) for 24 hours. Values shown are a ratio of anti-acetyl-histone H4:anti-histone H4,
normalized to untreated control AUC 6 standard error for three experiments. Western lanes (in duplicate) correspond to graph columns.
doi:10.1371/journal.pone.0014301.g009
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Given the numerous functions of p300, it is unclear which are

essential for SMC differentiation, although histone acetylation and

co-activation of myocardin are supported by the evidence

presented above. Our experiments show that direct chemical

inhibition of p300 HAT activity substantially decreases (but does

not completely arrest) SMC differentiation. Histone acetylation of

H3K9, H4, and H3K14 may therefore be attributable to p300.

However, interactions between p300 and myocardin might occur

independently of acetyltransferase activity.

Further, alternative HATs might also be involved. While several

HATs (including CBP) showed significant downregulation with

SMC differentiation (Figure 2), Myst3 showed progressive

upregulation throughout. Little is known about this factor at this

time apart from its involvement in monocytic leukemia and

hematopoietic stem cells [56]. Additionally the HAT PCAF was

likely partially inhibited by the concentration of Lys-CoA-TAT that

we employed, making our results not completely p300-specific.

Several studies have indicated that activity of CBP and p300 may

depend on their phosphorylation state and be regulated by retinoic

acid receptors, and that signaling may trigger the formation of an

activated p300 subpopulation with increased differentiation-gene

specificity [54,57–61]. During retinoic acid-induced differentiation

of F9 cells, p300 (but not CBP) protein levels decreased during

differentiation due to increased degradation by the ubiquitin-

proteasome pathway. This was accompanied by a significant

increase in per molecule HAT activity, and specifically with protein

kinase A-mediated phosphorylation of p300 [61].

We examined this process in A404 SMC differentiation and

observed similar behavior. After treatment with retinoic acid, p300

protein levels in A404 cells progressively decreased despite only

minimal changes in p300 transcription, with most of the change

occurring early. The same was observed in a model of human

SMC re-differentiation. Further, siRNA knockdown of p300

expression in both models accelerated SMC differentiation,

suggesting that the observed decrease in p300 levels may trigger

SMC differentiation.

As mentioned above, p300 is central to numerous transcrip-

tional activation pathways, including those of proliferation and

growth, and is present in limiting amounts among competing

signaling processes. Thus, in SMCs undergoing differentiation, a

decrease in p300 protein levels accompanied by activating

covalent modifications could cause migration of the factor from

Figure 10. p300 siRNA knockdown and human SMC differentiation markers. A. Human CASMC were transfected with either scrambled
negative control siRNA (siNeg) or with a transcript targeting EP300 (siEP300), and then either serum fed (Fed) or serum starved for 48 hours (SS48).
Resulting qRT-PCR expression values were normalized to control (Fed cells transfected with siNeg). * = significantly (p,0.05) different from control.
** = significantly (p,0.05) different from control and from siNeg time-matched controls. B. A404 cells were transfected with either scrambled
negative control siRNA (siNeg) or with a transcript targeting Ep300 (siEp300), and then treated with retinoic acid for 24 (RA 24 h) or 48 hours (RA
48 h), or left untreated (No RA). Resulting qRT-PCR expression values were normalized to control (No RA cells, transfected with siNeg).
* = significantly (p,0.05) different from control. ** = significantly (p,0.05) different from control and from siNeg time-matched controls.
doi:10.1371/journal.pone.0014301.g010
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growth-based pathways to promoters for myocardin and other

SMC differentiation-specific genes.

More studies are needed to further elucidate this model. For

example, CBP may substitute for p300 in supporting cell

maintenance processes during SMC differentiation. Unlike skeletal

and cardiac muscle, SMCs maintain their phenotypic plasticity.

Microenvironmental triggers must therefore exist which are

capable of dynamically altering the epigenetic environment [5].

Given its large interactome and key role in modulating chromatin

and transcription factors, p300 presents an opportune fulcrum for

regulation of SMC phenotypic modulation.
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