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Abstract

Background: Many traits and diseases are thought to be driven by >1 gene (polygenic). Polygenic risk scores (PRS) hence
expand on genome-wide association studies by taking multiple genes into account when risk models are built. However,
PRS only considers the additive effect of individual genes but not epistatic interactions or the combination of individual and
interacting drivers. While evidence of epistatic interactions ais found in small datasets, large datasets have not been
processed yet owing to the high computational complexity of the search for epistatic interactions. Findings: We have
developed VariantSpark, a distributed machine learning framework able to perform association analysis for complex
phenotypes that are polygenic and potentially involve a large number of epistatic interactions. Efficient multi-layer
parallelization allows VariantSpark to scale to the whole genome of population-scale datasets with 100,000,000 genomic
variants and 100,000 samples. Conclusions: Compared with traditional monogenic genome-wide association studies,
VariantSpark better identifies genomic variants associated with complex phenotypes. VariantSpark is 3.6 times faster than
ReForeSt and the only method able to scale to ultra-high-dimensional genomic data in a manageable time.

Findings

Traditional genome-wide association studies (GWAS) evaluate
genomic variants (referred to hereinafter as “variants”) across
the genomes of many samples for statistical association with
the phenotype in question. These studies are aimed at detect-
ing variants associated with common and complex traits and

diseases, such as heart disease, diabetes, and height [1]. GWAS
has been successful at identifying >50,000 associated variants
in thousands of complex phenotypes (GWAS catalog [2]). Yet,
many phenotypes with genetic components remain only par-
tially explained by genetics, the so-called missing heritability
problem [3].
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One possible explanation is that these phenotypes are driven
by an additive effect of several variants (“polygenic phenotype”),
resulting in a small association power for each variant [4–7].
Polygenic risk score (PRS) takes into account this additive ef-
fect to compute the genomic risk factor for a trait [8]. PRS refers
to a range of statistical methods that consider the GWAS as-
sociation power as a weight for the variant. Given the weight
and the risk allele for each variant, PRS computes the genomic
risk factor for a given sample [9]. For many phenotypes, PRS is
shown to be a more accurate predictor of risk than single vari-
ants alone [10], which statistically supports the idea of the phe-
notype being polygenic.

Another explanation is the existence of epistatic interaction
(referred to hereinafter as “interaction”) between sets of vari-
ants [11] (“epistatic phenotype”). In an interaction, the combi-
nation of ≥2 variants highly correlate with the phenotype but
individual variants do not show a strong correlation with the
phenotype. Thus the phenotype cannot be explained by the in-
dividual variants. Variant interactions remain invisible to tradi-
tional GWAS and subsequently to PRS methods. Several algo-
rithms have been developed to speed up the search for the inter-
actions [12, 13], and they have been successful to identify signif-
icant statistical interactions [14]. There is also evidence that in-
teractions are biologically relevant [15]. However, the high com-
putational complexity of these methods prevents them from be-
ing applied to whole-genome data. Pruning the dataset is an op-
tion but does not guarantee to preserve all the interacting vari-
ants.

Given that there is statistical proof for the existence of both
polygenic phenotype and epistatic phenotype, there is a like-
lihood of a complex phenotype to exist—a phenotype that is
driven by several variants individually as well as several sets
of interactive variants. A novel association approach is hence
needed to take into account the individual variant association
power, as well as the association power driven by the interactive
variants. Furthermore, such a methodology needs to be applica-
ble to genomic-scale data. Taking all variants into account re-
duces the chance of missing important interactions. Note that
the association of interactive variants is only visible when all
of them are combined. The computational complexity of such
analyses made them infeasible in the past; however, combining
more efficient algorithms with parallel computing resources has
opened up a new avenue.

One promising algorithm to use is random forest (RF) [16],
which is a machine learning approach used in many modern
bioinformatics analyses [17] including genomics [18–20]. It is de-
signed to identify interactions between the given features (vari-
ants in the context of GWAS) and incorporate them into a pre-
diction model. RF also computes a metric for each variant called
“importance score” that is an indicator of the association power
for a variant. Importance score combines individual and inter-
action association power into a single value. Thus RF is a perfect
candidate for the association study of a complex phenotype. The
randomness in the RF model is the key to avoid over-fitting, mak-
ing it a robust method. Unlike black box models such as deep
learning [21], the RF model is readable and can be used to extract
important rules and identify interactive features. Even though
RF is not a deterministic algorithm, it is an accurate approxima-
tion with a manageable computational requirement.

There are 2 layers of parallelization to speed up an algo-
rithm: multi-threading and distributed computing. The former
is a common approach that allows programmers to use all pro-
cessors and memory available in a single computer, usually a
high-performance computer (HPC). The latter allows a program

to be executed in parallel on multiple independent computers
connected by a network (known as a computer cluster, referred
to hereinafter as a “cluster”). Given that the network is far slower
than processors and memory, it is critical to implement the pro-
gram in a way that reduces network operation and avoid a po-
tential bottleneck. Apache Spark [22] (referred to hereinafter as
“Spark”) is a widely used platform for distributed computing.
Distributed computing is a potential solution [23] to overcome
the ever-increasing quantity of genomic data, exceeding astro-
nomical data in volume [24].

Here, we introduce VariantSpark, a Spark-based software
package for association study of complex phenotypes and
genomic-scale datasets. VariantSpark is the first publicly avail-
able distributed implementation of RF with the following fea-
tures to reduce networking, to maximize resource utilization,
and to suit genomic datasets:

� Vertical data partitioning
� Processing multiple nodes of multiple trees in parallel
� Efficiently storing genomic data in fast and a low-level Spark

memory structure (Resilient Distributed Dataset [RDD])

The wider VariantSpark software suite implements k-means
clustering and is compatible with standard genomic data for-
mats (e.g., VCF), and is integrated with Hail [25] to offer a range
of other standard genomic analyses in a distributed manner.
To assess VariantSpark’s capability we compare it against the
state-of-the-art bioinformatics implementation of RF, as well as
the latest application-agnostic distributed implementations of
RF. Ranger [26] is one of the fastest multi-threaded RFs, writ-
ten in C++. As reported by its developer, Ranger is 180 times
faster than the parallel version of the widely used randomForest
R package [27] and requires 3.5 times less memory. It is also 2.2
and 2.6 times faster than randomForestSRC [28] and Random-
Jungle [29], respectively. Ranger also implements a save-memory
mode that is 1.6 times slower than normal mode but requires
half the memory. To the best of our knowledge, no other multi-
threaded RF claimed to be faster than Ranger. Despite this, pro-
cessing data from whole-genome sequencing [30] remains prac-
tically impossible using this method. RF needs to maintain the
complete dataset decompressed in memory. So a dataset of 100
million variants and 10,000 samples requires 1 TB of memory
(assuming 1 byte per genotype), which is unlikely available on
standard HPC.

A cluster, on the other hand, can easily scale to hold hun-
dreds of terabytes of data (as most cloud providers can supply).
The most popular distributed implementation of RF is Google’s
PLANET [31], which is integrated into the Spark machine learn-
ing library (MLlib) [32]. PLANET uses horizontal partitioning,
which is a parallelization along the wrong dimension because
it does not allow high-dimensional data to be loaded into mem-
ory as required for random access by the RF algorithm. PLANET
is faster than the randomForest R package, with comparisons
to other implementations provided in Bayat et al. [33]. ReFor-
eSt [34] is, to the best of our knowledge, the fastest distributed
implementation of RF and is up to 3 times faster than MLlib
(PLANET). ReForeSt uses similar partitioning as in Spark MLl, ex-
tends a machine learning benchmark study [35], and was shown
to be faster than XGBOOST [36] and H2O [37] for the largest
dataset in the study (10M) [38]. Parallel Random Forest (PRF) [39]
is another distributed RF that takes a vertical partitioning ap-
proach and claims to be twice as fast as MLlib. The implemen-
tation has not been released and hence could not be included
in our comparison. The only other relevant distributed algo-
rithm that also implements vertical partitioning relevant for
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high-dimensional data is Yggdrasil [40]. Yet, Yggdrasil is limited
to Decision Tree [41] (DT) and does not expand to build an RF
mode. However, none of these tools were tested in ultra-high-
dimensional data, which we define as datasets with >10M fea-
tures.

Here, we first compare the performance of VariantSpark
with the approach used in traditional GWAS, logistic regression
(LR) [42]. We consider various simulated phenotypes, including
complex phenotypes, and different-sized datasets, to compare
the tools’ ability to detect associated variants. Then we compare
VariantSpark’s runtime with Ranger, ReForeSt, and Yggdrasil. Fi-
nally, we demonstrate the scalability of VariantSpark and evalu-
ate sensitivity to hyper-parameter choices.

Datasets

Two different sets of synthetic datasets are used in this study,
both of which are publicly available [43] for the replication of
this study (see Supplementary Data File 4). The first set uses
real genotypes taken from the 1000-Genomes (1KG) Project [44]
and a simulated phenotype made by Polygenic Epistatic Pheno-
type Simulator (PEPS) [45]. In the second set, both genotype and
phenotype are simulated by VariantSpark’s embedded simula-
tor. The phenotype is a function of 5 randomly selected variants
and a given noise parameter.

Real genotype and simulated phenotype
We use these datasets to compare the accuracy of VariantSpark
with LR. A set of phenotypes are simulated for 1KG samples us-
ing PEPS that uses real genotype data and simulates a binary
phenotype associated with a subset of randomly selected vari-
ants.

PEPS first forms n-way truth-variables, which are used to sim-
ulate the phenotype. A variable could be an individual variant
(1-way variable) or set of n variants with epistatic interaction
(n-way variable), so 2-way variables are pairwise epistatic in-
teractions; 3-, 4-, and 5-way variables are higher-order epistatic
interactions. Each variant is involved in only 1 variable. Vari-
ants involved in truth-variables (associated with the phenotype)
are called truth-variants (TVs) and are to be discovered by Vari-
antSpark or LR.

Table 1 lists 9 PEPS simulated phenotypes (provided in Sup-
plementary Data File 3) in 3 categories: PI, PE, and PX. PI phe-
notypes are made of only 1-way variables (individual vari-
ant). PE phenotypes are made of 2-way or higher-order vari-
ables (epistatic variables only). PX phenotypes include epistatic
and individual variables (complex phenotype). In each category,
there are 3 phenotypes with low (L), moderate (M), and high (H)
number of TVs.

The 1KG dataset consists of 2,504 samples and ∼80M vari-
ants with multi-allelic variants converted to multiple bi-allelic
variants. We generate 4 subsets of this dataset by randomly se-
lecting variants, 2 by adding the TVs of all phenotypes back if
they were removed by this process (see Table 2).

Simulated Genotype and Simulated Phenotype
These datasets, listed in Table 3, are used for the runtime analy-
sis of VariantSpark. We start from 1,000 samples and 10,000 vari-
ants and increase the number of samples or variants 10 times
at each step to reach either 100,000 samples and 10,000,000 or
10,000 samples and 100,000,000 variants. These genotypes are
simulated with random distribution of phenotypes using the
VariantSpark gen-features command.

The phenotype is simulated using VariantSpark gen-label
commands and based on 5 randomly selected variants all with
equal contributions (all weights are set to 1.0). To make a more
complex phenotype, the mean and the standard deviation of the
noise, -gm and -gs parameters, respectively, are both set to 0.5.
The fraction of noise variants, -gvf parameter, is set to 100/nV to
include 100 noise variants (randomly selected from the variants
in the dataset).

For the comparison to other tools, we subset variants from
the 10K-10M dataset and include the 5 TVs in all subsets. We
start from 100 variants and double it at each step. These datasets
are listed in Table 4.

Compute resources

For reproducibility, all tests are performed on Amazon Web Ser-
vices (AWS) compute resources. We use AWS EC2 (Elastic Com-
pute Cloud) and EMR (Elastic Map Reduce) for HPC and cluster
compute, respectively. We use clusters of different sizes listed in
Table 5. For all clusters, the master-node is an r4.2xlarge EC2 in-
stance with 8 virtual central processing unit (vCPU) and 61 GB of
memory. Compute-nodes are r4.4xlarge with 16 vCPU and 122 GB
of memory except for C256-S and C256-L, where we use r4.2xlare
and r4.8xlarge EC2 instances as compute-nodes. The r4.8xlarge
has 32 vCPU and 244 GB of memory.

Experimental set-up

The combination of 9 phenotypes described in Table 1 and 5
genotype datasets described in Table 2 results in 9 × 5 = 45
case/control datasets, which we process with both VariantSpark
and LR Wald test implemented in Hail. We pass the first 2 princi-
pal component analysis vectors as co-variate to LR. VariantSpark
uses the following parameters for this experiment: nTree =
1,000, mTry = 0.1 × nV, maxD = 15, and minNS = 50.

We ranked the variants on the basis of P-value computed by
LR and importance score computed by VariantSpark. We repli-
cates the experiments 3 times (similar phenotypes are simu-
lated but different randomly selected TVs are used to form the
phenotype). In the last 2 replicates, we did not process the 1KG-
80M dataset with VariantSpark owing to high computational
cost. Owing to technical issues, the VariantSpark results for PIL
on 1KG-80M were missed for the first replicate.

VariantSpark and ReForeSt are executed on a C256 cluster
while Ranger is executed on r4.16xlarge computer with 64 vCPU
and 488 GB of memory, which is the practical limit of HPC. We
apply maxD = 15 and minNS = 50 where applicable and build
1,000 trees (nTree = 1,000) with mTry = 0.1 × nV. We build a DT
with Yggdrasil 10 times. For VariantSpark we build a forest with
10 trees and set mTry = nV because this parameter setting mim-
ics growing a DT.

When testing VariantSpark’s scalability the following param-
eters were applied to all experiments below, unless mentioned
otherwise: maxD = 15, minNS = 50, mTry = 0.1 × nV, and rbs =
100 (grow 100 trees in parallel).

� Dataset size: The expected runtime to build 1,000 trees for all
datasets in Table 3 on C256 cluster. Because the actual run-
time is too high for larger datasets, we build fewer trees (i.e.,
500, 100, or 10) and record the data load time (β) and average
train time per tree (θ ) reported by VariantSpark. The expected
runtime for 1,000 trees is computed as β + (1,000 × θ ). The ex-
act number of trees for each dataset and the un-normalized
runtime can be found in Supplementary Data File 1.
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Table 1: Nine phenotypes simulated with PEPS

Phenotype
name Category

No. of n-way truth-variables Total No.

1-way 2-way 3-way 4-way 5-way
Truth-

variables
Truth-

variants

PIL PI 5 0 0 0 0 5 5
PIM 50 0 0 0 0 50 50
PIH 500 0 0 0 0 500 500
PEL PE 0 2 2 2 2 8 28
PEM 0 20 20 20 20 80 280
PEH 0 50 50 50 50 200 700
PXL PX 5 3 2 1 1 12 26
PXM 50 25 17 13 10 115 253
PXH 500 250 167 125 100 1,142 2,501

Table 2: 1000-Genome dataset and its subsets

Dataset No. of variants
% of truth-variants

Included

1KG-80M 81,647,203 100
1KG-5M 5,000,516 6.1
1KG-500K 500,446 0.6
1KG-5M-T 5,016,789 100
1KG-500K-T 517,729 100

There are 2,504 samples in these datasets.

Table 3: Synthetic datasets generated by VariantSpark

Dataset Size
No.

Samples (nS) Variants (nV)
Genotypes

nS × nV

1K-10K 10M 1,000 10,000 1e7
1K-100K 100M 1,000 100,000 1e8
1K-1M 1B 1,000 1,000,000 1e9
1K-10M 10B 1,000 10,000,000 1e10
1K-100M 100B 1,000 100,000,000 1e11
10K-10K 100M 10,000 10,000 1e8
10K-100K 1B 10,000 100,000 1e9
10K-1M 10B 10,000 1,000,000 1e10
10K-10M 100B 10,000 10,000,000 1e11
10K-100M 1T 10,000 100,000,000 1e12
100K-10K 1B 100,000 10,000 1e9
100K-100K 10B 100,000 100,000 1e10
100K-1M 100B 100,000 1,000,000 1e11
100K-10M 1T 100,000 10,000,000 1e12

� Cluster size: 500 trees are built for 10K-1M dataset on clus-
ters of different sizes (see Table 5). We also replicate this ex-
periment for a 10 times larger dataset (10K-10M) but only on
C256, C512, and C1024 clusters.

� Compute-node size: 1,000 trees are built for 10K-1M dataset
on C256-S, C256, and C256-L. This experiment is replicated 3
times to show that VariantSpark runtime variation is negli-
gible.

� Batch size (rbs): 500 trees are built for 10K-1M dataset with
rbs equal to 10, 50, 100, or 500.

Table 4: Datasets for high-resolution comparison of the VariantSpark
runtime with other implementations of RF

Dataset
No. of

variants (nV) Dataset
No. of variants

(nV)

1X 100 512X 51,200
2X 200 1KX 102,400
4X 400 2KX 204,800
8X 800 4KX 409,600
16X 1,600 8KX 819,200
32X 3,200 16KX 1,638,400
64X 6,400 32KX 3,276,800
128X 12,800 64KX 6,553,600
256X 25,600 10M 10,000,000

X represents 100 and KX represents 102,400. 10M is identical to the 10K-10M
dataset. Each dataset includes 10,000 samples.

Table 5: EMR clusters and compute-nodes

Cluster
Compute-
nodes

Master + compute
vCPU Memory (GB)

C16 1 ×
r4.4xlarge

8 +
16

61 + 122

C32 2 ×
r4.4xlarge

8 +
32

61 + 244

C64 4 ×
r4.4xlarge

8 +
64

61 + 488

C128 8 ×
r4.4xlarge

8 +
128

61 + 976

C256 16 ×
r4.4xlarge

8 +
256

61 + 1,952

C512 32 ×
r4.4xlarge

8 +
512

61 + 3,904

C1024 64 ×
r4.4xlarge

8 +
1,024

61 + 7,808

C256-S 32 ×
r4.2xlarge

8 +
256

61 + 1,952

C256-L 8 ×
r4.8xlarge

8 +
256

61 + 1,952

The following experiments are performed to show the effect
of different parameters on the VariantSpark runtime and out-of-
bag (OOB) error rate (prediction accuracy) when processing the
10K-1M dataset.



Bayat et al. 5

� Unlimited: 500 trees are built with no limits on the depth of
the tree or the node size.

� Maximum depth (maxD): 500 trees are built with no limits on
the node size but the maxD varies as follows: 3, 5, 7, 9, 11, 13,
15, 20, 25, 100.

� Minimum node size (minNS): 500 trees are built with no lim-
its on depth of the trees but the minNS varies as follows: 5,
10, 50, 100, 500, 1,000.

� mTry: 500 trees are built with the mTry varying as follows: 10,
50, 100, 500, 1,000, 5,000, 10,000, 100,000.

� nTree: Starting from 100 trees and doubling the number of
trees up to 1,600 trees.

Result 1: VariantSpark detects complex genomic
interactions

We compare the performance of VariantSpark with LR using
phenotypes of different complexity and different sized datasets.
First, we report how many TVs, i.e., variants associated with the
phenotype, can be detected by the respective approaches.

Fig. 1a shows the fraction of TVs found in the top r ranked-
variants (RVs) for all phenotype categories (see Table 1) and
dataset sizes. More TVs can be detected with higher value of r,
so we let r vary between t, 2t, 5t, and 10t, where t is the num-
ber of TVs (note, t is different for each phenotype). We do not
consider the order of variants in the list of RVs. All experiments
were replicated 3 times. We highlight results from the first repli-
cate for 1KG-80M (2,504 samples and 80M features), 1KG-5M-T
(5M variants subset including all truth variants), and 1KG-500K-
T here, but other results (second and third replicates, as well as
1KG-5M and 1KG-500K subsets) are reported in Supplementary
Data File 1 and support the same conclusion.

Ideally, all TVs are expected to be listed in the top t RVs, re-
sulting in a maximum value of 1. VariantSpark indeed achieves
this for 2 datasets (1KG-500K-T, 1KG-5M-T) and phenotypes with
low numbers of individually associated variables (PIL). LR, on the
other hand, only detects all TVs in the smaller of these 2 datasets
and only when expanding the list to the top 2t RVs.

More generally, VariantSpark detects either more TV or
an equivalent proportion for most phenotypes and data set
sizes. VariantSpark especially outperforms LR for epistatic (PE)
and complex (PX) phenotypes where interactions are involved
(achieving scores up to X times better than LR). This is because
the association power gained by the interaction between vari-
ants remains invisible to LR.

Conversely, LR performs ≤2.2 times better than VariantSpark
on datasets withdividual TVs (PIM and PIH). This gain over Vari-
antSpark is likely due to the need to tune hyper-parameter
choices for each dataset, which has resulted in non-optimal per-
formance in these instances (see Hyper-Parameter Tuning sec-
tion).

For phenotypes with a high number of TVs (i.e., PIH, PEH, and
PXH) the detection rate is low for both VariantSpark and LR, es-
pecially in the case of the largest dataset (1KG-80M). For such
complex phenotypes, detecting all TVs, even in the top 10t RVs,
is a difficult task.

Fig. 2a illustrates a more in-depth comparison of Vari-
antSpark and LR processing the 1KG-80M dataset with PXH phe-
notype. Note, in this dataset the truth variables are not neces-
sarily present, reflecting a more realistic scenario of associated
variants being filtered out by various pre-processing and qual-
ity control steps. We hence perform a more qualitative analysis
by considering the detection of variants that correlate with TVs

(i.e., variants in the same haplotype as a TV). The horizontal axis
lists all TVs even if they were not included in the dataset. For
each TV we look for the most correlated variant in the top 10t
RVs and plot the maximum absolute value of the Pearson corre-
lation coefficient (γ ). High γ indicates that the detected variant
highly correlates with the TV and possibly identifies the same
genomic region as the TV. TVs are sorted on the basis of their LR
γ . The γ -values for all experiments and both methods are listed
in Supplementary Data File 2.

As shown in Fig. 2a while LR quickly exhausts its ability to
detect the TV or equivalent variants (γ decreases to <0.5), Vari-
antSpark’s γ stays >0.75 for more variants. We define the num-
ber of exclusively detected TVs by VariantSpark as the number
of TVs where the VariantSpark γ is >0.75 and LR γ is <0.5. The
number of exclusively detected variants by LR is defined simi-
larly. We quantify the number of exclusively detected variants
by either method on the 1KG-500K and 1KG-5M datasets. As
shown in Fig. 2b the number of exclusively detected TVs by Vari-
antSpark is up to 4.6 times higher than LR (if both VariantSpark
and LR detect TVs exclusively). Complete numerical compar-
isons including for 1KG-5M-T and 1KG-500K-T datasets and the
other 2 replicates are provided in Supplementary Data File 1.

It is worth noting that association accuracy, i.e., the ability
to recover TV, is distinct from prediction accuracy, i.e., predict-
ing the correct label for a sample. As shown in Fig. 2b, prediction
accuracy shows only a moderate correlation with association ac-
curacy (correlation coefficient equal to −0.84). This is because a
sufficiently large feature set can create a model that can predict
the label by chance, while choosing the TV is a less stochastic
process, as demonstrated by the larger value range on the ver-
tical axis. When finding disease genes where the TVs are un-
known, using the prediction accuracy to the known labels can
only be used as a rough proxy.

Result 2: VariantSpark outperforms state-of-the-art
HPC and distributed implementations

We benchmark VariantSpark against the fastest HPC and dis-
tributed implementation of RF, respectively: Ranger and ReFor-
eSt. We record the runtime of all 3 tools on synthetic datasets
with 10,000 samples and doubling the number of variants, start-
ing from 100 to 6.5 million and then 10 million.

Fig. 3 shows that only VariantSpark and ReForeSt were able
to process the 2 largest datasets. Ranger fails to process datasets
of >1.6M variants, and while in save-memory mode, it processes
up to 3.2M, it does so 1.4 times slower than in normal mode.
Ranger is executed on a computer with 488 GB of memory. Yet it
could not process a dataset of >3.2M owing to excessive memory
usage. Note that the biggest dataset in the comparison (10M x
10K) has 100 billion genotypes, which can be loaded into 100 GB
of memory, and VariantSpark processes it with a peak memory
usage of 120 GB.

For the largest dataset that Ranger processed (1.6M), ReFor-
eSt and VariantSpark performed 4.1 and 4.6 times faster than
Ranger, respectively. Ranger advertises a special GWAS mode,
but we were unable to successfully run this mode. The quoted
runtime in the Ranger publication (for 10,000 samples, 150,000
variants, and mTry = 15,000) shows that GWAS mode is twice
as fast as normal mode and uses the same amount of memory
as save-memory mode. Given this information, the GWAS mode
would not be able to process datasets with >3.2M variants and
would remain slower than VariantSpark and ReForeSt.

VariantSpark and ReForeSt performed comparably for 1.6M
variants (5,450 and 6,044 seconds, respectively); after this point,
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Figure 1: VariantSpark comparison with Logistic-Regression on their ability to detect phenotype-associated variants. Phenotype labels (i.e., PIL, PIM, ...) are described
in Table 1.

Regression

Figure 2: Comparison of exclusively detected variants and correlation with prediction accuracy.
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Figure 3: VariantSpark’s runtime compared with other implementations of Ran-

dom Forest (RF) and Decision Tree (DT). The RF and DT workloads are different
and should not be compared with each other. The number of variants in the
dataset is doubled at each step (see Table 4 for the list of datasets used for the
comparison). The thin unmarked black line illustrates the case if the runtime in-

creases linearly starting from the average runtime of VariantSpark and Reforest
for a dataset of 1.6M variants.

the runtime of ReForeSt increases exponentially while Vari-
antSpark increases sub-linearly. Note the thin unmarked black
line illustrating a linear runtime increase starting from the av-
erage runtime of VariantSpark and Reforest for a dataset of 1.6M
variants (5,747 seconds). VariantSpark is 3.6 times faster than
ReForeSt processing a dataset with 10M variants, a difference
that increases further for larger datasets owing to the exponen-
tial vs sub-linear runtime behavior.

We also compare VariantSpark with Yggdrasil, as the only
other vertical partitioning implementation. Because Yggdrasil
only builds a single DT, we run VariantSpark with mTry equal to
the number of variants to emulate building a DT and record the
runtime of building DTs 10 times with each method. As shown in
Fig. 3, Yggdrasil’s runtime increased dramatically for 3M variants
and took 35 hours to complete (possibly due to excessive mem-
ory usage). VariantSpark performed 9 and 87.4 times faster than
Yggdrasil for a dataset of 1.6M and 3.2M variants, respectively.
As mentioned, the biggest dataset requires 100 GB memory to be
loaded. While Yggdrasil is executed on a computer cluster with
2 TB of memory, it processes the 3.2M dataset with difficulty.

Result 3: VariantSpark scales at most linearly with
sample and variant increases

We test VariantSpark’s scalability by recording the runtime
when increasing the number of variants 10 times at each step,
with 1,000, 10,000, and 100,000 samples, respectively. As shown
in Fig. 4a, the runtime increases sub-linearly with the increas-
ing number of variants and increases linearly with the increas-
ing number of samples. Note that both axes are on a logarithmic
scale.

VariantSpark can use distributed compute resources effi-
ciently and scales linearly with the size of the cluster as shown
in Fig. 4b. It records the speed-up gained when doubling the size
of the cluster processing the 10K sample and 1M variant dataset.
Up to the C512 cluster, the runtime can be halved (speed-up ∼2).
However, using a C1024 cluster, the speed-up decreases to 1.5,
which is due to the 10K-1M dataset not being large enough to
be efficiently partitioned over 1,024 CPUs and networking be-

comes a bottleneck. The 2-fold speed-up on this larger cluster is
achieved when processing a 10 times larger dataset (10K-10M).

We also investigate whether high-performance compute-
nodes perform better than commodity ones, by running the
same job on 3 clusters of the overall same capacity but with dif-
ferent numbers and sizes of compute-nodes. Each cluster pro-
cesses the job 3 times with minimum and maximum runtimes
plotted. Fig. 4c shows that compute-node choice has little ef-
fect on the runtime. Interestingly, the most expensive HPC com-
puter node (8 computers each with 32 vCPU) delivered a worse
runtime compared to a commodity set-up (32 computers each
with 8 vCPU), with the best performance delivered by a moder-
ate size computer (16 computers each with 16 vCPU). This is be-
cause of the balance between CPUs, memory, and network per-
formance. The runtime variation between replicates is <10%,
with the largest difference observed in clusters utilizing more
compute-nodes. This is likely due to the increase in networking
between nodes, which is subject to external fluctuations.

Result 4: Hyper-parameter tuning is different for
ultra-high-dimensional data

There are 4 important parameters to set when building an RF
model:

� nTree: Number of trees in the forest
� mTry: Number of variants evaluated at each node of a tree
� maxD: Maximum depth of a tree to grow
� minNS: Minimum number of samples in a node to be pro-

cessed

Here, we show that parameter choice substantially affects
the performance and accuracy of the trained model. We var-
ied these parameters and recorded runtime and OOB. Also, we
record the average number of nodes per tree and average tree
depth to show the effect of maxD and minNS on the RF model.

As a rule of thumb, it is recommended to set mTry to the
square root of nV; however, our findings show that this recom-
mendation does not suit the analysis of genome-wide datasets.
Fig. 4d shows the effect of mTry on the runtime and accuracy
of the RF model (10K-1M dataset). mTry = 0.1 × nV = 100,000
shows a substantial improvement in the accuracy compared to
the previously recommended mTry = (nV)1/2 = 1,000.

Applying limits to RF training to keep trees shallow and ef-
ficient affects the runtime and accuracy of the model. Fig. 4e
shows the runtime and OOB of VariantSpark when no limits
are applied, as well as when maximum depth (maxD) and min-
imum node size (minNS) are set. Applying these limits reduces
the runtime up to 4.8 times. Interestingly, applying these lim-
its also reduces OOB (increases accuracy). This is because deep
down in the trees, there are fewer samples in nodes and it is
more likely for a variant to gain information by chance. In other
words, there is less statistical support for the information ob-
tained from the bottom of a deep tree, and this pushes the model
to overfit the data. Also illustrated in this figure is the effect of
maxD and minNS on runtime. Note, getting the best accuracy
by setting optimal parameter values depends on the complexity
of the phenotype and the size of the dataset and hence likely
differs between datasets.

Fig. 4d shows that increasing the number of trees nTree in-
creases the runtime linearly as expected. Also, the OOB is re-
duced (higher prediction accuracy) when doubling the nTree at
each step. However, the reduction in OOB is slowed down when
training excessive numbers of trees. In other words, we cannot
reduce OOB to zero by increasing the number of trees. At this
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Figure 4: VariantSpark runtime as a function of size of (a) the dataset, (b) the cluster, and (c) the compute-nodes. VariantSpark runtime and accuracy as a function of

(d) mTry and nTree and (e) maxD and minNS. (f) The effect of maxD and minNS on the average depth and the number of nodes per tree.

stage, it is not possible to predefine the optimal number of trees
because it depends on the complexity of the phenotype and the
size of the dataset.

The effect of VariantSpark batch size (number of trees pro-
cessed in parallel) is recorded in Supplementary Data File 1. An
appropriate batch size (depending on the size of cluster and net-
working performance) can result in the highest speed-up at no
cost to the accuracy.

Methods

VariantSpark is a distributed implementation of the original
RF classification algorithm [16]. It accepts ordinal features and
a categorical response variable. In the context of GWAS, fea-
tures are genomic variants and encoded to 0, 1, and 2 for 0/0,
0/1, and 1/1 genotypes, respectively. This is the VariantSpark
default encoding when the data are provided in a genomic
VCF format. It is possible to use a more complex encoding
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in a comma-separated value (CSV) format. The user can com-
bine other ordinal omics data with genomics data for multi-
omics analysis. In case/control studies, the response variable is
a binary phenotype. Yet, VariantSpark can perform multi-class
analysis too.

Importance score captures interactions

When processing a node of a tree, RF evaluates randomly se-
lected variants to separate samples of a node into 2 child nodes
(a binary tree). The goal is to keep samples of the same class
in 1 of the child nodes. The best split is the variant that results
in the highest separation of samples. The best split maximizes
the “information gained,” which is a metric that measures the
quality of separation. VariantSpark uses Gini-Index impurity as
described in [16] to compute information gained as used in the
original RF.

The samples in each node are selected as a result of the best
split in all parent nodes. Thus the best split and information
gained in each node depend on all variants selected in the up-
stream nodes (to the root) and the interaction between them.
Given a large number of trees built in an RF model a variant can
be selected as the best split in various nodes in the forest. The
information gained by the variant in each of these nodes dis-
closes part of its interactions (with variants selected in upstream
nodes above it). The importance score of a variant, computed as
the average information gained for the variant, represents all of
its interactions discovered by the RF model.

Algorithmic computational complexity

Here we describe the theoretical dependency of VariantSpark’s
runtime on different parameters. The runtime of the core com-
putation (excluding loading data to memory) is expected to be
linear in nTree × nNode × mTry × nS. The nTree and mTry are di-
rectly given by the user and represent the number of trees in the
forest and the number of variables to be evaluated for each node
of each tree, respectively. nS represents the number of samples
in the dataset. To evaluate each variant at each node of a tree,
the algorithm needs to loop through all samples. nNode repre-
sents the average number of non-leaf nodes per tree.

The value of nNode is determined after the RF is trained be-
cause it depends on mTry, maxD, and minNS, as well as the com-
plexity of the phenotype and the size of the dataset. The lower
mTry, the lower the chance for a node to divide into pure (leaf)
nodes, thus the higher nNode. With a lower maxD or a higher
minNS, trees are smaller (nNode is lower). Also, more samples
in the dataset result in deeper trees (nodes get purer with more
splits), which ultimately increases the nNode. If a phenotype de-
pends only on a few strongly associated signals, trees are shal-
lower and the nNode is smaller.

Given nV = 100M, nS = 10K, nTree = 10K, nNode = 100, and
mTry = 0.1 × nV a computer should perform 1017 operations to
build the RF model. This massive computational requirement
indicates the importance of using a distributed computing plat-
form for such analysis.

The number of classes in the phenotype and the number of
different values a feature can take also affects the processing
time. However, we did not consider their effect because for most
analysis the phenotype is a binary value and bi-allelic genotypes
are encoded to 0, 1, and 2. The time it takes to load data into
memory is a linear function of nS × nV (number of samples and
variants in the dataset, respectively).

Distributed computing

VariantSpark is implemented on top of Apache Spark, a fast dis-
tributed computing platform. In the Spark platform, the dataset
is partitioned in the memory of several computers (compute-
nodes), controlled by a central computer (master-node). In most
implementations of machine learning algorithms, the dataset is
partitioned by samples (horizontal partitioning) such that each
compute-node contains the data for all features and a set of
samples. This is because most machine learning datasets in-
clude a large number of samples and a small number of features.
However, in genomic datasets, it is the number of features that
outgrows the number of samples by several orders of magnitude.
Partitioning by variants (vertical partitioning) is more effective
for genomic data.

Vertical partitioning helps to reduce slow networking opera-
tions. If data are partitioned by samples, to process each node of
a tree, each compute-node in the cluster must partially evaluate
the selected mTry variants and send back results to the master
node of the cluster for aggregation. However, when partitioning
by variants, each compute-node evaluates a subset of the mTry
variants (existing in its local memory) and only sends the infor-
mation about the best local split to the master-node (Fig. 5).

Another important optimization in VariantSpark is paral-
lelizing the processing of several nodes from several trees in a
batch such that network operations never become a bottleneck.
Finally, VariantSpark uses Spark RDD, which provides the low-
est level of access to the memory to deliver the highest perfor-
mance.

Conclusion

While there is evidence for polygenic and epistatic phenotypes,
polygenic-epistatic phenotypes have not been studied yet, likely
because the existing GWAS methods are underpowered to per-
form such compute-intensive association studies. VariantSpark
is the first methodology to perform complex association analy-
ses on whole-genome sequencing experiments and outperforms
other state-of-the-art implementations.

The results provided in this article first demonstrate the ca-
pability of VariantSpark in detecting associative signals of com-
plex interactions, and second elaborate the performance and
scalability when processing large-scale datasets. Akin to deep
learning methods, VariantSpark’s hyper-parameters need to be
iteratively tuned to each dataset, which is made possible by Vari-
antSpark’s speed and scalability.

VariantSpark is not a replacement for traditional association
analysis but a complement. The results of traditional GWAS (LR)
and VariantSpark should be considered together to gain insights
into the full influence of the genome on disease and other phe-
notypes. Similarly, VariantSpark’s output may be usable to pri-
oritize variants in PRS to reduce noise levels.

Availability of Source Code and Requirements

VariantSpark source code and compilation instructions:

� Project name: VariantSpark
� Project home page: https://github.com/aehrc/VariantSpark
� Operating system(s): Platform independent (Java Virtual Ma-

chine)
� Programming language: Scala with Python and Hail Interface
� Other requirements: Java 8, Apache Spark 2

https://github.com/aehrc/VariantSpark
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Figure 5: Illustration of partitioning strategies for distributed computing implementations of RF. For genomics data the number of features is larger than the number
of samples. Here, vertical partitioning better balances data divisions and makes communication between compute-nodes (C) and the master-node (M) more efficient.

Specifically, training each node of each tree with vertical partitioning enables each each compute-node to find the local best split in the allocated partition and to only
communicate the best local split with the master (small green squares). In contrast with horizontal partitioning, each compute-node must communicate the summary
statistics of all allocated samples with the master node (large orange tables).

� License: CSIRO Open Source Software Licence v1.0, based on
MIT/BSD

� RRID:SCR 018383
� BioTools: biotools:variantspark (https://bio.tools/)

AWS CloudFormation templates to simplify the configuration
and installation process:

� Project name: VariantSpark-AWS
� Project home page: https://github.com/aehrc/VariantSpark-

aws
� Programming language: YAML
� License: CSIRO Open Source Software Licence v1.0, based on

MIT/BSD

Availability of Supporting Data and Materials

An archival copy of the code is also available in GigaDB [43].
Finally, to facilitate the use of VariantSpark on AWS cloud, we
extended our CloudFormation templates and made it available
on the AWS Marketplace (https://aws.amazon.com/marketplace
/pp/AEHRC-VariantSpark-Notebook/B07YVND4TD) such that a
user with minimal technical knowledge can get access to a com-
puter cluster of any size with VariantSpark, Hail, and Jupyter
Notebook installed and ready to use.

Additional Files

Supplementary Data File 1. Provides an extended and more de-
tailed numerical comparison for all figures.

Supplementary Data File 2. Includes the maximum correla-
tion values (γ ) for all experiments.

Supplementary Data File 3. Provides all PEPS simulated phe-
notypes for 1000-Genomes dataset with truth-variants and PEPS
configuration files.

Supplementary Data File 4. Explains access to raw data and
output file (available on GigaScience Database [43]) as well as
technical instruction including:

� 1000-Genome data and subsets in vcf compressed format.
� Dataset simulated with VariantSpark.
� Complete correlation matrix between TVs and RVs for all

analyses.
� List of RVs for all analyses.
� Random Forest model created by VariantSpark in JSON for-

mat (used to compute average tree depth and number of
nodes).

� Instructions to create an AWS EMR cluster via terminal.
� Instructions to submit VariantSpark jobs to the cluster.

Abbreviations

1KG: 1000-Genomes; AWS: Amazon Web Services; DT: deci-
sion tree; GWAS: genome-wide association study; HPC: high-

https://scicrunch.org/resolver/RRID:SCR_018383
https://bio.tools/
https://github.com/aehrc/VariantSpark-aws
https://aws.amazon.com/marketplace/pp/AEHRC-VariantSpark-Notebook/B07YVND4TD
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performance computer; LR: logistic regression; OOB: out-of-bag
error rate; PEPS: Polygenic Epistatic Phenotype Simulator; PRS:
polygenic risk score; RDD: Resilient Distributed Dataset; RF: ran-
dom forest; RV: ranked variant; TV: truth variant; vCPU: virtual
central processing unit.

Definitions
� nS: Number of samples in dataset
� nV: Number of variants in dataset
� nTree: Number of trees
� mTry: Number of variables to evaluate at each node of a tree
� maxD: Maximum depth of a tree
� minNS: Minimum number of samples in each node to be pro-

cessed
� rbs: Number of trees to be processed in parallel
�

γ : Maximum absolute Pearson correlation coefficient be-
tween a truth-variant and any of the ranked-variants
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