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In the United States, gastrointestinal disorders account for in excess of $130

billion in healthcare expenditures and 22 million hospitalizations annually. Many of

these disorders, including necrotizing enterocolitis of infants, obesity, diarrhea, and

inflammatory bowel disease, are associated with disturbances in the gastrointestinal

microbial composition and metabolic activity. To further elucidate the pathogenesis of

these disease syndromes as well as uncover novel therapies and preventative measures,

gastrointestinal researchers should consider the pig as a powerful, translational model of

the gastrointestinal microbiota. This is because pigs and humans share striking similarities

in their intestinal microbiota as well as gastrointestinal anatomy and physiology.

The introduction of gnotobiotic pigs, particularly human-microbial associated pigs,

has already amplified our understanding of many gastrointestinal diseases that have

detrimental effects on human health worldwide. Continued utilization of these models

will undoubtedly inform translational advancements in future gastrointestinal research

and potential therapeutics.
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THE RISE AND PLATEAU OF GUT MICROBIOTA RESEARCH

Over the first few days of life, the neonatal gut is rapidly populated by a diverse population of
microorganisms that exponentially expands to a number exceeding that of the total host cells
(1). Interestingly, a recently-proposed paradigm shift suggests that the gut microbiota begins to
develop in utero rather than during birth (2–5). Such findings are pivotal to our understanding of
the gut microbiota given that microbes support vital physiologic processes including production
of volatile fatty acids and vitamin K as well as transportation of electrolytes and water across the
mucosal surface. The presence of gut commensals is particularly crucial in developing neonates,
the developing immune system of which is stimulated by indigenous microflora. Furthermore, the
absence of certain gut commensals has been associated with increased risk for lifelong autoimmune
diseases (6, 7).
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Paralleling increased interest in the gut bacterial microbiota,
herein referred to as the gut microbiota, there have been
robust advancements in laboratory technologies able to
characterize such populations. Increased accessibility to 16S
rRNA and next-generation DNA sequencing has permitted
detailed characterization of the gastrointestinal microbiota in
numerous species. Furthermore, “-omics” laboratory techniques
have informed investigations into the systemic impact of
gut microbial communities. These communities are now
heavily linked with the development of several intestinal
and multisystemic diseases in humans including obesity and
inflammatory bowel disease (IBD).

Despite instrumental advances in microbial identification,
establishing association between variations in microbial diversity
and disease phenotypes is continuously challenged by sampling
limitations within humans. Subsequently, gastrointestinal
research has experienced drastic drops in the development of
new pharmaceuticals and diagnostics despite large monetary
investments by public and private institutions. This decelerated
translation of basic research to clinical practice is colloquially
referred to as the “pipeline problem” (8). This problem is
attributable, at least in part, to the historic use of inappropriate
animal models, frequently rodents, that do not adequately
emulate the human patient. Consequently, gastrointestinal
research has steadily turned toward pig models given their
anatomic and physiologic similarities with humans (9).
This review examines these similarities and summarizes
recently-characterized parallels between the pig and human
gut microbiota, thereby advocating for the pig as an unequaled
model of the human gut microbiota and a powerful tool to break
through current plateaus in exploring disease association with
the gut microbiota.

ANATOMIC AND PHYSIOLOGICAL
SIMILARITIES BETWEEN THE HUMAN
AND PIG OUTWEIGH DIFFERENCES

Nutritionists around the world continue to preach that we are
what we eat. In the realm of gastroenterology, this proverb can
be interpreted literally given that gastrointestinal morphology is
directly associated with meal frequency, type of food from which
nutrients are extracted and composition of the gut microbiota
(10, 11). Unlike rats and other domestic animals, the pig and
human are both true omnivores (12). Therefore, it comes as no
surprise that their gastrointestinal tracts share manymacroscopic
and microscopic features (Figure 1).

Pigs, rodents and humans all have a “simple” stomach
comprised of one compartment. While the entirety of the human
stomach and majority of the pig stomach are glandular, the
rodent stomach is divided into a glandular portion and non-
glandular portion. This non-glandular portion, which is used
for food storage and digestion, defines nearly 50% of the gastric
mucosal surface area in rodents, therefore complicating the
use of rodent models for human gastric studies. In all three
species, the glandular section is composed of cardiac, gastric
and pyloric mucosa. The pig stomach contains significantly

more cardiac mucosa than the human stomach. This cardiac
mucosa creates a pseudo-diverticulum for food storage as well
as digestion and is a proposed site of microbial metabolism.
Furthermore, cardiac epithelial cells are mainly mucus-secreting
while parietal and chief cells of the gastric and pyloric mucosa
secrete hydrochloric acid and pepsinogen, respectively. Taking
these physiochemical differences into account, the relatively
large size of the cardiac mucosa in pigs may support a unique,
physiologic niche for microbes that is not mirrored in the human.
Therefore, caution is urged when making comparisons between
human and pig gastric microbiota. Researchers should be aware
of this anatomic variation and consider sampling protocols that
emphasize collection from the shared gastric and pyloric mucosa
rather than the cardiac mucosa.

Aboard to the stomach, porcine and human intestines are
strikingly similar. The ratio of total intestinal length per kilogram
bodyweight is ∼ 0.1 in both pigs and humans, meaning both
species share a similar relative length of their intestinal tract
(14, 15). The small intestines of both species are macroscopically
similar, characterized by a linear, continuous tube anchored
to the peritoneum by intricately-vascularized mesentery. This
linear morphology is retained in the human large intestines but
disrupted in the pig by the formation of a spiral colon that
coils into itself. The pig colon is additionally slightly larger than
the human colon; the pig colon accounts for approximately
46% of total intestinal tract weight while the human colon
accounts for approximately 36% of total intestinal tract weight
(14). Despite this discrepancy in shape and relative size, however,
the large intestines in both species are functionally similar and
house the body’s largest population of microbes. Notably, the
large intestinal microbiota in both species is responsible for
synthesizing volatile fatty acids, which are absorbed through
the intestinal mucosa (16). Sacculations and tenia within the
human and pig colon additionally provide similar physiologic
and anatomic niches for gut commensals and thereby may
encourage similar microbial populations.

The colon is also the primary site for ingesta fermentation in
both pigs and humans. Rodents, however, are cecal fermenters.
Given that intestinal fermentation is primarily regulated by
luminal microbes, its anatomic localization directly affects the
constituents of the gut microbiota. Therefore, given that rodents
ferment within their cecum, the constituents of their large
intestinal microbiota will significantly vary from that of colon
fermenters, namely pigs and humans. The pig and human ceca do
diverge with respect to their size; the pig cecum is relatively large
and grossly demarcated from the remainder of the large intestines
compared to the human cecum. Therefore, similar to the gastric
cardia, the study of the pig cecum as a model for humans must be
regarded with caution.

Mucosal Peyer’s patches are another anatomic feature
that distinguishes the pig and human gastrointestinal tract,
specifically the small intestines, from one another. Pig and
human Peyer’s patches intestines diverge with respect to the
cellular composition, development, distribution and number
(12, 17, 18). In fact, organogenesis research suggests that pigs
develop two distinct types of Peyer’s patches, jejunal and ileal,
while humans develop only one (19). Given that one of the
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FIGURE 1 | Schematic diagram for comparison of mouse, pig and human gastrointestinal tract anatomy. Derived from Ziegler et al. (13).

Peyer’s patches many functions is to discriminate between
pathogenic and commensal bacteria, we can speculate that this
interspecies variability may provoke distinct host perception

of and interaction with gut commensals. Conversely, several
researchers argue that these differences between pig and human
Peyer’s patches are of limited significance because pigs and
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humans demonstrate similar immunologic responses to various
gastrointestinal insults (12, 20, 21).

The anatomic similarities between the pig and human
gastrointestinal tracts translate to comparable intestinal motility,
referring to the contraction and relaxation of the muscularis
layers, as well as similar ingesta transit time, referring to the time
ingesta takes to travel from the esophagus to the rectum (22).
Significant alterations in the gutmicrobiota are regularly detected
in individuals with altered intestinal mobility, such as surgery
patients with postoperative ileus. Therefore, similar ingesta
transit times between pigs and humans may facilitate similar
populations of gut microbiota by discouraging colonization by
pathogenic or non-commensal organisms.

COMPARING THE NEONATAL AND ADULT
INTESTINAL MICROBIOTA OF PIGS AND
HUMANS REVEALS IMPORTANT
SIMILARITIES AND DIFFERENCES

Many studies have made impactful comparisons between the
intestinal microbiota of pigs and humans (23–25). Although
the intestinal microbiota in healthy adults and mature pigs is
relatively stable, it fluctuates widely over the first year of life for
both species (26–28). One study has demonstrated that piglets
from the same litter as well as newborn human twins can differ
with respect to their intestinal microbiota (29). Furthermore,
adult humans and pigs demonstrate similar alterations to their
gut microbiota in response to environmental stressors and
antibiotics (30–35). This suggests that the pig is a powerful model
of pathologic disturbances in the intestinal microbiota, such as
those elicited by antibiotic-induced dysbiosis and IBD.

Notably, most studies on the intestinal microbiota are
based primarily on fecal samples due to limitations in sample
acquisition. Sampling the human gastrointestinal microbiota
is particularly challenging given that elective surgeries to
obtain such samples are costly, time-consuming, and simply
unappealing to most individuals. Elective surgeries in laboratory
animals are certainly more feasible but still elicit a systemic
stress response, which may compromise the microbiota and
consequently the study’s integrity. Therefore, very few studies
have provided direct, interspecies comparisons of microbial
populations across specific sites of the gastrointestinal tract.

Given this sampling limitation, most comparative studies have
been limited to the large intestines, namely the colon (Figure 2).
Under natural conditions, more than 90% of the bacteria in the
colon of adult humans and pigs are within one of two phyla:
Firmicutes or Bacteroidetes (27, 30, 31, 33, 34, 38). Although
there is slight variation in bacterial genus and species due to
species specificity, shared bacterial physiology and metabolism
within these phyla solidify the adult pig as a feasible model of
the human colonic microbiota in health.

Species divergence becomes more readily apparent when
considering the large intestinal microbiota of neonatal pigs and
human infants. Large intestinal content and feces isolated from
adults and infants contain significantly more Actinobacteria than
adult or neonatal pigs (33, 39). In fact, the large intestines of

formula- and breast-fed infants are dominated by Actinobacteria.
This discrepancy between wildtype neonatal pigs and human
infants can be mitigated through the use of increasingly-
available, gnotobiotic animals, which will be further discussed
in subsequent sections. Wildtype piglets may remain relevant
models of the infant gut microbiota, however, given their
shared alternations in the intestinal microbiota following the
introduction of solid food (40). Therefore, wildtype neonatal pigs
can be used to examine the pathogenesis and potential therapies
for dietary and environmental perturbations on the intestinal
microbiota of infants as long as relative alterations in specific
bacterial genera and species are interpreted with care.

Although the large intestines of adults and mature pigs are
dominated by the same two phyla, interspecies variability is
further elucidated by comparing the bacterial genera isolated
from those phyla.Within Bacteroidetes, themost abundant genus
in the human intestines is Bacteroides while that in pig intestines
is Prevotella (26). At 10 weeks-of-age, Prevotella represents up to
30% of the microbiota of the pig colon. As the pig reaches 22-
weeks-old, however, relative numbers of Prevotella species drop
to 4% and relative numbers of Anaerobacter sp., which are in
the Firmicutes phylum, increase (33, 41). This steady decline in
Bacteroidetes and increase in Firmicutes is mirrored in human
infants over their first 4 months of life (41, 42). Therefore,
although there are select differences in bacterial genera and
species between pig and human intestines, shared bacterial phyla
likely trigger comparable physiologic developments and establish
similar symbiotic relationships.

One of the most conspicuous dissimilarities between
the human and pig microbiota is the presence of specific
microorganisms that are unique to pigs. In fact, both sow-reared
and formula-fed piglets have greater intestinal microbial diversity
than human infants (39). Low numbers of Fusobacterium are
detected in the feces of neonatal pigs but not breast-fed infants
(39). Significantly more Lactobacilli, Spirochetes and Streptococci
are isolated from the porcine intestines than the human intestines
at any age (26, 33, 41). A high percentage of the porcine ileal
microbiota is represented by Proteobacterium, which is not
reported in the human ileum (30). However, large numbers
of Proteobacteria have be isolated from the feces of breast-fed
infants (39). This being said, aforementioned limitations on
sample collection presumably limit researchers’ ability to fully
characterize every bacterium within the human intestines.
Identification of certain gastrointestinal commensals in pigs but
not humans may be attributable to sampling techniques that are
feasible in the former but not the latter.

The stark differences among the environments of humans,
pigs and rodents must also be considered as a potential driver
of these variations. Coprophagy is considered to be normal
behavior of pigs and rodents. In piglets, the influence of sanitary
conditions and coprophagia on the gastrointestinal microbiota
has been well established (43, 44). Coprophagia of the sow’s
feces may in fact benefit piglets as a source for commensal
microbes that foster the development of the piglet’s microbiome.
Considering the commonality of coprophagia in pigs, many
researchers have turned to germ free, gnotobiotic or even
humanized pigs, all of which are further discussed below.
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FIGURE 2 | Taxonomic distribution of bacterial phyla from pigs, humans and mice at different life stages. This graph illustrates the percent of sequences assigned to

each bacterial phylum isolated through 16S rRNA sequencing of pooled fecal samples isolated from healthy individuals of each species (33, 36, 37).

Despite select dissimilarities in the intestinal microbiota of
pigs and humans, the alluring nature of the pig as a model
for the human intestinal microbiota is largely attributable to
the fact that the pig is the best model we currently have.
While the laboratory animal population across the world remains
dominated by rodents, anatomic and physiologic dissimilarities
between the human and rodent gastrointestinal tracts promote
significant interspecies variation in the gut microbiota (23, 45).
Nearly 85% of the bacteria genera isolated from the mouse gut
is not present within the human, which immensely overshadows
aforementioned variations in intestinal microbiota of pigs and
humans (46).

CUTTING-EDGE TECHNIQUES ARE
AVAILABLE IN PIG MODELS

The pig’s potential for high impact, translational research
is further exemplified by the vast number of laboratory
techniques that have been adapted to the pig. One of the
biggest advantages of pig is its relative size compared to other
traditional laboratory animals such as mice and rats. The
pig’s large gastrointestinal tract equates to increased surgical
access and manipulation as well as experimental tissue volume.
Furthermore, standardization of pig care and surgery permits
even a novice researcher to easily expand their studies to include
pig models (47–50).

Paralleling this expanse in laboratory techniques, there has
been a sharp rise in the type of available pig models. The pig
genome has been fully sequenced, leading to the emergence of
genetically-modified pigs. Genetically-modified pigs are stronger
translational models than rodents given that the human genome
is more closely related to the pig than to the mouse or
rat (51–53). Such models can strengthen our understanding
of disease pathogenesis by introducing the ability to knock-
down or knock-out genes as well as artificially tag specific
cell populations and proteins so that they can be traced along
the course of disease. Therefore, observations elucidated from
these pigs can better inform putative disease therapies in
human medicine.

In addition to genetically-modified pigs, many researchers

are introducing germ-free, gnotobiotic and human-microbial
associated (HMA) pigs to their experimental design. Through

elimination of the intestinal microbiota in germ-free pigs,
investigators may track variances in disease pathogenesis and

consequently infer disease association or correlation with
specific gut commensals. This being said, germ-free pigs have
shorter small intestines, shorter crypts, longer villi and smaller
Peyer’s patches compared to conventionally-raised pigs (39).
These anatomic variances, along with associated alterations
in intestinal physiology and immunology, force researchers
to question the translatability of germ-free pigs. Gnotobiotic
pigs are arguably more powerful models of gastrointestinal
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disease because they permit direct manipulation of the
intestinal microbiota such that investigators can characterize
disease progression in the presence of select microbes.
One emerging subset of gnotobiotic pigs, HMA pigs, are
exceptionally noteworthy and will be discussed further within
the following section.

IMPORTANT DIFFERENCES BETWEEN
THE HUMAN AND PORCINE INTESTINAL
MICROBIOTA MAY BE SURPASSED
THROUGH HUMAN-MICROBIAL
ASSOCIATED PIGS

Several laboratories have successfully “humanized” the intestinal
microbiota of animal models by inoculating germ-free animals
with microorganisms isolated from the human intestines (11).
Human microbiota-associated piglets have been established
using inocula from infants, children and adults (40, 54, 55).
The gut microbiota from these recipient HMA piglets is more
similar to that of the human donor than that of conventionally-
raised piglets. Furthermore, age-related microbial succession
in HMA piglets mirrors that observed within the human
donors (40).

Notably, bacteria from the Actinobacteria phyla, namely
Bifidobacteria, successfully colonize HMA piglets and reach
population densities similar to those in humans (40). Therefore,
although the intestinal microbiota of conventionally-raised
piglets diverges from that of infants due to the absence of
naturally occurring Acintobacteria, the intestinal microbiota
of HMA-piglets can be manipulated such that it closely
emulates that of humans. Attempts to create HMA models
in other animal species have not been as fruitful. The
predominant bacterial genera of the human intestines,
including Lactobacillus and Bifidobacterium, do not successfully
colonize the gut of mice and zebrafish following inoculation
(56–58). Therefore, not all HMA animals are powerful
models of the human intestinal microbiota and something
within the pig, perhaps the similarities in gastrointestinal
anatomy and physiology, supports successful colonization of
human bacteria.

The strength in the HMA pig model stems from the
vast number of questions that can be gleaned through
its integration in experimental design. As probiotics and
prebiotics continue to gain momentum while synbiotics and
postbiotics gain traction in the world of dietary supplementation,
HMA pig models may be key to evaluating the impact
of these compounds on the microbiota (59–61). Long-
term studies of HMA pigs can therefore overcome the
limitations in sample collection from the intestinal lumen
of humans, thereby allowing further study of microbial
community succession and biogeography in infants to
adults. Additionally, it will be interesting to use HMA pigs
to investigate whether key microbial activities can be transferred
to recipient animals. This may inform future treatment
modalities for gastrointestinal disorders that are associated with
microbiota derangements.

WITH IMPACTFUL MODELS COMES
IMPACTFUL COSTS

One of the biggest limitations of pig models is their relative
cost of model acquisition and maintenance. In the Unites States,
the per diem housing cost for rodents typically ranges between
$1-3 USD while for a pig is up to $19 USD depending on the
facility1. Given that the lifespan of most laboratory rodents is
around 2–3 years and that of pigs is around 20 years, accruing
costs of pig colony management may limit the feasibility of long-
term, prospective studies. Even a single finishing pig, which is
between 4-months and 1-year-old, is up to 30 times the cost
of an adult laboratory mouse or rat (personal communication
with Dr. Jack Odle, North Carolina State University). Despite
the previously discussed power of gnotobiotic and HMA pig
models, the limited number of laboratory facilities that can
house large animals significantly potentiates costs. One litter of
gnotobiotic pigs is estimated to cost around $25,000 and the cost
of a 9-month study on 2 gnotobiotic litters is around $350,000
(personal communication with Dr. Michael Oglesbee, The Ohio
State University). While gnotobiotic mice are certainly not cheap
at $500 each, they are significantly less expensive than their
porcine counterpart2.

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

As gastrointestinal researchers continue to embrace the pig
model and HMA pigs become increasingly accessible, emerging
translational studies will divulge the pathogenesis of and
putative therapies for diseases characterized by or associated
with intestinal dysbiosis. Pig models have already proven
advantageous in the study of microbiota-associated diseases such
as necrotizing enterocolitis of infants, which is a complication
of preterm, very-low birth weight infants that has been
associated with bacterial colonization of the intestines (62–70).
Particularly now that the porcine intestinal microbiota has been
fully characterized through multiple life stages, gastrointestinal
researchers can easily track changes in the microbial composition
and make direct associations between these changes and disease
(28, 38, 41, 71). Compounding these studies with investigations
into potential preventative and therapeutic interventions will
undoubtedly uncover exciting, translational advances that will
benefit humans and animals alike.
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