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Background: Academic pathology suffers from an acute and growing lack of workforce resource. This especially impacts on
translational elements of clinical trials, which can require detailed analysis of thousands of tissue samples. We tested whether
crowdsourcing – enlisting help from the public – is a sufficiently accurate method to score such samples.

Methods: We developed a novel online interface to train and test lay participants on cancer detection and immunohistochemistry
scoring in tissue microarrays. Lay participants initially performed cancer detection on lung cancer images stained for CD8, and we
measured how extending a basic tutorial by annotated example images and feedback-based training affected cancer detection
accuracy. We then applied this tutorial to additional cancer types and immunohistochemistry markers – bladder/ki67, lung/EGFR,
and oesophageal/CD8 – to establish accuracy compared with experts. Using this optimised tutorial, we then tested lay
participants’ accuracy on immunohistochemistry scoring of lung/EGFR and bladder/p53 samples.

Results: We observed that for cancer detection, annotated example images and feedback-based training both improved accuracy
compared with a basic tutorial only. Using this optimised tutorial, we demonstrate highly accurate (40.90 area under curve)
detection of cancer in samples stained with nuclear, cytoplasmic and membrane cell markers. We also observed high Spearman
correlations between lay participants and experts for immunohistochemistry scoring (0.91 (0.78, 0.96) and 0.97 (0.91, 0.99) for lung/
EGFR and bladder/p53 samples, respectively).

Conclusions: These results establish crowdsourcing as a promising method to screen large data sets for biomarkers in cancer
pathology research across a range of cancers and immunohistochemical stains.

Personalised medicine is reliant on the determination of markers
and genetic profiles that facilitate targeting of therapies to those
who will benefit the most. Achieving this aim depends on
translational studies from clinical trials whereby success of the

new agent, modality or regime is correlated with profiles observed
in the target tissues. By their nature these studies generate large
tissue sets. Progress therefore depends on pathologists having
sufficient time for research, which is becoming increasingly
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difficult in an environment of increasing workload and severe
financial constraints on healthcare and research across the world.
In this context, the future of medical research is critically
dependent upon innovation to improve productivity and increase
efficiency (UK Accelerated Access Review). We hypothesised that
contributions from the general public – also known as ‘crowdsour-
cing’ – can have a role in accelerating biomedical research. Here we
explore its application in the field of immunohistochemistry (IHC)
scoring in human cancer tissue samples.

Histopathologists have a key role in both medical diagnostics
and translational research. While demand for histopathologists has
never been higher, in most part due to increases in cancer cases
(þ 30% in the UK since the late 1970s; Cancer Research UK,
‘Cancer incidence for all cancers combined’, 2013), there has been
a precipitous decline in the academic histopathology workforce. In
the US, the proportion of pathologists in the population is
predicted to drop by 35% between 2010 and 2030 (Robboy et al,
2013), whereas the UK has seen a 60% drop in academic
pathologists between 2000 and 2012 (Wilkins, 2015). Many of
the solutions proposed to address this deficit can only be realised in
the long-term, whereas more resource is required immediately
to ensure an ongoing contribution of tissue sample interrogation to
translational research. Machine learning promises to automate
many routine evaluations (Bolton et al, 2010; Wilbur, 2014; Bouzin
et al, 2015; Howat et al, 2015), but commonly requires large,
validated data sets for its development. Crowdsourcing can provide
such data sets in addition to solving an immediate need for
analytical resource.

Crowdsourcing (or citizen science) is the provision of services
by distributed members of the general public. Such services take
many forms, including problem solving, nature surveys, environ-
mental monitoring, and data processing (Ranard et al, 2014).
Crowdsourcing has existed for close to two centuries but
experienced a surge in popularity over the past decade, particularly
facilitated by internet and mobile technologies. Current scientific
applications include the classification of images of distant galaxies
(Lintott et al, 2008), puzzle games designed to create a three-
dimensional visual representation of the brain (Seung and Burnes,
2012), discovering tertiary structures of proteins (Cooper et al,
2010), as well as bug hunting and genome sequence analysis
(Kawrykow et al, 2012; Good and Su, 2013; Rallapalli et al, 2015).

Here we crowdsourced the analysis of tumour samples prepared
as tissue microarrays (TMAs). Tissue microarrays facilitate high-
throughput molecular analysis of tissue samples to investigate
associations between tumour-specific protein expression and
clinical outcomes (Giltnane and Rimm, 2004). Although auto-
mated analysis of TMAs has proven to be effective for specific
screening protocols, particularly in breast cancer (Turbin et al,
2008; Bolton et al, 2010; Konsti et al, 2011; Howat et al, 2015), it
was also observed that algorithms underperform on less well-
established markers such as cytokeratin (CK) 5/6 and epidermal
growth factor receptor 1 (EGFR/HER1; Howat et al, 2015). In the
same study, 20–25% of samples had to be manually excluded from
the analysis. This suggests a synergy between crowdsourcing and
automated analysis, whereby manual exclusion and scoring could
precede the training of an automated algorithm. A key feature in
this approach is that crowdsourcing can compensate for slight
deficits in accuracy through the sheer volume of data it can
process.

We previously developed Cell Slider (www.cellslider.net) to
invite members of the public to score breast cancer TMA cores for
oestrogen receptor (ER) staining (Candido Dos Reis et al, 2015).
We observed that users tended to overestimate the number of
cancer cells in an image, compromising the accuracy of IHC scores.
This lack of specificity in Cell Slider was most likely due to a
minimal level of instruction provided prior to scoring the samples,
as well as a restrictive interface showing only a small portion of a

TMA sample, preventing users access to an overview of the tissue.
Here we present a novel crowdsourcing interface developed to
improve upon Cell Slider. First we set out to test the effects of
feedback-based training and provision of annotated example
images on the ability of scorers to detect cancer in a sample.
We then used this improved tutorial to assess performance in
cancer detection in four sample types selected as being of interest
to academic pathologists. Finally, we examined the accuracy of
IHC scoring in a lung cancer sample with membrane expression of
EGFR, and bladder cancer with nuclear expression of p53.

MATERIALS AND METHODS

Participant recruitment and ethics. Participants were recruited
through e-mails to individuals registered for non-pathology Cancer
Research UK crowdsourcing projects. Newsletters and advertising
were used to recruit new volunteers specifically for Trailblazer, and
additional paid testers were recruited via the Prolific Academic
platform (http://www.prolific.ac/, d7.50 per hour). We combined
results from volunteers and paid participants as although paid
testers are considerably faster than volunteers, the performance of
the groups is not significantly different (data not shown). All
participants provided informed consent to participation and
storage of their data. The Health Research Authority approved
this study (14/NW/1033). All participants that completed the test
samples were included in the results reported here. None of the
participants expressed any professional experience with pathology,
but otherwise no demographic or data on educational achievement
was collected. No participant participated more than once in any of
the experiments.

Tissue microarray samples. Samples from oesophageal and lung
tissues were prepared as TMAs, immunohistochemically stained
and imaged by the research groups of GJT and WH as previously
described (Ward et al, 2014). The AK lab prepared the bladder
cancer samples with p53 IHC as described previously (Cazier et al,
2014), and the bladder samples were stained with Ki67 using a
clone MIB-1 (Dako, Agilent Technologies) at 1 in 1000 dilution on
a Leica Bond machine, with Epitope Retrieval 1 buffer for 20 min.
For all samples, patients consented to the use of their tissue for
research (bladder cancer samples ethical approval 13/LO/0540;
lung and oesophageal cancer samples ethical approval REC no. 10/
H0504/32)

Expert scoring. We obtained expert scores for the cancer
detection task from 3 experts for all samples but lung/CD8, for
which we had two additional experts. Three experts scored the IHC
lung/EGFR sample and three experts scored the IHC bladder/p53
sample. The expert scores were provided through the same web
interface used by the participants, except for the bladder samples
which were scored as digital images in the lab. Pathologists entered
their ratings independently from one another. Final expert
consensus values, used to rate non-specialist participants were
calculated as the majority vote (for cancer detection tasks) or the
median value across experts (for IHC scoring of biomarker
proportion and intensity).

Online platform. All Trailblazer releases were developed using
Pybossa, an open-source framework specifically developed for
online crowdsourcing (https://github.com/PyBossa/). The stack
consisted of Python, Django, Postgres, Javascript and jQuery. The
platform was hosted on Amazon Web Services. Our code –
available under a GNU Affero license – can be found at https://
citizenscience.github.io.

Detecting cancer cells. Participants were presented with a
sequence of images and asked to identify regions where cancer
was present. Ten images were overlaid by a 6� 6 grid for a total of
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360 squares (Figure 1). Participants then marked each square as
containing no cancer (green), one or more cancer cells (red) or no
tissue (blank; Figure 1B). A scrollable gallery of reference images
illustrating a variety of cancer and non-cancer cells were included
to aid correct analysis. The same ten images of lung cancer stained
by CD8 (lung/CD8) were used throughout the testing of different
tutorial mechanics. The ten images for each experiment were
confirmed by consultant pathologists to be representative of the
variety of possible tissue morphologies and biomarker staining
patterns. The images were presented to each participant in a
random order. We used a full factorial design (Figure 2A) to assess
the effect of annotated images and feedback-based training in
tutorials. The basic tutorial consisted of an B10- to 15-min,
passive, text- and image-based set of instructions, developed based
on interviews and training sessions with pathologists. Whilst all
participants viewed the basic tutorial, they were randomly assigned
to one of 4 groups in the factorial design. The tests investigated two
additional tutorial elements. Firstly, the addition of 5 annotated
images, shown to participants during the tutorial. Secondly,
feedback-based training presented with 5 training images before
the test images. For two images they were provided immediate
feedback on each answer. For the remaining 3 images feedback was
provided only after scoring the majority of the image. This was
designed to mimic the learning experience of other successful
crowdsourcing experiments (e.g., in EyeWire; Kim et al, 2014). The
same five example images were used for both annotated images
and feedback, and no images from the tutorial were used for
testing. In addition to lung/CD8 a further three data sets were

tested to confirm the accuracy of the tutorial including annotated
images and feedback-based training.

IHC biomarker scoring. Cancer detection is only the first step in
TMA scoring; the next step is to score the percentage of cancer
cells that are stained and the intensity of such staining. We
therefore set out to test how accurately participants could score
cancer staining, given the improved tutorial for cancer detection.
We selected 21 lung/EGFR cytoplasmic stain samples and 30
bladder/p53 nuclear stain samples representative of the majority of
clinical samples to test this, whereby each participant scored a
random set of 10 images. These images were separate to the images
used initially for cancer detection; no images from the tutorial were
used as a test image. Participants indicated proportion of staining
as a percentage, in increments of 5%. Where proportion was above
0%, i.e. stained cancer cells were present, the participant was asked
to score staining intensity as 1 (weak), 2 (moderate), or 3 (strong).
The product of these two, that is, a score between 0 and 300, is
called the McCarty ‘H’ score and is commonly used to relate IHC
to patient outcomes and treatment response (McCarty et al, 1986).
The tutorial for cancer detection was extended to explain IHC
scoring, and users practiced IHC scoring through feedback-based
training prior to scoring the TMA scores on which their
performance was assessed. This extended tutorial, consisting of
both a cancer detection and IHC scoring tutorial, took between 20
and 30 min to complete.

Statistical analysis. Analyses presented in this paper are either at
the level of individual participants or at the level of consensus
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Figure 1. The ‘Trailblazer’ interface for viewing, annotating and scoring tissue microarray (TMA) cores. (A) Participants evaluated squares on a
6x6 grid overlaid on a TMA for the presence of cancer cells. (B) They were asked to mark squares with cancer as red, cells without cancer as green
and completely empty squares as blank. (C) To aid in cancer detection and IHC scoring, the participant could move their cursor over the core to
reveal a high magnification view of the area under the cursor. Furthermore, a scrollable gallery of high magnification example images of cancer
tissue and healthy tissue was available at the bottom of the screen. (D) Prior to starting the task each participant completed a B10-minute tutorial
explaining the type of sample and how to distinguish cancer cells from non-cancer cells, of which a screenshot is shown here. In the first
experiment we tested the effect of feedback-based training and/or annotated images provided in addition to this baseline tutorial.
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ratings based on the aggregation of multiple participants. Whereas the
former informs us about the effect of tutorial changes on individual
performance, aggregated data underlies the power of crowdsourcing
and is therefore the metric of interest when assessing the usefulness of
this approach. During tutorial development for cancer detection, each
participant provided 360 ratings (36 grid squares in 10 images). In the
analysis we equated ‘blank’ and ‘no cancer’ responses such that each
rating was binomial (positive or negative for cancer). We furthermore
excluded 53 squares which contained no tissue whatsoever, as these
would artificially boost the specificity. Each participant rating was
then compared with the expert consensus on the basis of the presence
or absence of cancer cells in each square. These comparisons were
used to identify true positive (TP), true negative (TN), false positive
(FP) and false negative (FN) responses from which sensitivity (TP/
[TPþ FN]), specificity (TN/[TNþ FP]) and F1-score (2�TP/[2�
TPþ FPþ FN]) were calculated (Figure 2). The general linear model
was used to obtain coefficients and P-values on the main effects
of feedback-based training and annotated images, and on their
interaction. We computed Cohen’s Kappa for each participant against
the expert consensus, between pairs of experts, and for the participant
consensus against the expert consensus.

One pertinent question in crowdsourcing is how many
participants are required to provide accurate analyses for each
image, with the underlying assumption of diminishing returns in
group performance as more participants are added. We explored
this question for both cancer detection and IHC scoring by
bootstrapping various group sizes. We used the AUC described by the
receiver operating characteristic – a common classification measure
for a binary classifier – to assess group performance. Bootstrapping
was used to estimate the accuracy of hypothetical groups between 3
and 40 participants in size. For a group size n, we sampled n
participants from the complete population of participants with
replacement, 500 times. Similarly, IHC scoring accuracy was assessed

on the basis of Spearman r between the median expert score and
bootstrapped groups of participants. For each image, we took the
median of all responses for that image to calculate the aggregate
H-score. IHC bootstrapping was performed using 10 000 samples.

All analyses were performed in Python using SciPy (Jones et al,
2001), scikit-learn (Pedregosa et al, 2011), scikits-bootstrap (https://
github.com/cgevans/scikits-bootstrap), Pandas (McKinney, 2010) and
NumPy (van der Walt et al, 2011). Graphs were created using
Matplotlib (Hunter, 2007).

RESULTS

Identification of cancer cells. In our first experiment we tested
the efficacy of two tutorial elements such that participants could
better distinguish cancer from non-cancer tissue. In the basic
tutorial without annotated images or feedback, individual partici-
pants (as opposed to the aggregate of multiple responses which is
more commonly used in crowdsourcing) achieved an average
sensitivity of 0.74±0.04 (95% CI of the mean), specificity of
0.66±0.04, and F1-score of 0.70±0.03 (Figure 2B). We calculated
main effects and interactions for the two factors using linear
regression (see Table 1 for statistics). We found both annotated
images and feedback-based training had statistically significant
positive effects on the F1-score, with no interaction between the
factors. In our experiment, adding both factors improved the F1-
score by B0.05. Both tutorial components were therefore used in
follow-up experiments. It is worth noting that the sensitivity-
specificity trade-off was shifted strongly in favour of sensitivity in
response to feedback-based training, whereas annotated images
had no such effect (Table 1). In other words, feedback-based
training lowers the threshold to indicate a square contains cancer.
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Table 1.

Table 1. Main effects of annotated images and feedback-based training and their interaction

Factor F1-score Specificity Sensitivity
Annotated images b¼2.11, (0.03, 4.20)

P¼0.047
b¼1.18 (�3.11, 5.48)

P¼0.59
b¼ 2.69 (� 0.64, 6.02)

P¼ 0.11

Feedback-based training b¼3.14 (1.06, 5.23)
P¼0.003

b¼ �7.59 (�11.89, �3.30)
P¼0.001

b¼8.77 (5.44, 12.10)
Po0.001

Interaction b¼ � 1.81 (�3.89, 0.27)
P¼0.09

b¼ �0.71 (�5.00, 3.58)
P¼0.75

b¼ � 1.95 (� 5.28, 1.38)
P¼ 0.25

All regression coefficients represent estimated change in performance when adding the factor, multiplied by 100. For example, adding annotated images is estimated to improve the F1-score
by 0.0211. Values in brackets represent 95% confidence interval of the coefficient. Cells in bold are significant at Po0.05 uncorrected for multiple comparisons.
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Cancer detection in different cancers and biomarkers. We used
the improved tutorial to test three additional data sets: a further set
of lung samples stained for EGFR (N¼ 76 participants), oesopha-
geal samples stained for CD8 (N¼ 49 participants), and bladder
samples stained for Ki67 (N¼ 49 participants). Critically, we now
looked at both individual and aggregate performance, the latter by
combining multiple cancer/no cancer responses for each individual
square in the image. We first calculated Cohen’s kappa for each
participant with the expert consensus, revealing large differences
between participants (Figure 3A). We then aggregated participants by
calculating a majority consensus score for each square, which yielded
‘moderate’ to ‘substantial’ agreement (Landis and Koch, 1977) in each
of the 4 sample types (Figure 3A). We also calculated the pairwise
agreement between each of the experts and the average of those
pairwise agreements. Strikingly, in 3 out of 4 sample types the
majority consensus of participants was in better agreement with the
expert consensus than experts among one another (Figure 3A).

A second way of quantifying performance of the aggregate
group is to use the area under the receiver operating characteristic
curve (AUC). Specifically, we were interested in the relationship
between the number of participants evaluating a sample and the
accuracy as measured by AUC. For each of the 4 sample types, we
bootstrapped 500 samples for a number of participant population
sizes between 3 and 40. In all cases the average AUC approached a
maximum of B0.95 asymptotically as the number of participants
per sample increased (Figure 3B). Altogether, in the majority of
samples, a relatively small group of lay participants was able to
approach levels of accuracy that would be expected from any one
trained expert relative to another.

Immunohistochemistry scoring. Having established tutorial ele-
ments that improve participant performance in the detection of
cancer in TMAs and demonstrated that these permit high levels of
agreement with experts in several different sample types, a key
question remained: would the new interface yield reliable scoring
of immunohistochemical staining in TMA samples? To answer this
question, we tested IHC accuracy in the membrane/cytoplasmic
marker EGFR in lung cancer (N¼ 35 participants, each scoring 10
images) and for the nuclear marker p53 in bladder cancer (N¼ 45
participants, each scoring 10 images). In the lung/EGFR data we
observed a Spearman correlation of 0.91 (bootstrapped 95%
CI¼ (0.78, 0.96)) between the median participant response and
median expert score (Figure 4A). In the bladder/p53 sample, this
same correlation was 0.97 (95% CI¼ (0.91, 0.99); Figure 4B). We
also calculated how accuracy improved as we increased the number
of participants evaluating each image (Figure 5). As was the case in
cancer detection, having more than 5–10 participants rate each
image did not yield substantial increases in group performance.

DISCUSSION

In this paper we addressed the hypothesis that crowdsourcing –
distributing work to members of the general public – can be used
to accurately analyse cancer TMA samples, using an online
platform specifically developed for the clear presentation of
samples. We initially examined the ability to distinguish cancer
tissue from non-cancer tissue, a critical first step in IHC analysis,
and found that annotated images and feedback-based training
positively impacted on performance in lung/CD8 samples. We
then applied this training method to three more sample types –
lung/EGFR, oesophageal/CD8, and bladder/Ki67 – finding that
aggregated responses from participants showed agreement with
experts at a similar level as experts with one another, with AUCs
between 0.90 and 0.95. Finally, we tested our improved tutorial for
its usefulness in IHC scoring itself, finding strong correlations
based on H-score between crowdsourced scores and experts.

Altogether, these results provide evidence that the public can
accurately analyse TMA samples, and suggest crowdsourcing as a
potential additional resource to meet the growing demand for
analysis resource in pathology research.

Our previous work in the analysis of breast cancer samples
stained for oestrogen receptor showed an AUC of 0.95 for cancer
detection at the whole core level, as well as strong correlations for
IHC scoring with expert ratings (Cell Slider; Candido Dos Reis
et al, 2015). However, this proof of principle was performed in the
most common cancer and marker available, which can be analysed
accurately using automated methods (e.g., Turbin et al, 2008;
Bouzin et al, 2015; Howat et al, 2015). Here, we tested analytically
challenging cancer types as well as immunohistochemical stains for
which algorithms are either scarce or require considerable
involvement from experts. By testing the crowdsourcing approach
across a breadth of samples, we have shown this method to be
flexible and widely applicable, including in sample types where
algorithms struggle (Howat et al, 2015). Although both sample
types we used for IHC scoring achieved high correlations with
experts, the higher level of accuracy for bladder/p53 samples
compared with lung/EGFR is most likely caused by the fact that the
former is a nuclear marker whereas the latter is membranous. To
our knowledge crowdsourcing has only seen limited investigation
in cancer research. One study in renal cell carcinoma compared
pathologists, research fellows, members of the public, and a fully
automated algorithm on nucleus detection and segmentation
(Irshad et al, 2014). They observed that members of the public
performed similarly to research fellows, and either similarly to or
better than the algorithm depending on the task.

Algorithms trained on large amounts of labelled data perform
extremely well in many computer vision challenges (e.g., ImageNet;
Russakovsky et al, 2015) including in cancer pathology (e.g.,
Walton et al, 2009; Beck et al, 2011). However, with over 200
cancer types and dozens of available immunohistochemical
markers labelling different cellular components (nucleus, cyto-
plasm, and cell membrane) separately, obtaining sufficient training
data for even a proportion of sample types is a considerable
challenge. Crowdsourcing can provide a solution by scoring large
data sets of samples for which no algorithms are available, and by
subsequently making these data publicly available for researchers
and commercial entities to develop automated methods. It is
common practice for algorithms to supersede manual analysis in
this way, as exemplified by the development of galaxy classifiers
based on Galaxy Zoo data (Banerji et al, 2010), automated rather
than crowdsourced analysis of electron microscopy data (Lee et al,
2015), and across the field of genomics. Our findings suggest such
successes may be achieved on a large scale in pathology, where
crowdsourcing can accelerate research by processing large volumes
of samples currently being collected in clinical trials, as well as the
vast amounts of tissue stored from past trials and routine archival
material where patient consent is in place. Although crowdsour-
cing is not necessarily more resource-efficient than expert scoring –
as it still requires B10 lay people to score each image to achieve
accurate results – the sheer size of the general public and therefore
the number of people that could potentially contribute to analysis
provides a unique opportunity to accelerate research.

We set out to test two tutorial elements that might improve
performance on the cancer detection task, and observed both
annotated images and feedback-based training boosted overall
accuracy. It has previously been observed that crowdsourcing can
be improved by various means, including self-censoring of
submissions when a user is uncertain of a response (Shah and
Zhou, 2015), using videos rather than only text- or image-based
instruction (Starr et al, 2014), having mini-breaks especially for
complicated tasks (Rzeszotarski et al, 2013), presenting context-
sensitive help (Andersen et al, 2012), and financial punishment for
disagreement with other users (Shaw et al, 2011). Most research in
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crowdsourcing accuracy has been on paid workers, for example
recruited through Amazon Turk. In the case of unpaid citizen
science, however, users participate for non-financial reasons,

primarily a desire to contribute to research (Raddick et al, 2013;
Wright et al, 2015; Land-Zandstra et al, 2016) and to learn about
science (e.g., Rotman et al, 2012). In such cases, offering financial
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individual. The pairwise kappas between experts are indicated as small black lines underneath the histogram; the average of the pairwise kappas is
indicated in the dashed red line. (B) A second method to compare the participant consensus with expert consensus is the area under the receiver
operating characteristic curve (AUC). Here we examined how the AUC changed as we varied the number of participants included in the consensus
between 3 and 40. The red dotted line indicates an AUC of 0.90. Shaded areas indicate the bootstrapped 95th percentile CI.
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incentives to improve accuracy would seem undesirable. Others
have focused on improving the user experience to coax users to
dedicate more time to the project, as experienced users are on
average more productive than new users (Sauermann and
Franzoni, 2015). All such tools, including our findings on tutorial
optimisation, may be combined to establish crowdsourcing as an
accurate tool for data analysis.

From this series of experiments, we conclude that crowdsour-
cing is an accurate and reliable analysis tool in TMA scoring – a
major bottleneck in current clinical cancer research. We hope these
results will encourage others in not only histopathology but cancer
research more broadly, to take up crowdsourcing as a viable tool to
analyse their data especially when the initial investment to set up
crowdsourcing is outweighed by the ability to scale analysis (e.g., to
segment 3D tissue samples; Booth et al, 2015). For those doing so,
our open-source software can be used freely. Crowdsourcing in
biomedicine is becoming more widespread (see for example
https://citscibio.org/), and cancer research in particular stands to
benefit a great deal from further investment given a combination of
research need and strong public support.
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