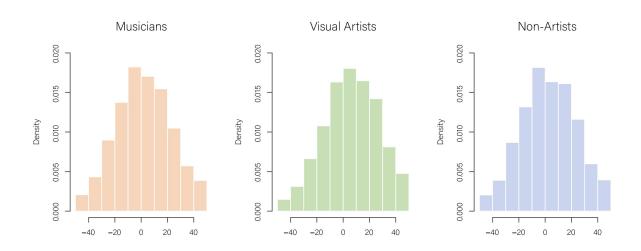
Supplementary Information

for the manuscript

"How being perceived to be an artist boosts feelings of attraction in others"


by

Eugen Wassiliwizky, Paul Wontorra, and Fredrik Ullén

Fototipp: Du siehst auch ohne Musikinstrument cool genug aus

Figure S1. Screen shot from the dating platform *Tinder*. The German text reads: *Photo advice: You look cool enough without a musical instrument*.

Figure S2. Density plots from the actual sample for facial attractiveness ratings of musicians, visual artists, and non-artists. Note that the collected data are (normally) distributed across the entire spectrum of the scale range, and that there is no systematic difference in attractiveness ratings between the three status groups. This is also reflected in statistical modeling (Model-A, Table S3), as Status per se does not predict Attractiveness ratings.

Table S1. General Observations I: Results for LMMs predicting ViewingTime (of faces and torsos) through mean facial attractiveness. The following model has been fitted:

Level 1: ViewingTime_{ij} = β_{0j} + β_{i0} + β_{1j} MeanFacialAttractiveness + ε_{ij}

		Faces			Torsos	
Predictors	Estimates [95%-CI]	t	p	Estimates [95%-CI]	t	p
Fixed Effects						
(Intercept)	9.865 [9.782, 9.949]	232.138	<0.001	9.967 [9.877, 10.056]	219.035	<0.001
MeanFA	0.001 [0.001, 0.002]	2.657	0.0085	0.001 [0.000, 0.002]	2.164	0.0317
Random Part						
σ^2		0.263			0.275	
${\tau_0}^2$		0.002_{Stim}		0.006		
${\tau_0}^2$		0.142_{Sub}		0.162		
ICC		0.353			0.379	
N	1	90 _{Stim} / 80 _{Sub}			$190_{Stim}/80_{Sub}$	
Observations		15200			15200	
Conditional R ² / Marginal R ²	0	.354 / 0.0004			0.379 / 0.001	

Table S2. General Observations II: LMM results predicting Ratings of each scale through the portrait's Layout format. The following model has been fitted: Level 1: Rating_{ij} = β_{0j} + β_{i0} + β_{1j} Layout + ε_{ij}

	A	Attractiveness		1	Interestingness			Sympathy		
Predictors	Estimates [95%-CI]	t	p	Estimates [95%-CI]	t	p	Estimates [95%-CI]	t	p	
Fixed Effects										
(Intercept)	0.469 [-2.135, 3.073]	0.354	0.724	-7.648 [-10.271, -5.020]	-5.725	< 0.001	2.245 [-0.270, 4.760]	1.754	0.081	
Layout	2.896 [2.552, 3.239]	16.516	<0.001	8.244 [7.836, 8.652]	39.581	<0.001	4.494 [4.142, 4.845]	25.056	<0.001	
Random Part										
σ^2	233.60		329.68			244.47				
${\tau_0}^2$		124.17 _{Stim}		62.69_{Stim}			94.45_{Stim}			
$ au_0^2$		82.17 _{Sub}		107.62_{Sub}			84.82 _{Sub}			
ICC		0.469			0.341			0.423		
N	1	190 _{Stim} / 80 _{Sub}			$190_{Stim} / 80_{Sub}$			$190_{Stim}/80_{Sub}$		
Observations		30400			30400			30400		
Conditional R ² / Marginal R ²	(0.472 / 0.005			0.362 / 0.033			0.430 / 0.012		

 Table S2 [continued]. LMM results predicting Ratings through the portrait's Layout.

		Trustworthiness		Į	Wish-to-Meet			ViewingTime	?	
Predictors	Estimates [95%-CI]	t	p	Estimates [95%-CI]	t	p	Estimates [95%-CI]	t	p	
Fixed Effects										
(Intercept)	1.465 [-0.905, 3.835]	1.215	0.226	-7.009 [-9.659, -4.358]	-5.20	<0.001	9.764 [9.677, 9.853]	218.6 5	<0.001	
Layout	5.110 [4.756, 5.463]	28.323	<0.001	5.407 [5.025, 5.790]	27.71	<0.001	0.101 [0.089, 0.113]	16.89	<0.001	
Random Part										
σ^2		247.36		289.40				0.271		
${\tau_0}^2$		56.66_{Stim}		65.71_{Stim}			0.151_{Stim}			
τ_0^2		85.87 _{Sub}			110.02 _{Sub}			0.271_{Sub}		
ICC		0.366			0.378			0.362		
N		$190_{Stim}/80_{Sub}$		1	190 _{Stim} / 80 _{Sub}			190 _{Stim} / 80 _{Sub})	
Observations		30400			30400			30400		
Conditional R ² / Marginal R ²		0.376 / 0.016		(0.387 / 0.015			0.366 / 0.006		

Table S3. LMM results predicting Attractiveness through the portrait's Layout (face, torso) and Status of the depicted person (musician, visual artist, non-artist), as well as the Attractiveness-Boost just through Status. To test H2, the following models have been fitted:

Model-A: Level 1: Attractiveness_{ij} = $\beta_{0j} + \beta_{i0} + \beta_{1j}$ Layout_{ij} * β_{2j} Status_{ij} + ϵ_{ij}

 $\label{eq:model-A-Boost:} \text{Level 1: Attractiveness-Boost}_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \, \text{Status}_{ij} + \epsilon_{ij}$

	Attractiven	ess (Model-	<i>A)</i>	Attractiveness-Boost (Model-A-Boost)			
Predictors	Estimates [95%-CI]	t	p	Estimates [95%-CI]	t	p	
Fixed Effects							
(Intercept)	0.0285 [-2.969, 3.026]	0.019	0.985	3.327 [2.6, 4.05]	8.968	<0.001	
Layout	3.327 [2.864, 3.789]	14.11	<0.001				
Status: M <non< td=""><td>0.465 [-3.102, 4.033]</td><td>0.255</td><td>0.798</td><td>-1.226 [-2.053, -0.401]</td><td>2.907</td><td>0.004</td></non<>	0.465 [-3.102, 4.033]	0.255	0.798	-1.226 [-2.053, -0.401]	2.907	0.004	
Status: V <non< td=""><td>3.222 [-2.956, 9.402]</td><td>1.021</td><td>0.308</td><td>0.165 [-1.264, 1.596]</td><td>0.227</td><td>0.821</td></non<>	3.222 [-2.956, 9.402]	1.021	0.308	0.165 [-1.264, 1.596]	0.227	0.821	
Status: M <v< td=""><td>-2.757 [-9.146, 3.631]</td><td>-0.845</td><td>0.399</td><td>-1.392 [-2.871, 0.0865]</td><td>-1.843</td><td>0.067</td></v<>	-2.757 [-9.146, 3.631]	-0.845	0.399	-1.392 [-2.871, 0.0865]	-1.843	0.067	
L*S: M <non< td=""><td>-1.227 [-1.961, -0.493]</td><td>-3.276</td><td>0.001</td><td></td><td></td><td></td></non<>	-1.227 [-1.961, -0.493]	-3.276	0.001				
L*S: V <non< td=""><td>0.166 [-1.105, 1.437]</td><td>0.256</td><td>0.798</td><td></td><td></td><td></td></non<>	0.166 [-1.105, 1.437]	0.256	0.798				
L*S: M <v< td=""><td>-1.392 [-2.707, -0.079]</td><td>-2.077</td><td>0.038</td><td></td><td></td><td></td></v<>	-1.392 [-2.707, -0.079]	-2.077	0.038				
Random Part							
σ^2	23	33.52		247.942			
${\tau_0}^2$	123	3.83_{Stim}		4.316_{Stim}			
${\tau_0}^2$	82	2.17 _{Sub}		5.362_{Sub}			
ICC	0	.469		0.038			
N	190_{Sti}	im / 80 _{Sub}		190 _{Stim} / 80	Sub		
Observations	3	0400		15200			
Conditional R ² / Marginal R ²	0.473	3 / 0.009		0.039 / 0.00)1		

Table S4a. LMM results predicting Attractiveness-Boost through Status of the depicted person (musician, visual artist, non-artist) and the stimulus' gender (male, female) interacting with the rater's gender (male, female). To test H3a, the following model has been fitted:

Level 1: AttractivenessBoost_{ij} = $\beta_{0j} + \beta_{i0} + \beta_{1j}$ Status_{ij} + β_{2j} Stim_Gender_{ij} * β_{3j} Rater_Gender_{ij} + ϵ_{ij}

	Attraci	ivenessBoost	
Predictors	Estimates [95%-CI]	t	p
Fixed Effects			
(Intercept)	3.232 [2.181, 4.284]	5.997	< 0.001
Status: M <non< td=""><td>-1.222 [-2.042, -0.402]</td><td>-2.911</td><td>0.004</td></non<>	-1.222 [-2.042, -0.402]	-2.911	0.004
Status: V <non< td=""><td>0.176 [-1.244, 1.595]</td><td>0.241</td><td>0.809</td></non<>	0.176 [-1.244, 1.595]	0.241	0.809
Status: M <v< td=""><td>-1.398 [-2.865, 0.07]</td><td>-1.859</td><td>0.065</td></v<>	-1.398 [-2.865, 0.07]	-1.859	0.065
Stim_Gen: m <f< td=""><td>0.441 [-0.489, 1.371]</td><td>0.927</td><td>0.355</td></f<>	0.441 [-0.489, 1.371]	0.927	0.355
Rater_Gen: m <f< td=""><td>-0.482 [-1.729, 0.765]</td><td>-0.756</td><td>0.451</td></f<>	-0.482 [-1.729, 0.765]	-0.756	0.451
S_Gen*R_Gen: m <f< td=""><td>0.447 [-0.556, 1.45]</td><td>0.874</td><td>0.382</td></f<>	0.447 [-0.556, 1.45]	0.874	0.382
Random Part			
σ^2		247.946	
${\tau_0}^2$		4.239_{Stim}	
${\tau_0}^2$		5.431 _{Sub}	
ICC		0.038	
N		190 _{Stim} / 80 _{Sub}	
Observations		15200	
Conditional R ² / Marginal R ²	ı	0.039 / 0.002	

Table S4b. LMM results for a reduced data set of female raters and male portraits, predicting Attractiveness-Boost through Status of the depicted person (musician, visual artist, non-artist). This is thus a modified version of Model-A-Boost for a reduced data set:

Level 1: Attractiveness-Boost_{ij} = $\beta_{0j} + \beta_{i0} + \beta_{1j}$ Status_{ij} + ϵ_{ij}

	Attractiv	venessBoost	
Predictors	Estimates [95%-CI]	t	p
Fixed Effects			
(Intercept)	3.668 [2.490, 4.884]	6.092	<0.001
Status: M <non< td=""><td>-1.153 [-2.631, 0.324]</td><td>-1.525</td><td>0.131</td></non<>	-1.153 [-2.631, 0.324]	-1.525	0.131
Status: V <non< td=""><td>-0.471 [-3.05, 2.108]</td><td>-0.357</td><td>0.722</td></non<>	-0.471 [-3.05, 2.108]	-0.357	0.722
Status: M <v< td=""><td>-0.682 [-3.35, 1.986]</td><td>-0.5</td><td>0.618</td></v<>	-0.682 [-3.35, 1.986]	-0.5	0.618
Random Part			
σ^2		287.413	
τ_0^2		5.296 _{Stim}	
$ au_0^2$		5.779 _{Sub}	
ICC		0.037	
N	9	7 _{Stim} / 42 _{Sub}	
Observations		4074	
Conditional R ² / Marginal R ²	0.	.038 / 0.001	

Table S4c. LMM results for a reduced data set of male raters and female portraits, predicting Attractiveness-Boost through Status of the depicted person (musician, visual artist, non-artist). This is thus a modified version of Model-A-Boost for a reduced data set:

Level 1: Attractiveness-Boost_{ij} = $\beta_{0j} + \beta_{i0} + \beta_{1j}$ Status_{ij} + ϵ_{ij}

	Attractiv	venessBoost	
Predictors	Estimates [95%-CI]	t	p
Fixed Effects			
(Intercept)	3.424 [2.205, 4.642]	5.504	<0.001
Status: M <non< td=""><td>-1.96 [-3.348, -0.573]</td><td>-1.525</td><td>0.007</td></non<>	-1.96 [-3.348, -0.573]	-1.525	0.007
Status: V <non< td=""><td>1.086 [-1.297, 3.469]</td><td>0.891</td><td>0.375</td></non<>	1.086 [-1.297, 3.469]	0.891	0.375
Status: M <v< td=""><td>-3.046 [-5.509, -0.584]</td><td>-2.418</td><td>0.018</td></v<>	-3.046 [-5.509, -0.584]	-2.418	0.018
Random Part			
σ^2		217.494	
${ au_0}^2$		4.552_{Stim}	
${ au_0}^2$		7.052_{Sub}	
ICC		0.051	
N	9	3 _{Stim} / 38 _{Sub}	
Observations		3534	
Conditional R ² / Marginal R ²	0.	.055 / 0.005	

Table S5. LMM results predicting Attractiveness-Boost through mean facial attractiveness interacting with the Status of the depicted person (musician, visual artist, non-artist). To test H3b, the following model has been fitted:

 $\text{Level 1:} Attractiveness-Boost_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \, \text{MeanFacialAttractiveness}_{ij} * \beta_{2j} \, \text{Status}_{ij} + \epsilon_{ij}$

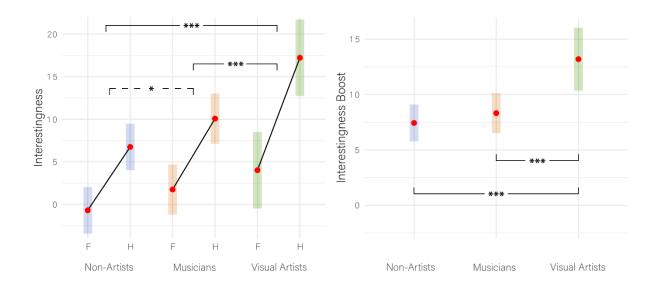

	Attra	ctiveness-Boost	
Predictors	Estimates [95%-CI]	t	p
Fixed Effects			
(Intercept)	3.386 [2.647, 4.125]	8.941	< 0.001
MeanFacialAttract	-0.017 [-0.063, 0.028]	-0.745	0.457
Status: M <non< td=""><td>-1.146 [-1.989, -0.302]</td><td>-2.637</td><td>0.009</td></non<>	-1.146 [-1.989, -0.302]	-2.637	0.009
Status: V <non< td=""><td>-0.112 [-1.787, 1.562]</td><td>-0.13</td><td>0.897</td></non<>	-0.112 [-1.787, 1.562]	-0.13	0.897
Status: M <v< td=""><td>-1.034 [-2.748, 0.681]</td><td>-1.171</td><td>0.243</td></v<>	-1.034 [-2.748, 0.681]	-1.171	0.243
MFA*S: M <non< td=""><td>-0.036 [-0.109, 0.036]</td><td>-0.976</td><td>0.33</td></non<>	-0.036 [-0.109, 0.036]	-0.976	0.33
MFA*S: V <non< td=""><td>0.05 [-0.089, 0.189]</td><td>0.7</td><td>0.485</td></non<>	0.05 [-0.089, 0.189]	0.7	0.485
MFA*S: M <v< td=""><td>-0.086 [-0.229, 0.056]</td><td>-1.177</td><td>0.241</td></v<>	-0.086 [-0.229, 0.056]	-1.177	0.241
Random Part			
σ^2		247.942	
${\mathfrak{r}_0}^2$		$4.266_{\rm Stim}$	
${ au_0}^2$		5.362_{Sub}	
ICC		0.037	
N		$190_{Stim}/80_{Sub}$	
Observations		15200	
Conditional R ² / Marginal R ²		0.039 / 0.002	

Table S6. LMM results predicting Interestingness through the portrait's Layout (face, torso) and Status of the depicted person (musician, visual artist, non-artist) as well as the Interestingness-Boost just through Status. To test H2, the following models have been fitted:

Model-I: Level 1: Interestingness_{ij} = $\beta_{0j} + \beta_{i0} + \beta_{1j}$ Layout_{ij} * β_{2j} Status_{ij} + ϵ_{ij}

 $\label{eq:model-l-Boost:} \text{Level 1:Interestingness-Boost}_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \, \text{Status}_{ij} + \epsilon_{ij}$

	Interesting	ness (Model-	·I)	Interestingness-Boost (Model-I-Boost)		
Predictors	Estimates [95%-CI]	t	p	Estimates [95%-CI]	t	p
Fixed Effects						
(Intercept)	-8.123 [-10.962, -5.284]	-5.611	<0.001	7.437 [5.772, 9.102]	8.763	< 0.001
Layout	7.437 [6.889, 7.986]	26.569	<0.001			
Status: M <non< td=""><td>1.558 [-1.134, 4.251]</td><td>1.133</td><td>0.258</td><td>0.885 [-0.657, 2.428]</td><td>1.124</td><td>0.263</td></non<>	1.558 [-1.134, 4.251]	1.133	0.258	0.885 [-0.657, 2.428]	1.124	0.263
Status: V>Non	-1.052 [-5.715, 4.251]	-0.441	0.659	5.760 [3.089, 8.432]	4.222	<0.001
Status: M <v< td=""><td>2.610 [-2.211, 7.432]</td><td>1.059</td><td>0.290</td><td>-4.875 [-7.637, -2.113]</td><td>-3.456</td><td><0.001</td></v<>	2.610 [-2.211, 7.432]	1.059	0.290	-4.875 [-7.637, -2.113]	-3.456	<0.001
L*S: M>Non	0.885 [0.014, 1.756]	1.992	0.046			
L*S: V>Non	5.760 [4.252, 7.269]	7.483	<0.001			
L*S: M <v< td=""><td>-4.875 [-6.435, -3.315]</td><td>-6.125</td><td><0.001</td><td></td><td></td><td></td></v<>	-4.875 [-6.435, -3.315]	-6.125	<0.001			
Random Part						
σ^2	32	29.09			436.76	
${ au_0}^2$	58.	.27 _{Stim}		20.38_{Stim}		
τ_0^2	107	7.62 _{Sub}			37.93 _{Sub}	
ICC	0	.335			0.118	
N	190_{Sti}	im / 80 _{Sub}		19	O _{Stim} / 80_{Sub}	
Observations	30	0400			15200	
Conditional R ² / Marginal R ²	0.364	1 / 0.044		0.	122 / 0.005	

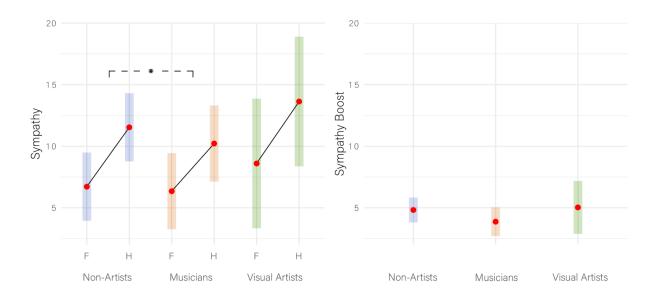

Figure S3. LMM results for Interestingness ratings (cf. Table S6). Left: EMMs including 95 % CI boundaries for facial portraits (F) and half-length torsos (H) across the three Status groups. The boosting effect is significantly steeper for both musicians (*p < 0.05) and visual artists (***p < 0.001) as compared to non-artists. Among each other, the visual artists' boost is steeper than the boost of musicians (***p < 0.001). Right: The boost in Interestingness from torsos to facials is significantly higher for visuals artists as compared to both musicians and non-artists (***p < 0.001). Due to the stricter way of testing in this approach, the difference between musicians and non-artists is no longer significant (p = 0.263), but only visible by trend.

Table S7. LMM results predicting Sympathy through the portrait's Layout (face, torso) and Status of the depicted person (musician, visual artist, non-artist) as well as the Sympathy-Boost just through Status. To test H2, the following models have been fitted:

Model-S: Level 1: Sympathy_{ij} = $\beta_{0j} + \beta_{i0} + \beta_{1j}$ Layout_{ij} * β_{2j} Status_{ij} + ϵ_{ij}

 $\label{eq:model-S-Boost} \text{Model-S-Boost:} \qquad \text{Level 1: Sympathy-Boost}_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \, \text{Status}_{ij} + \epsilon_{ij}$

	Sympath	y (Model-S)		Sympathy-Boost (Model-S-Boost)			
Predictors	Estimates [95%-CI]	t	p	Estimates [95%-CI]	t	p	
Fixed Effects							
(Intercept)	1.893 [-0.951, 4.737]	1.303	0.194	4.821 [3.813, 5.828]	9.361	< 0.001	
Layout	4.820 [4.348, 5.293]	19.982	<0.001				
Status: M <non< td=""><td>0.580 [-2.603, 3.763]</td><td>0.357</td><td>0.722</td><td>-0.948 [-2.220, 0.324]</td><td>-1.459</td><td>0.146</td></non<>	0.580 [-2.603, 3.763]	0.357	0.722	-0.948 [-2.220, 0.324]	-1.459	0.146	
Status: V <non< td=""><td>1.676 [-3.836, 7.189]</td><td>0.595</td><td>0.552</td><td>0.209 [-1.993, 2.411]</td><td>0.186</td><td>0.853</td></non<>	1.676 [-3.836, 7.189]	0.595	0.552	0.209 [-1.993, 2.411]	0.186	0.853	
Status: M <v< td=""><td>-1.096 [-6.796, 4.603]</td><td>-0.376</td><td>0.707</td><td>-1.157 [-3.434, 1.120]</td><td>-0.994</td><td>0.321</td></v<>	-1.096 [-6.796, 4.603]	-0.376	0.707	-1.157 [-3.434, 1.120]	-0.994	0.321	
L*S: M <non< td=""><td>-0.948 [-1.699, -0.197]</td><td>-2.474</td><td>0.013</td><td></td><td></td><td></td></non<>	-0.948 [-1.699, -0.197]	-2.474	0.013				
L*S: V>Non	0.209 [-1.091, 1.509]	0.315	0.752				
L*S: M <v< td=""><td>-1.157 [-2.501, 0.187]</td><td>-1.687</td><td>0.092</td><td></td><td></td><td></td></v<>	-1.157 [-2.501, 0.187]	-1.687	0.092				
Random Part							
σ^2	24	44.43			301.236		
${ au_0}^2$	94	.90 _{Stim}		1	3.818 _{Stim}		
τ_0^2	84	.82 _{Sub}			7.817 _{Sub}		
ICC	0	.424			0.067		
N	190_{St}	im / 80 _{Sub}		19	0_{Stim} / 80_{Sub}		
Observations	3	0400			15200		
Conditional R ² / Marginal R ²	0.43	1 / 0.013		0.0	068 / 0.001		

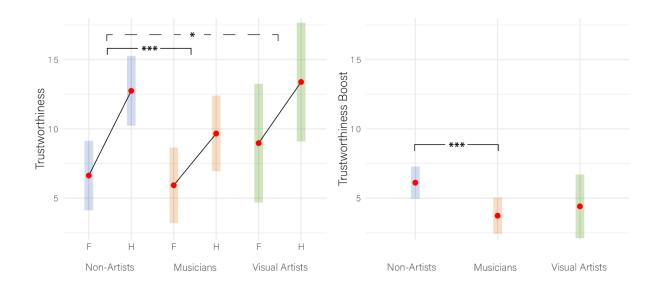

Figure S4. LMM results for Sympathy ratings (cf. Table S7). Left: EMMs including 95 % CI boundaries for facial portraits (F) and half-length torsos (H) across the three Status groups. The boosting effect is significantly steeper for non-artists as compared to musicians (*p < 0.05). Right: The boost in Sympathy from torsos to facials is not significantly different between the three status groups. Due to the stricter way of testing in this approach, the difference between musicians and non-artists is no longer significant (p = 0.146), but only visible by trend.

Table S8. LMM results predicting Trustworthiness through the portrait's Layout (face, torso) and Status of the depicted person (musician, visual artist, non-artist) as well as the Trustworthiness-Boost just through Status. To test H2, the following models have been fitted:

 $\label{eq:model-T:Level 1:Trustworthiness} \begin{subarray}{ll} Model-T: & Level 1:Trustworthiness_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \ Layout_{ij} * \beta_{2j} \ Status_{ij} + \epsilon_{ij} \end{subarray}$

 $\label{eq:model-T-Boost:} \text{Level 1: Trustworthiness-Boost}_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \, \text{Status}_{ij} + \epsilon_{ij}$

	Trustworthi	ness (Model-	-T)	Trustworthiness-Boost (Model-T-Boost)			
Predictors	Estimates [95%-CI]	t	p	Estimates [95%-CI]	t	p	
Fixed Effects							
(Intercept)	0.513 [-2.084, 3.110]	0.388	0.699	6.118 [4.963, 7.274]	10.367	< 0.001	
Layout	6.118 [5.643, 6.594]	25.226	<0.001				
Status: M <non< td=""><td>1.682 [-0.884, 4.247]</td><td>1.283</td><td>0.201</td><td>-2.381 [-3.714, -1.049]</td><td>-3.499</td><td><0.001</td></non<>	1.682 [-0.884, 4.247]	1.283	0.201	-2.381 [-3.714, -1.049]	-3.499	<0.001	
Status: V <non< td=""><td>4.048 [-0.394, 8.491]</td><td>1.783</td><td>0.076</td><td>-1.706 [-4.013, 0.602]</td><td>-1.447</td><td>0.150</td></non<>	4.048 [-0.394, 8.491]	1.783	0.076	-1.706 [-4.013, 0.602]	-1.447	0.150	
Status: M <v< td=""><td>-2.367 [-6.960, 2.227]</td><td>-1.008</td><td>0.314</td><td>-0.676 [-3.061, 1.710]</td><td>-0.554</td><td>0.580</td></v<>	-2.367 [-6.960, 2.227]	-1.008	0.314	-0.676 [-3.061, 1.710]	-0.554	0.580	
L*S: M <non< td=""><td>-2.381 [-3.136, -1.627]</td><td>-6.183</td><td><0.001</td><td></td><td></td><td></td></non<>	-2.381 [-3.136, -1.627]	-6.183	<0.001				
L*S: V <non< td=""><td>-1.706 [-3.013, -0.399]</td><td>-2.557</td><td>0.011</td><td></td><td></td><td></td></non<>	-1.706 [-3.013, -0.399]	-2.557	0.011				
L*S: M <v< td=""><td>-0.676 [-2.027, 0.676]</td><td>-0.980</td><td>0.327</td><td></td><td></td><td></td></v<>	-0.676 [-2.027, 0.676]	-0.980	0.327				
Random Part							
σ^2	24	47.05			17.983		
${ au_0}^2$	56	$.10_{\mathrm{Stim}}$			15.25 _{Stim}		
τ_0^2	85	5.87 _{Sub}			13.17 _{Sub}		
ICC	0	0.365			0.081		
N	190_{St}	im / 80 _{Sub}		19	0_{Stim} / 80_{Sub}		
Observations	3	0400			15200		
Conditional R ² / Marginal R ²	0.37	8 / 0.020		0.0	084 / 0.004		

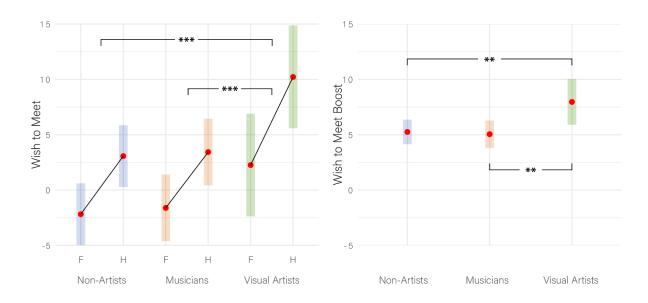

Figure S5. LMM results for Trustworthiness ratings (cf. Table S8). Left: EMMs including 95 % CI boundaries for facial portraits (F) and half-length torsos (H) across the three Status groups. The boosting effect of non-artists is significantly steeper than that of musicians (***p < 0.001) and visual artists (*p < 0.05). Right: The boost in Trustworthiness from torsos to facials is significantly higher for non-artists as compared to musicians (***p < 0.001). Due to the stricter way of testing in this approach, the difference between non-artists and visuals artists is no longer significant (p = 0.15), but only visible by trend.

Table S9. LMM results predicting Wish-to-Meet through the portrait's Layout (face, torso) and Status of the depicted person (musician, visual artist, non-artist) as well as the Wish-to-Meet-Boost just through Status. To test H2, the following models have been fitted:

Model-M: Level 1: Wish-to-Meet_{ij} = $\beta_{0j} + \beta_{i0} + \beta_{1j}$ Layout_{ij} * β_{2j} Status_{ij} + ϵ_{ij}

 $\label{eq:model-Model-Model-Model} \mbox{Model-M-Boost:} \qquad \mbox{Level 1: Wish-to-Meet-Boost}_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \, \mbox{Status}_{ij} + \epsilon_{ij}$

	Wish-to-Me	et (Model-M	1)	Wish-to-Meet-Boost (Model-M-Boost)			
Predictors	Estimates [95%-CI]	t	p	Estimates [95%-CI]	t	p	
Fixed Effects							
(Intercept)	-7.435 [-10.315, -4.556]	-5.064	<0.001	5.254 [4.142, 6.365]	9.264	< 0.001	
Layout	5.254 [4.739, 5.768]	20.019	<0.001				
Status: M <non< td=""><td>0.775 [-1.972, 3.521]</td><td>0.552</td><td>0.581</td><td>-0.206 [-1.381, 0.968]</td><td>-0.344</td><td>0.731</td></non<>	0.775 [-1.972, 3.521]	0.552	0.581	-0.206 [-1.381, 0.968]	-0.344	0.731	
Status: V>Non	1.727 [-3.030, 6.483]	0.711	0.478	2.712 [0.678, 4.746]	2.610	0.010	
Status: M <v< td=""><td>-0.952 [-5.870, 3.965]</td><td>-0.379</td><td>0.705</td><td>-2.918 [-5.021, -0.815]</td><td>-2.717</td><td>0.007</td></v<>	-0.952 [-5.870, 3.965]	-0.379	0.705	-2.918 [-5.021, -0.815]	-2.717	0.007	
L*S: M <non< td=""><td>-0.206 [-1.023, 0.610]</td><td>-0.495</td><td>0.620</td><td></td><td></td><td></td></non<>	-0.206 [-1.023, 0.610]	-0.495	0.620				
L*S: V>Non	2.720 [1.297, 4.126]	3.758	<0.001				
L*S: M <v< td=""><td>-2.918 [-4.381, -1.456]</td><td>-3.911</td><td><0.001</td><td></td><td></td><td></td></v<>	-2.918 [-4.381, -1.456]	-3.911	<0.001				
Random Part							
σ^2	28	9.27		354.29			
${\tau_0}^2$	63.9	91 _{Stim}		10.56_{Stim}			
${\tau_0}^2$	110	.02 _{Sub}			14.31_{Sub}		
ICC	0.	376			0.081		
N	190_{Stir}	_n / 80 _{Sub}		19	0_{Stim} / 80_{Sub}		
Observations	30	400			15200		
Conditional R ² / Marginal R ²	0.389	/ 0.021		0.0	084 / 0.004		

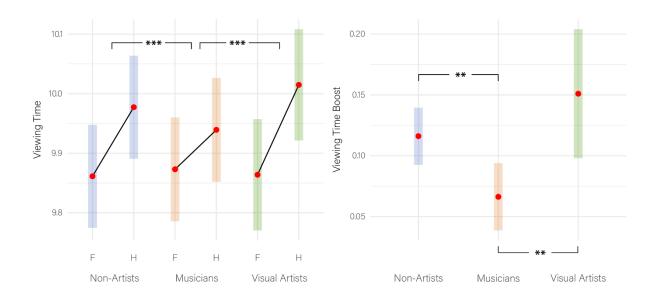

Figure S6. LMM results for Wish-to-Meet ratings (cf. Table S9). Left: EMMs including 95 % CI boundaries for facial portraits (F) and half-length torsos (H) across the three Status groups. The boosting effect of visual artists is significantly steeper than that for musicians and non-artists (***p < 0.001). Right: The same result pattern is reflected in the Model-M-Boost: The boost in Wish-to-Meet from torsos to facials is significantly higher for visual artists than for both non-artists and musicians (**p < 0.01).

Table S10. LMM results predicting ViewingTime through the portrait's Layout (face, torso) and Status of the depicted person (musician, visual artist, non-artist) as well as the ViewingTime-Boost just through Status. To test H2, the following models have been fitted:

 $\label{eq:model-V:Level 1:ViewingTime} \mbox{Model-V:} \qquad \qquad \mbox{Level 1:ViewingTime}_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \mbox{ Layout}_{ij} * \beta_{2j} \mbox{ Status}_{ij} + \epsilon_{ij}$

 $\label{eq:model-V-Boost:} \text{Level 1: ViewingTime-Boost}_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \, \text{Status}_{ij} + \epsilon_{ij}$

	ViewingTi	ime (Model-V)	Viewing Time-Boost (Model-V-Bo		
Predictors	Estimates [95%-CI]	t	p	Estimates [95%-CI]	t	p
Fixed Effects						
(Intercept)	9.745 [9.655, 9.835]	213.768	<0.001	0.116 [0.093, 0.140]	9.687	< 0.001
Layout	0.116 [0.100, 0.132]	14.442	<0.001			
Status: M <non< td=""><td>0.062 [0.019, 0.104]</td><td>2.827</td><td>0.005</td><td>-0.050 [-0.082, -0.018]</td><td>-3.047</td><td>0.003</td></non<>	0.062 [0.019, 0.104]	2.827	0.005	-0.050 [-0.082, -0.018]	-3.047	0.003
Status: V <non< td=""><td>-0.032 [-0.106, 0.042]</td><td>-0.856</td><td>0.392</td><td>0.035 [-0.020, 0.090]</td><td>1.234</td><td>0.219</td></non<>	-0.032 [-0.106, 0.042]	-0.856	0.392	0.035 [-0.020, 0.090]	1.234	0.219
Status: M <v< td=""><td>0.094 [0.017, 0.170]</td><td>2.406</td><td>0.016</td><td>-0.085 [-0.142, -0.027]</td><td>-2.896</td><td>0.004</td></v<>	0.094 [0.017, 0.170]	2.406	0.016	-0.085 [-0.142, -0.027]	-2.896	0.004
L*S: M <non< td=""><td>-0.049 [-0.075, -0.025]</td><td>-3.901</td><td><0.001</td><td></td><td></td><td></td></non<>	-0.049 [-0.075, -0.025]	-3.901	<0.001			
L*S: V <non< td=""><td>0.035 [-0.008, 0.078]</td><td>1.580</td><td>0.114</td><td></td><td></td><td></td></non<>	0.035 [-0.008, 0.078]	1.580	0.114			
L*S: M <v< td=""><td>-0.085 [-0.129, -0.039]</td><td>-3.707</td><td><0.001</td><td></td><td></td><td></td></v<>	-0.085 [-0.129, -0.039]	-3.707	<0.001			
Random Part						
σ^2	().271			0.554	
${\tau_0}^2$	0.0	003_{Stim}			0.004_{Stim}	
${\tau_0}^2$	0.	151_{Sub}			0.003_{Sub}	
ICC	().362			0.013	
N	$190_{\rm S}$	$190_{Stim} / 80_{Sub}$		$190_{Stim}/80_{Sub}$		
Observations	3	0400		15200		
Conditional R ² / Marginal R ²	0.36	6 / 0.007		0.0	014 / 0.001	

Figure S7. LMM results for ViewingTime (cf. Table S10). Left: EMMs including 95 % CI boundaries for facial portraits (F) and half-length torsos (H) across the three Status groups. The boosting effect is significantly flatter for musicians as compared to both non-artists and visual artists (***p < 0.001). Right: The same result pattern is reflected in the Model-V-Boost: The boost in ViewingTime from torsos to facials is significantly lower for musicians as compared to the other two Status groups (**p < 0.01).

Table S11. LMM results predicting Interestingness-Boost through Status of the depicted person (musician, visual artist, non-artist) and the stimulus' gender (male, female) interacting with the rater's gender (male, female). To test H3a, the following model has been fitted:

Level 1:Interestingness-Boost_{ij} = $\beta_{0j} + \beta_{i0} + \beta_{1j}$ Status_{ij} + β_{2j} Stim_Gender_{ij} * β_{3j} Rater_Gender_{ij} + ϵ_{ij}

	Interestingness-Boost			
Predictors	Estimates [95%-CI]	t	p	
Fixed Effects				
(Intercept)	6.751 [4.388, 9.113]	5.578	< 0.001	
Status: M <non< td=""><td>0.891 [-0.646, 2.429]</td><td>1.133</td><td>0.259</td></non<>	0.891 [-0.646, 2.429]	1.133	0.259	
Status: V>Non	5.773 [3.110, 8.435]	4.235	<0.001	
Status: M <v< td=""><td>-4.881 [-7.634, -2.129]</td><td>-3.464</td><td><0.001</td></v<>	-4.881 [-7.634, -2.129]	-3.464	<0.001	
Stim_Gen: m <f< td=""><td>0.833 [-0.766, 2.432]</td><td>1.018</td><td>0.310</td></f<>	0.833 [-0.766, 2.432]	1.018	0.310	
Rater_Gen: m <f< td=""><td>0.471 [-2.409, 3.351]</td><td>0.320</td><td>0.749</td></f<>	0.471 [-2.409, 3.351]	0.320	0.749	
S_Gen*R_Gen: m <f< td=""><td>0.040 [-1.291, 1.371]</td><td>0.060</td><td>0.952</td></f<>	0.040 [-1.291, 1.371]	0.060	0.952	
Random Part				
σ^2		436.79		
${\tau_0}^2$		20.33_{Stim}		
${\tau_0}^2$		38.39 _{Sub}		
ICC		0.119		
N	$190_{Stim}/80_{Sub}$			
Observations		15200		
Conditional R ² / Marginal R ²	(0.123 / 0.005	i	

Table S12. LMM results predicting Sympathy-Boost through Status of the depicted person (musician, visual artist, non-artist) and the stimulus' gender (male, female) interacting with the rater's gender (male, female). To test H3a, the following model has been fitted:

Level 1:Sympathy-Boost_{ij} = $\beta_{0j} + \beta_{i0} + \beta_{1j}$ Status_{ij} + β_{2j} Stim_Gender_{ij} * β_{3j} Rater_Gender_{ij} + ϵ_{ij}

	Sympathy-Boost			
Predictors	Estimates [95%-CI]	t	p	
Fixed Effects				
(Intercept)	3.981 [2.583, 5.379]	5.550	<0.001	
Status: M <non< td=""><td>-0.940 [-2.199, 0.320]</td><td>-1.456</td><td>0.147</td></non<>	-0.940 [-2.199, 0.320]	-1.456	0.147	
Status: V <non< td=""><td>0.226 [-1.956, 2.407]</td><td>0.202</td><td>0.840</td></non<>	0.226 [-1.956, 2.407]	0.202	0.840	
Status: M <v< td=""><td>-1.165 [-3.421, 1.090]</td><td>-1.008</td><td>0.315</td></v<>	-1.165 [-3.421, 1.090]	-1.008	0.315	
Stim_Gen: m <f< td=""><td>1.243 [-0.071, 2.556]</td><td>1.846</td><td>0.066</td></f<>	1.243 [-0.071, 2.556]	1.846	0.066	
Rater_Gen: m <f< td=""><td>0.480 [-0.985, 1.944]</td><td>0.642</td><td>0.522</td></f<>	0.480 [-0.985, 1.944]	0.642	0.522	
S_Gen*R_Gen: m <f< td=""><td>-0.190 [-1.296, 0.915]</td><td>-0.338</td><td>0.736</td></f<>	-0.190 [-1.296, 0.915]	-0.338	0.736	
Random Part				
2		301.25		
02		13.58_{Stim}		
02		7.90_{Sub}		
CC		0.067		
N		190 _{Stim} / 80 _{Sub}		
Observations		15200		
Conditional R ² / Marginal R ²		0.068 / 0.002		

Table S13. LMM results predicting Trustworthiness-Boost through Status of the depicted person (musician, visual artist, non-artist) and the stimulus' gender (male, female) interacting with the rater's gender (male, female). To test H3a, the following model has been fitted:

 $Level \ 1: Trustworthiness-Boost_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \ Status_{ij} + \beta_{2j} \ Stim_Gender_{ij} * \beta_{3j} \ Rater_Gender_{ij} + \epsilon_{ij}$

	Trustworthiness-Boost			
Predictors	Estimates [95%-CI]	t	p	
Fixed Effects				
(Intercept)	5.234 [3.630, 6.838]	6.364	< 0.001	
Status: M <non< td=""><td>-2.368 [-3.666, -1.069]</td><td>-3.561</td><td><0.001</td></non<>	-2.368 [-3.666, -1.069]	-3.561	<0.001	
Status: V <non< td=""><td>-1.678 [-3.926, 0.570]</td><td>-1.457</td><td>0.147</td></non<>	-1.678 [-3.926, 0.570]	-1.457	0.147	
Status: M <v< td=""><td>-0.690 [-3.014, 1.634]</td><td>-0.580</td><td>0.563</td></v<>	-0.690 [-3.014, 1.634]	-0.580	0.563	
Stim_Gen: m <f< td=""><td>-2.112 [-0.756, -3.467]</td><td>-3.042</td><td>0.003</td></f<>	-2.112 [-0.756, -3.467]	-3.042	0.003	
Rater_Gen: m <f< td=""><td>-0.240 [-2.039, 1.558]</td><td>-0.262</td><td>0.794</td></f<>	-0.240 [-2.039, 1.558]	-0.262	0.794	
S_Gen*R_Gen: m <f< td=""><td>-0.281 [-1.426, 0.864]</td><td>-0.481</td><td>0.630</td></f<>	-0.281 [-1.426, 0.864]	-0.481	0.630	
Random Part				
σ^2		323.39		
${ au_0}^2$		14.37_{Stim}		
${ au_0}^2$		13.32_{Sub}		
ICC		0.079		
N	$190_{Stim} / 80_{Sub}$			
Observations		15200		
Conditional R ² / Marginal R ²		0.085 / 0.006	5	

Table S14. LMM results predicting Wish-to-Meet-Boost through Status of the depicted person (musician, visual artist, non-artist) and the stimulus' gender (male, female) interacting with the rater's gender (male, female). To test H3a, the following model has been fitted:

 $Level \ 1: Wish-to-Meet-Boost_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \ Status_{ij} + \beta_{2j} \ Stim_Gender_{ij} * \beta_{3j} \ Rater_Gender_{ij} + \epsilon_{ij}$

	Wish-to	o-Meet-Boost	
Predictors	Estimates [95%-CI]	t	p
Fixed Effects			
(Intercept)	4.755 [3.173, 6.338]	5.862	< 0.001
Status: M <non< td=""><td>-0.199 [-1.364, 0.965]</td><td>-0.334</td><td>0.739</td></non<>	-0.199 [-1.364, 0.965]	-0.334	0.739
Status: V>Non	2.726 [0.709, 4.743]	2.639	0.009
Status: M <v< td=""><td>-2.926 [-5.011, -0.840]</td><td>-2.739</td><td>0.007</td></v<>	-2.926 [-5.011, -0.840]	-2.739	0.007
Stim_Gen: m <f< td=""><td>1.166 [-0.092, 2.424]</td><td>1.810</td><td>0.071</td></f<>	1.166 [-0.092, 2.424]	1.810	0.071
Rater_Gen: m <f< td=""><td>-0.027 [-1.904, 1.850]</td><td>-0.028</td><td>0.977</td></f<>	-0.027 [-1.904, 1.850]	-0.028	0.977
S_Gen*R_Gen: m <f< td=""><td>-0.322 [-1.521, 0.876]</td><td>-0.527</td><td>0.598</td></f<>	-0.322 [-1.521, 0.876]	-0.527	0.598
Random Part			
σ^2		354.31	
${\tau_0}^2$		10.38_{Stim}	
${\tau_0}^2$		14.51_{Sub}	
ICC	0.066		
N	$190_{Stim} / 80_{Sub}$		
Observations		15200	
Conditional R ² / Marginal R ²		0.068 / 0.002	

Table S15. LMM results predicting ViewingTime-Boost through Status of the depicted person (musician, visual artist, non-artist) and the stimulus' gender (male, female) interacting with the rater's gender (male, female). To test H3a, the following model has been fitted:

 $Level \ \ 1: Viewing Time-Boost_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \ Status_{ij} + \beta_{2j} \ Stim_Gender_{ij} * \beta_{3j} \ Rater_Gender_{ij} + \epsilon_{ij}$

	ViewingTime-Boost				
Predictors	Estimates [95%-CI]	t	p		
Fixed Effects					
(Intercept)	0.118 [0.082, 0.153]	6.468	< 0.001		
Status: M <non< td=""><td>-0.050 [-0.082, -0.018]</td><td>-3.051</td><td>0.003</td></non<>	-0.050 [-0.082, -0.018]	-3.051	0.003		
Status: V <non< td=""><td>0.035 [-0.021, 0.090]</td><td>1.227</td><td>0.222</td></non<>	0.035 [-0.021, 0.090]	1.227	0.222		
Status: M <v< td=""><td>-0.086 [-0.142, -0.027]</td><td>-2.890</td><td>0.004</td></v<>	-0.086 [-0.142, -0.027]	-2.890	0.004		
Stim_Gen: m <f< td=""><td>0.003 [-0.036, 0.042]</td><td>0.161</td><td>0.873</td></f<>	0.003 [-0.036, 0.042]	0.161	0.873		
Rater_Gen: m <f< td=""><td>0.010 [-0.032, 0.052]</td><td>0.466</td><td>0.642</td></f<>	0.010 [-0.032, 0.052]	0.466	0.642		
S_Gen*R_Gen: m <f< td=""><td>-0.032 [-0.079, 0.016]</td><td>-1.307</td><td>0.191</td></f<>	-0.032 [-0.079, 0.016]	-1.307	0.191		
Random Part					
₅ ²		0.554			
${\mathfrak{r}_0}^2$		0.004_{Stim}			
50^2		0.003_{Sub}			
ICC		0.013			
N	19	90 _{Stim} / 80 _{Sub}			
Observations		15200			
Conditional R ² / Marginal R ²	0	0.015 / 0.002			

Table S16. LMM results predicting Interestingness-Boost through mean facial Interestingness, interacting with the Status of the depicted person (musician, visual artist, non-artist). To test H3b, the following model has been fitted:

 $Level \ 1: Interestingness-Boost_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \ Mean Facial Interestingness_{ij} \ * \ \beta_{2j} \ Status_{ij} + \epsilon_{ij}$

	Intere	estingness-Boost	
Predictors	Estimates [95%-CI]	t	p
Fixed Effects			
(Intercept)	7.321 [5.684, 8.958]	8.752	< 0.001
MeanFacialInterest	-0.16920 [-0.286, -0.053]	0.060	0.005
Status: M <non< td=""><td>1.380 [-0.099, 2.860]</td><td>1.812</td><td>0.071</td></non<>	1.380 [-0.099, 2.860]	1.812	0.071
Status: V>Non	7.177 [4.267, 10.087]	4.791	<0.001
Status: M <v< td=""><td>-5.796 [-8.789, -2.804]</td><td>-3.763</td><td><0.001</td></v<>	-5.796 [-8.789, -2.804]	-3.763	<0.001
MFI*S: M <non< td=""><td>-0.046 [-0.220, 0.128]</td><td>-0.517</td><td>0.605</td></non<>	-0.046 [-0.220, 0.128]	-0.517	0.605
MFI*S: V <non< td=""><td>-0.154 [-0.530, 0.222]</td><td>-0.795</td><td>0.427</td></non<>	-0.154 [-0.530, 0.222]	-0.795	0.427
MFI*S: M <v< td=""><td>0.108 [-0.273, 0.488]</td><td>0.550</td><td>0.583</td></v<>	0.108 [-0.273, 0.488]	0.550	0.583
Random Part			
² 2		436.76	
02		18.05_{Stim}	
02		37.93 _{Sub}	
ICC	0.114		
N		$190_{Stim} / 80_{Sub}$	
Observations		15200	
Conditional R ² / Marginal R ²		0.123 / 0.010	

Table S17. LMM results predicting Sympathy-Boost through mean facial Sympathy, interacting with the Status of the depicted person (musician, visual artist, non-artist). To test H3b, the following model has been fitted:

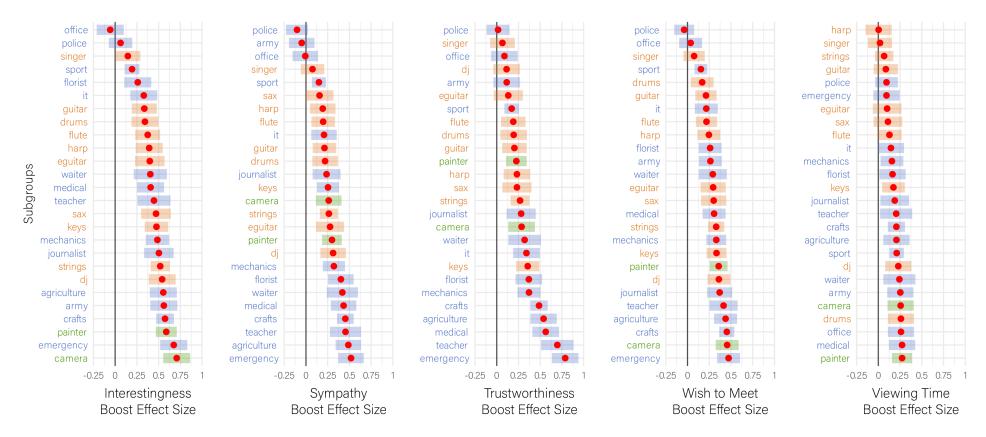
Level 1: Sympathy-Boost_{ij} = $\beta_{0j} + \beta_{i0} + \beta_{1j}$ MeanFacialSympathy_{ij} * β_{2j} Status_{ij} + ϵ_{ij}

	Sympathy-Boost			
Predictors	Estimates [95%-CI]	t	p	
Fixed Effects				
(Intercept)	4.994 [3.876, 6.113]	8.689	< 0.001	
MeanFacialSympathy	-0.026 [-0.101, 0.049]	-0.669	0.504	
Status: M <non< td=""><td>-0.348 [-1.864, 1.169]</td><td>-0.445</td><td>0.657</td><td></td></non<>	-0.348 [-1.864, 1.169]	-0.445	0.657	
Status: V <non< td=""><td>0.805 [-2.178, 3.789]</td><td>0.524</td><td>0.601</td><td></td></non<>	0.805 [-2.178, 3.789]	0.524	0.601	
Status: M <v< td=""><td>-1.153 [-4.226, 1.921]</td><td>-0.728</td><td>0.468</td><td></td></v<>	-1.153 [-4.226, 1.921]	-0.728	0.468	
MFS*S: M <non< td=""><td>-0.096 [-0.228, 0.036]</td><td>-1.412</td><td>0.160</td><td></td></non<>	-0.096 [-0.228, 0.036]	-1.412	0.160	
MFS*S: V <non< td=""><td>-0.064 [-0.306, 0.179]</td><td>-0.508</td><td>0.612</td><td></td></non<>	-0.064 [-0.306, 0.179]	-0.508	0.612	
MFS*S: M <v< td=""><td>-0.032 [-0.288, 0.223]</td><td>-0.247</td><td>0.805</td><td></td></v<>	-0.032 [-0.288, 0.223]	-0.247	0.805	
Random Part				
σ^2		301.236		
$ au_0{}^2$		13.562 _{Stim}		
$ au_0{}^2$	${ au_0}^2$		7.817_{Sub}	
ICC		0.066		
N	$190_{Stim}/80_{Sub}$			
Observations		15200		
$\begin{array}{c} Conditional \; R^2 / \; Marginal \\ R^2 \end{array}$		0.068 / 0.002		

Table S18. LMM results predicting Trustworthiness-Boost through mean facial Trustworthiness, interacting with the Status of the depicted person (musician, visual artist, non-artist). To test H3b, the following model has been fitted:

 $Level~1: Trustworthiness-Boost_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \\ MeanFacial Trustworthiness_{ij} * \beta_{2j} \\ Status_{ij} + \epsilon_{ij} \\$

	Trusty	vorthiness-Boost		
Predictors	Estimates [95%-CI]	t	p	
Fixed Effects				
(Intercept)	7.12823 [5.832, 8.424]	10.708	<0.001	
MeanFacialTrust	-0.152 [-0.249, -0.056]	-3.070	0.002	
Status: M <non< td=""><td>-2.342 [-3.973, -0.711]</td><td>-2.788</td><td>0.006</td></non<>	-2.342 [-3.973, -0.711]	-2.788	0.006	
Status: V <non< td=""><td>-0.945 [-4.434, 2.543]</td><td>-0.526</td><td>0.599</td></non<>	-0.945 [-4.434, 2.543]	-0.526	0.599	
Status: M <v< td=""><td>-1.39631 [-4.964, 2.171]</td><td>-0.760</td><td>0.448</td></v<>	-1.39631 [-4.964, 2.171]	-0.760	0.448	
MFT*S: M <non< td=""><td>-0.025 [-0.190, 0.140]</td><td>-0.290</td><td>0.772</td></non<>	-0.025 [-0.190, 0.140]	-0.290	0.772	
MFT*S: V <non< td=""><td>-0.045 [-0.353, 0.263]</td><td>-0.283</td><td>0.777</td></non<>	-0.045 [-0.353, 0.263]	-0.283	0.777	
MFT*S: M <v< td=""><td>0.020 [-0.302, 0.342]</td><td>0.122</td><td>0.903</td></v<>	0.020 [-0.302, 0.342]	0.122	0.903	
Random Part				
σ^2		323.38		
$ au_0{}^2$		13.84_{Stim}		
${ au_0}^2$		13.17_{Sub}		
ICC	0.077			
N	$190_{Stim} / 80_{Sub}$			
Observations		15200		
Conditional R ² / Marginal R ²		0.085 / 0.008		


Table S19. LMM results predicting Wish-to-Meet-Boost through mean facial value for Wish-to-Meet, interacting with the Status of the depicted person (musician, visual artist, non-artist). To test H3b, the following model has been fitted:

 $\text{Level 1:Wish-to-Meet-Boost}_{ij} = \beta_{0j} + \beta_{i0} + \beta_{1j} \, \text{MeanFacialWish-to-Meet}_{ij} \, * \, \beta_{2j} \, \text{Status}_{ij} + \epsilon_{ij}$

	Wish-to-Meet-Boost				
Predictors	Estimates [95%-CI]	t	p		
Fixed Effects					
(Intercept)	5.06844 [3.962, 6.175]	8.945	< 0.001		
MeanFacialMeet	-0.085 [-0.169, -0.001]	-1.967	0.051		
Status: M <non< td=""><td>-0.293 [-1.446, 0.860]</td><td>-0.493</td><td>0.622</td></non<>	-0.293 [-1.446, 0.860]	-0.493	0.622		
Status: V>Non	3.357 [1.314, 5.401]	3.191	0.002		
Status: M <v< td=""><td>-3.650 [-5.756, -1.545]</td><td>-3.368</td><td><0.001</td></v<>	-3.650 [-5.756, -1.545]	-3.368	<0.001		
MFM*S: M <non< td=""><td>-0.084 [-0.217, 0.050]</td><td>-1.216</td><td>0.226</td></non<>	-0.084 [-0.217, 0.050]	-1.216	0.226		
MFM*S: V <non< td=""><td>-0.119 [-0.390, 0.152]</td><td>-0.854</td><td>0.394</td></non<>	-0.119 [-0.390, 0.152]	-0.854	0.394		
MFM*S: M <v< td=""><td>0.036 [-0.242, 0.313]</td><td>0.249</td><td>0.804</td></v<>	0.036 [-0.242, 0.313]	0.249	0.804		
Random Part					
σ^2		354.291			
$ au_0{}^2$		9.572_{Stim}			
τ_0^2		14.309_{Sub}			
ICC	0.063				
N		$190_{Stim}/80_{Sub}$			
Observations		15200			
$\begin{array}{c} Conditional \ R^2 / Marginal \\ R^2 \end{array}$		0.068 / 0.005			

Table S20. LMM results predicting ViewingTime-Boost through mean facial ViewingTime, interacting with the Status of the depicted person (musician, visual artist, non-artist). To test H3b, the following model has been fitted:

	Viewing Time-Boost			
Predictors	Estimates [95%-CI]	t	p	
Fixed Effects				
(Intercept)	6.888 [4.535, 9.241]	5.682	< 0.001	
MeanFacialView	-0.687 [-0.925, -0.448]	-5.586	<0.001	
Status: M <non< td=""><td>-1.029 [-5.058, 2.999]</td><td>-0.496</td><td>0.621</td></non<>	-1.029 [-5.058, 2.999]	-0.496	0.621	
Status: V <non< td=""><td>2.399 [-7.242, 12.040]</td><td>0.483</td><td>0.630</td></non<>	2.399 [-7.242, 12.040]	0.483	0.630	
Status: M <v< td=""><td>-3.429 [-13.333, 6.476]</td><td>-0.672</td><td>0.503</td></v<>	-3.429 [-13.333, 6.476]	-0.672	0.503	
MFV*S: M <non< td=""><td>0.100 [-0.308, 0.508]</td><td>0.476</td><td>0.635</td></non<>	0.100 [-0.308, 0.508]	0.476	0.635	
MFV*S: V <non< td=""><td>-0.240 [-1.217, 0.738]</td><td>-0.476</td><td>0.635</td></non<>	-0.240 [-1.217, 0.738]	-0.476	0.635	
MFV*S: M <v< td=""><td>0.340 [-0.664, 1.344]</td><td>0.656</td><td>0.512</td></v<>	0.340 [-0.664, 1.344]	0.656	0.512	
Random Part				
52		0.554		
$i0^2$		0.002_{Stim}		
50^2		$0.003_{Sub} \\$		
ICC	0.009			
N	$190_{\rm Stim} / 80_{\rm Sub}$			
Observations		15200		
Conditional R ² / Marginal R ²		0.014 / 0.005		

Figure S8. Effect sizes of boosts per subgroup for all remaining variables beside Attractiveness (which is shown in Fig. 6). The forest plots depict EMMs for the boosts expressed as Cohen's d for each stimulus and predicted in a linear model by subgroup membership. The error bars represent 95 % confidence limits. For better readability, the superordinate status membership of the subgroups is coded in color: non-artists are shown in blue, musicians in orange and visual artists in green.

Table S21. LMM results for the comprehensive covariates model (model.9 in R script) predicting Attractiveness through Layout and Status, while controlling for stimulus order, character's smile intensity, character's gaze direction, character's estimated income, character's estimated age, character's gender, rater's preference for professions and their own music production (today and overall, including their past).

	Attractiveness				
Predictors	Estimates [95%-CI]	t	p		
Fixed Effects	<u> </u>				
(Intercept)	17.239 [9.957, 24.518]	4.563	< 0.001		
Layout	3.332 [2.872, 3.792]	14.201	<0.001		
Status: M <non< td=""><td>-1.244 [-4.541, 2.052]</td><td>-0.730</td><td>0.466</td></non<>	-1.244 [-4.541, 2.052]	-0.730	0.466		
Status: V <non< td=""><td>-0.028 [-5.307, 5.249]</td><td>-0.010</td><td>0.991</td></non<>	-0.028 [-5.307, 5.249]	-0.010	0.991		
Status: M <v< td=""><td>-1.266 [-3.117, 0.585]</td><td>-1.327</td><td>0.185</td></v<>	-1.266 [-3.117, 0.585]	-1.327	0.185		
Stimulus_Order	-0.019 [-0.022, -0.016]	-12.054	<0.001		
Income	-0.000 [-0.001, 0.000]	-0.642	0.521		
Prof_Pref	0.056 [0.047, 0.065]	12.532	<0.001		
Smile	1.037 [-0.111, 2.186]	1.745	0.082		
Gaze	-3.107 [-6.144, -0.070]	-1.976	0.049		
Age	-0.402 [-0.581, -0.221]	-4.317	<0.001		
Stim_Gender: M <f< td=""><td>-10.198 [-12.799, -7.598]</td><td>-7.575</td><td><0.001</td></f<>	-10.198 [-12.799, -7.598]	-7.575	<0.001		
Gender: M <f< td=""><td>-3.465 [-0.396, 7.327]</td><td>-1.738</td><td>0.086</td></f<>	-3.465 [-0.396, 7.327]	-1.738	0.086		
L*S: M <non< td=""><td>-1.256 [-1.986, -0.526]</td><td>-3.372</td><td><0.001</td></non<>	-1.256 [-1.986, -0.526]	-3.372	<0.001		
L*S: V <non< td=""><td>0.131 [-1.133, 1.395]</td><td>0.203</td><td>0.838</td></non<>	0.131 [-1.133, 1.395]	0.203	0.838		
L*S: M <v< td=""><td>0.003 [-0.7, 0.706]</td><td>0.011</td><td>0.991</td></v<>	0.003 [-0.7, 0.706]	0.011	0.991		
Status N : Leisure	1.373 [-0.737, 3.484]	1.261	0.211		
Status M : Leisure	0.834 [-1.284, 2.953]	0.763	0.447		
Status V : Leisure	0.859 [-1.331, 3.050]	0.760	0.449		
Status N : Instrument	-0.546 [-1.969, 0.876]	-0.745	0.458		
Status M : Instrument	-0.338 [-1.766, 1.089]	-0.459	0.647		
Status V : Instrument	-0.114 [-1.591, 1.363]	-0.150	0.881		

Table 21 [continued]

Random Part			
σ^2	231.24		
${ m au_0}^2$	80.24_{Stim}		
${ au_0}^2$	77.39_{Sub}		
ICC	0.405		
N	$190_{Stim} / 80_{Sub}$		
Observations	30400		
Conditional R ² / Marginal R ²	0.480 / 0.125		

Table S22. Model comparison. The initial model (model.0) predicts the Attractiveness by the factors Layout and Status. It is Model-A as described in the manuscript. The consecutive models (model.1 to 9) append cumulatively one of the following covariates: stimulus order, estimated income of the depicted character, rater's preference for professions (Prof_Pref), character's smile intensity, character's gaze direction, character's estimated age, character's gender, rater's gender, rater's own musicality. The statistical model fit to the data is tested via the *anova* function in R.

Statistical Model Fit								
Model	n of parameters	added covariate	AIC	BIC	Chi squared	p		
model.0	9	[Layout * Status]	253297	253372				
model.1	10	Stim_Order	253152	253235	147.081	<0.001		
model.2	11	Income	253149	253241	5.022	0.025		
model.3	12	Prof_Pref	253000	253100	151.225	<0.001		
model.4	13	Smile	252998	253106	4.188	0.040		
model.5	14	Gaze	252997	253114	2.589	0.107		
model.6	15	Age	252979	253103	20.467	<0.001		
model.7	16	Sim_Gender	252929	253062	51.871	<0.001		
model.8	17	Rater_Gender	252928	253069	2.792	0.094		
model.9	23	Rater_Musicality	252930	253121	10.283	0.113		

 $[\]ensuremath{^{*}}\xspace$ AIC: Akaike information criterion, BIC: Bayesian information criterion