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The sudden emergence and global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have greatly accelerated 
the adoption of novel vaccine strategies, which otherwise would have likely languished for years. In this light, vaccines for certain 
other pathogens could certainly benefit from reconsideration. One such pathogen is Streptococcus pneumoniae (pneumococcus), an 
encapsulated bacterium that can express >100 antigenically distinct serotypes. Current pneumococcal vaccines are based exclusively 
on capsular polysaccharide—either purified alone or conjugated to protein. Since the introduction of conjugate vaccines, the valence 
of pneumococcal vaccines has steadily increased, as has the associated complexity and cost of production. There are many pneu-
mococcal proteins invariantly expressed across all serotypes, which have been shown to induce robust immune responses in animal 
models. These proteins could be readily produced using recombinant DNA technology or by mRNA technology currently used in 
SARS-CoV-2 vaccines. A door may be opening to new opportunities in affordable and broadly protective vaccines.
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The success of coronavirus disease 2019 
(COVID-19) vaccines has brought to 
question the approach to development of 
vaccines against other infectious diseases. 
Dr. Eric Lander, Director of the Office of 
Science and Technology Policy, is pro-
posing the United States have a vaccine 
ready within 100 days of identifying the 
next pandemic outbreak [1]. As vaccine 
development for severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) 
has demonstrated, rapid deployment of 
vaccines for new pathogens can benefit 
from new technologies in design and 
delivery. However, vaccines for older, 

well-known pathogens have generally 
remained unchanged since the time of 
their introduction. The time may now 
be auspicious to reconsider how older, 
traditional vaccines may yield to im-
proved versions derived from novel, 
alternative approaches. Vaccines for 
Streptococcus pneumoniae (pneumo-
coccus) are prime examples of old and 
well-trodden approaches that are long 
overdue for reformulation in light how 
the field of host–pathogen interactions 
has progressed.

Pneumococcus is an opportunistic 
bacterial pathogen in humans that con-
sists of >100 antigenically and biochem-
ically distinct serotypes [2], most of 
which can cause human disease [3]. It 
remains the leading cause of community-
acquired pneumonia and is a major cause 
of global mortality, particularly in young 
children [4]. Capsular polysaccharide 
(CP) is an important pneumococcal vir-
ulence factor and the basis for serotype 
classification. Variation in the linkage 
and monosaccharide composition of the 
CP defines the antigenicity of individual 
serotypes. Immunization with CPs asso-
ciated with invasive disease protects in 
a very narrow, capsule-specific manner. 

Additionally, CP-based vaccines have 2 
(among others) significant shortcom-
ings: (1) there are >100 serotypes and (2) 
CP alone is poorly immunogenic in very 
young children who are at high risk for 
infection [5].

The immune system processes poly-
saccharide protein conjugate vaccines 
as peptide antigens and subsequently 
produces polysaccharide responses that 
more closely resemble those induced by 
proteins. Early in the 20th century, poly-
saccharides were found to be more im-
munogenic when covalently linked to 
a carrier protein [6]. This observation 
led to the licensing of a conjugate vac-
cine against Haemophilus influenzae type 
B (Hib) in 1990 for the United States. 
Conjugate vaccines for meningococcus 
and pneumococcus became available in 
the United States in 1999 and 2000, re-
spectively. The Hib vaccine has been ex-
tremely effective, practically eliminating 
H. influenzae type B meningitis from 
young children in the United States. 
Meningococcal conjugate vaccines have 
been effective against the 4 serogroups 
contained in those vaccines. However, 
unlike these encapsulated pathogens, the 
diversity of pneumococcal serotypes that 
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cause human disease is much greater, 
making conjugate approaches to vaccines 
extremely complex and costly.

Increasing numbers of pneumococcal 
serotypes have been identified since the 
introduction of the first pneumococcal 
conjugate vaccine (PCV) in 2000 (Table 
1). Pfizer recently won approval for a 
third-generation PCV from the US Food 
and Drug Administration (FDA) [7]. 
This PCV has 20 serotype-specific CPs 
conjugated to the Diphtheria CRM197 
Protein. The vaccine covers the most 
common 20 serotypes associated with in-
vasive pneumococcal disease (IPD) and 
pneumococcal pneumonia. In addition, 
Merck has announced FDA approval of 
a 15-valent conjugate vaccine [8]. Shortly 
after the release of the first-generation 
7-valent PCV in 2000, it became evident 
that this vaccine applied selective pressure 
to shift IPD to serotypes not contained in 
the 7-valent vaccine [9, 10]. Thus, sero-
types 19A, 7F, and 6C, which were not 
contained in the 7-valent PCV, became 
a more frequent cause of IPD. This phe-
nomenon of serotype replacement has 
now twice led to increases in the valency 
of PCVs in an effort to keep chasing the 
latest pneumococcal epidemiology [11]. 
In addition, the 13-valent PCV was inef-
fective against serotype 3, which remains 
the most common cause of IPD in the 
United States. Consequently, the com-
plexity and cost of PCVs have increased 
in parallel.

We are now 21 years on with the de-
velopment PCV. The current PCVs have 
been highly effective against IPD sero-
types contained in the vaccine. This 
success is the reason for expanding the 

PCVs. However, cost prohibits the use of 
PCVs in much of the developing world, 
and it is only through philanthropic en-
deavors that PCVs have been available to 
global populations at high risk for IPD.

The current strategy of conjugating 
increasing numbers of CPs to develop 
PCVs that are ever more complex con-
tinues to put pressure on pneumococcus, 
at least in the near term. Selective re-
moval of capsular types from the upper 
respiratory tract by vaccine-induced im-
mune responses creates niches that will 
be filled, largely, by nonvaccine sero-
types [12]. Whether these serotypes have 
the capacity to cause invasive disease to 
the same extent as serotypes in the vac-
cine is a question that remains to be an-
swered. However, if history teaches us 
anything, we should be very circumspect 
about dismissing these currently un-
common serotypes. A highly desirable 
alternative to conjugate vaccines would 
be a nonpolysaccharide pneumococcal 
vaccine with broad coverage against all 
pneumococcal serotypes. There has long 
been interest in and growing support 
for developing such a vaccine based on 
pneumococcal proteins. Pneumococcal 
proteins with vaccine potential have been 
extensively studied [13] and proposed as 
vaccine candidates based on their distri-
bution among all capsule types and their 
ability to elicit protective immune re-
sponses against systemic infection in an-
imal models. Such a vaccine would likely 
be immunogenic in young children, 
be less expensive to produce, and elicit 
strong immunological memory at least of 
the magnitude seen with conjugated CP. 
Further, it could be possible to formulate 

an mRNA vaccine coding for a protein 
or multiple proteins similar to those cur-
rently available for SARS-CoV-2.

An alternative approach to pneumo-
coccal vaccines stands to greatly reduce 
the disease burden, particularly in the 
developing world. Nonetheless, develop-
ment of a new vaccine in the presence of 
an effective vaccine will face some hurdles. 
Conjugate vaccines have proven highly ef-
fective against carriage and invasive infec-
tion for the specific serotypes they target. 
Additionally, there has always been re-
luctance to consider antigens other than 
polysaccharide for encapsulated patho-
gens. Clearly, PCVs have had an impact on 
pneumococcal disease in developed coun-
tries. However, it is time to step up to ap-
proaches that are more affordable and can 
cover a wider variety of serotypes without 
constant reformulation and associated 
complexity and cost. Much like efforts to 
develop a universal flu vaccine, producing 
a noncapsular pneumococcal vaccine with 
broad coverage has far-reaching implica-
tions. If not now, when?
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