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Abstract. Primary congenital glaucoma (PCG) is one of the 
primary causes of blindness in children and is characterized 
by congenital trabecular meshwork and anterior chamber 
angle dysplasia. While being a rare condition, PCG severely 
impairs the quality of life of affected patients. However, the 
pathogenesis of PCG remains to be fully elucidated. It has 
previously been indicated that genetic factors serve a critical 
role in the pathogenesis of PCG, although patients with PCG 
exhibit significant genetic heterogeneity. Mutations in the 
cytochrome P450 family 1 subfamily B member 1 gene have 
been implicated in PCG and further genes that have been 
reported to be involved in PCG are myocilin, forkhead box C1, 
collagen type I α1 chain and latent transforming growth factor 
β binding protein 2. The present review aims to provide an up 
to date understanding of the genes associated with PCG and 
the use of molecular technologies in the identification of such 
genes and mutations. This may pave the way for the develop-
ment of preventative methods, early diagnosis and improved 
therapeutic strategies in PCG.
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1. Introduction

Glaucoma is a disorder of progressive death of retinal optic 
neurons, which results in a characteristic appearance of the 
optic disc and visual loss (1). Glaucoma is estimated to affect 
~66 million individuals worldwide, with glaucoma patients 
in Asia accounting for almost 50% of all cases (2,3). A total 
of 1.2% of children in Britain suffer from glaucoma, and in 
India, 3‑7% of children suffer from this disease (4,5). Based 
on the modern classification system, primary glaucoma may 
be classified into three different subtypes: Primary open‑angle 
glaucoma, primary angle‑closure glaucoma and primary 
congenital glaucoma (PCG). PCG is a rare form accounting 
for 1‑5% of all cases of glaucoma (6). In addition, PCG is 
common, with a prevalence of >32% in children who suffer 
from glaucoma (7). The overall incidence of PCG in Denmark 
is 4.8 in 100,000 live births (8).

PCG is a serious form of glaucoma, which results in 
congenital developmental abnormalities with optic nerve 
degeneration and dysplasia of the anterior segment that may 
even contribute to irreversible blindness. The onset of PCG 
may be as early as at birth but may potentially manifest within 
the first 3 years of life (9). Numerous patients have congenital 
anomalies in the anterior chamber angle architectures when 
they are born. The incidence of PCG varies in different coun-
tries and by ethnicity. PCG occurs in 1:30,000 individuals in 
Australia (10) and 1:24,941 individuals in China (11). In western 
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countries, the incidence ranges between 1:10,000 and 1:70,000 
individuals  (12). In the highly consanguineous population 
of Saudi Arabia, a minimum incidence of 1:2,766 has been 
reported, while it is markedly higher in Southern India and 
in the Roma population of Slovakia, where its incidence lies 
between 1:1,250 and 1:3,300 (13). Therefore, the occurrence of 
this disease appears to be associated with consanguinity. The 
prevalence of PCG‑associated blindness is ~10% in Douala, 
4.2% in southern India and 6.3% in China (14). However, the 
pathogenesis of this disease remains to be fully elucidated and 
requires further study.

Early diagnosis and prompt treatment are particularly 
necessary for patients with PCG to maintain visual function 
throughout their lives. Identifying the pathogenic mechanism 
of PCG may assist in the development of treatments to slow 
down the development of consequent blindness. The pathogenic 
factors of PCG primarily involve two aspects, environmental 
and heredity. Environmental factors include viral and parasitic 
infections and the use of drugs by the mother during preg-
nancy. Patients with PCG frequently have a family history of 
occurrence and familial aggregation. In recent years, specific 
genes associated with PCG have been identified through the 
use of molecular genetics‑based techniques, including linkage 
analysis, exon sequencing and comparative genomic hybrid-
ization, e.g. cytochrome P450 family 1 subfamily B member 
1 (CYP1B1), myocilin (MYOC), forkhead box C1 (FOXC1) 
and collagen type I α1 chain (COL1A1). The present review 
is focused on the genetic aspects of PCG occurrence and 
screening of PCG‑associated genes.

2. Clinical characteristics of PCG

Due to the limited cooperativeness of children, no obvious 
symptoms may be detected at the early stage and examination 
equipment is mainly designed for adults; missed or delayed 
diagnosis or misdiagnosis are therefore common (15). Patients 
with PCG always have an abnormal structure of the trabecular 
meshwork (TM) and anterior chamber angle, and they present 
with an increase of the intraocular pressure and a further 
extension of sclera, optic nerve and associated structures. 
‘Bull's eye’ is a typical clinical feature of PCG. The other 
common symptoms associated with PCG include epiphora, 
photophobia, convulsions in the eyelids and buphthalmos (16).

Due to irritation of the cornea, patients with PCG 
frequently suffer from corneal epithelial edema and haze. 
The accumulation of aqueous humor leads to disruption in 
corneal endothelial integrity (17). A markedly thinned iris 
with reduced iris folds due to reduced stromal thickness and a 
severe flattening of the anterior limiting layer with a significant 
positive correlation with increased intraocular pressure (IOP) 
were reported in patients with PCG (18,19).

Patients with PCG exhibit corneal edema, increased 
corneal diameter, damaged Haab's striae or an enlarged axial 
length (20). In newborns, the normal horizontal diameter is 
9.5‑10.5 mm, while the corneal diameter in children aged 1 is 
10‑11.5 mm (21). Any increase in corneal diameter (>12 mm) in 
the first year of life should be noticed by pediatricians (22). The 
pathological features of PCG are as follows: i) Overlap of ciliary 
body and TM with the iris; ii) thickened trabecular beams in the 
trabeculum; and iii) absence of Schlemm's canal (SC) (23).

3. Treatment strategies for PCG

The common treatments for PCG include surgery and drug 
therapy. Carbonic anhydrase inhibitor is an important medi-
cation in the clinic with an efficiency to reduce the IOP by 
~25% and fewer general side effects compared with β‑receptor 
blockers (24). But long‑term usage may cause serious adverse 
reactions, including as anorexia, renal acidosis, thirst, fatigue 
and growth stagnation  (25). Furthermore, certain drugs, 
e.g. pilocarpine, may result in spasm of the ciliary muscle 
and myopia in pediatric patients (26). At present, the most 
promising treatment strategy for PCG is surgical intervention 
combined with drug therapy. However, certain surgical treat-
ments, including filtration surgery, still have disadvantages 
that may affect the quality of life of patients with PCG. The 
filtering bleb scar arising from filtration surgery may have an 
effect on IOP control (27). Furthermore, in certain cases, the 
visual function damage continues to progress after surgery.

Gene therapy refers to transferring genetic material into 
individuals with the aim of curing a disease or improving the 
clinical status of a patient. The major purpose of gene therapy 
is to replace non‑functional or defective genes with new genes 
that are fully functional so that the gene expression level may 
revert to its normal state (28). The advances in gene therapy 
hold significant promise for the treatment of ophthalmic 
conditions, particularly in PCG. Several studies in animal 
models have confirmed that gene therapy has efficient effects 
on aqueous humor and may exert optic ganglion cell protec-
tion. Perkins et al (29) indicated that treatment of the fascia 
fibroblasts in a rabbit model with human p21 gene may inhibit 
cell proliferation and increase the anti‑fibroproliferative ability 
in glaucoma‑filtering surgery. This result was also affirmed by 
Wen et al (30). Heatley et al (31) transferred human p21 gene 
into a high‑IOP monkey model with recombined adenovirus 
vector and indicated that the side effect of anti‑metabolic 
drugs (mitomycin C) in filtration surgery had been inhibited. 
Those pieces of evidence suggest that gene therapy may be 
suitable for patients with PCG. However, the accurate gene 
targets, namely the pathogenic genes of PCG, require to 
be determined.

4. Recent advances in technologies for PCG‑associated 
gene identification

To identify disease‑associated loci, the Human Genome 
Organization generated a specific nomenclature for glau-
coma‑associated genetic loci in 2011 (32). ‘GLC’ is a general 
nomenclature for gene loci in glaucoma. The numbers ‘1, 2 
and 3’ refer to the type of primary glaucoma (open‑Angle, 
closed‑Angle and congenital/infantile glaucoma, respectively). 
‘A, B, C and D’ indicate the chronology of the mapped genes. 
Analyses of genetic markers in pedigrees have mapped a glau-
coma‑associated gene to a region of chromosome 1q, which 
was termed GLC1A (33). Linkage studies of glaucoma of other 
pedigrees have mapped PCG‑associated genes to chromosome 
2p21‑22 (GLC3A), 1p36.2‑36.1 (GLC3B) and14q24.3 (GLC3C). 
The technologies available for the study of the genetics of 
PCG include sequence analysis, targeted gene mutant analysis 
and deletion/duplication analysis. Technologies for the iden-
tification of PCG‑associated genes include linkage analysis, 
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exome sequencing, whole‑exome sequencing and comparative 
genomic hybridization, which are discussed further below.

Linkage analysis. Linkage analysis is based on familial 
research and is primarily used for monogenic diseases (34). 
Linkage analysis was the primary tool used to map the 
genetics of PCG. The first PCG gene locus, located at 2p21 
(GLC3A), was observed in 11 Turkish families with PCG 
and identified by genetic linkage analysis in 1995 (35). The 
second chromosomal site to be identified to be associated with 
PCG is 1p36 (GLC3B), which was identified in eight families 
with PCG (36). In 2002, a third locus was identified on 14q24 
(GLC3C) (37). The likelihood of odds (LOD) score is a basis 
for the linkage analysis to calculate the logarithm of the likeli-
hood ratio. A LOD score ≥3 is considered to indicate a link. 
However, patients with PCG are rare with a large pedigree; 
thus, the utility of LOD scores may be limited.

Exome sequencing. Exome sequencing is a technique for identi-
fying mutations in known disease‑associated genes through PCR 
amplification, sequencing and sequence alignment (38). It is used 
to capture DNA in the exome region and determine the existence 
of base variations (39). Sheikh et al (40) identified two novel 
mutations, a missense mutation (c.107G>A) and a 12‑bp deletion 
mutation (c.198‑209delGGGCCAGGCGGC) in the CYP1Bl gene 
in a Pakistani family with PCG using exon sequencing. In 2015, 
Micheal et al (41) identified four homozygous CYP1B1 mutants 
(p.Ala288Pro, p.Asp242Ala, p.Arg355* and p.Arg290Profs*37) 
in 39 families with PCG using exome sequencing.

Whole‑exome sequencing. Whole‑exome sequencing is a 
high‑throughput genome analysis method based on exon 
sequencing. Whole‑exome sequencing is currently used for the 
identification of pathogenic genes and mutated sites in various 
diseases, including digestive tract tumors and melanoma, 
mental retardation, primitive dwarfism and idiopathic pulmo-
nary hypertension (42). Due to its high efficiency, this method 
is applied in prenatal diagnosis, particularly for researching 
rare mutations in small families and sporadic cases. In 2012, 
Lim et al (43) screened 17 CYP1B1 variations in 57 patients 
with PCG in the US using whole‑exome sequencing.

Comparative genomic hybridization (CGH). CGH is a 
genomic analysis technology used for the detection of copy 
number variations (CNVs), which serves an important role 
in human evolution, genetic diversity and disease suscep-
tibility (44). In 2011, Akarsu et al (45) analyzed 25 CNVs 
(5 deletions and 20 duplications) in 12 Korean patients with 
PCG using CGH and indicated that the incidence of rare 
gene‑containing CNV frequencies in patients with PCG 
was 5‑30%. Abu‑Amero et al (46) identified two 7p hetero-
zygous duplications and a 4p homozygous microdeletion in 
a female Saudi Arabian patient with CYP1B1‑negative PCG. 
In addition to gene copy numbers, studies have indicated that 
chromosomal aberrations are another possible cause of PCG. 
Broughton et al (47) reported on the pericentric inversion of 
chromosome 11 in a pedigree affected by PCG and bilateral 
corneal disease. Nakane et al (48) described that a 6p subtelo-
mere deletion occurred in a patient with PCG, severe mental 
retardation and growth impairment. Merritt and Lindor (49) 

detected a duplication on 7q11.23 with CGH in a family 
suffering from PCG. As the lowest limit of DNA fragment 
analysis is 3‑5 Mb for CGH, if the DNA amplification level is 
extremely low or a small DNA fragment is lost, this method is 
not able to detect it due to a lack of sensitivity.

5. Genetic aspects and mutations in genes associated with 
PCG

A high level of heterogeneity has been noted in the 
disease‑associated loci in patients with PCG, penetrance 
defects and prevalence of the disease among different popu-
lations. PCG is an autosomal recessive disease with variable 
penetrance  (50,51). In 1970, Rasmussen and Philip  (52) 
reviewed the literature on the heredity aspects of congenital 
glaucoma and indicated that PCG exhibited bilateral heredity 
in monozygotic male twins; this and was later confirmed by 
Fried et al (53). Genetic analysis of the families of patients 
with PCG suggested that the incidence in monozygotic male 
twins was higher compared with that in dizygotic twins (54). 
Therefore, it has been proposed that the inheritance of PCG 
includes an autosomal‑recessive and sex‑associated element 
with variable penetrance. In general, three PCG genetic loci 
have been implicated in different geographic locations world-
wide. Although the exact pathogenic gene and pathway have 
remained to be confirmed, several implicated genes, including 
CYP1B1, appear to participate in anterior segment develop-
ment and they may be involved in the development of PCG 
(Table I). The CYP1B1 gene is the most studied gene with over 
150 variants in PCG. Furthermore, certain evidence provided 
that the angiopoietin 1 (ANGTP)/TEK receptor tyrosine kinase 
(TEK) pathway may take part in the pathogenesis of PCG.

CYP1B1 gene. CYP1B1 (previously known as glau-
coma 3, primary infantile) encodes a homonymous protein 
(cytochrome P450, family 1, subfamily B and polypeptide 1), 
and is composed of 3 exons (3, 711,044 and 3,707 bp in length) 
and two introns (390 and 3,032 bp in length) (Fig. 1) (55). The 
protein is a member of the B subfamily of cytochrome P450 1, 
which catalyzes the NADPH‑dependent mono‑oxygenation 
of xenobiotics and endogenous molecules (56). The CYP1B1 
gene is expressed in various tissue types in the human body, 
including in the cornea, ciliary body, iris and retina, and 
may participate in the development of TM (57). CYP1B1 is 
also expressed in early embryos in several species during 
the development of ocular tissues (58). CYP1B1 gene muta-
tions may impair the enzymatic activity and stability and 
reduce localization of the protein to the mitochondria (59,60). 
CYP1B1 expression is regulated by aromatic hydrocarbons, 
adrenocorticotropin and peptide hormones (61).

The spectrum of CYP1B1 mutations varies widely across 
different populations (62). Pathogenic CYP1B1 alleles have 
been identified in 20% of PCG cases in Japanese patients 
and 14.9% of patients from the US. Similarly, the rate of 
CYP1B1‑mutated alleles is ~15.2% in Chinese patients with 
PCG, considerably lower than the percentage in patients from 
Morocco (47.7%) (63) and Saudi Arabia (75.9%) with mutated 
CYP1B1 alleles (46). Biallelic variants of CYP1B1 are well 
known as the genetic cause of PCG, accounting for 22% in 
Australian patients with PCG (64).
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Libby et al (65) demonstrated that developmental defects 
of TM and SC in eye tissue sections of CYP1B1‑knockout 
mice were similar to those in patients with PCG. 
Several studies reported that the IOP was increased in 
CYP1B1‑knockout mice (66‑68), thus indicating increased 
oxidative stress levels along with insufficient formation 
of the periosteum, similar to the alterations observed in 
human glaucomatous TM tissues. These changes may result 
in ultrastructural irregular collagen distribution in TM 
tissue. In Spanish patients with PCG, ~30% of cases carry 

loss‑of‑function CYP1B1 variants, which normally results 
in a null genotype (69).

Alsaif et al  (70) identified that c.1405C>T (p.R469W) 
exhibited a penetrance of 93% in patients with PCG, particu-
larly in Saudi Arabia, followed by a c.182G>A (p.G61E) 
mutation with 87.7% penetrance. Li et al (71) summarized that 
the primary mutation sites in CYP1B1 gene mutational spectra 
associated with PCG were G61E, R368H/L, R390H, E387K 
and R469W, while L385F, R390H and L107V were the most 
commonly observed sites in China. Ou et al (72) indicated that 

Figure 1. Schematic representation of the CYP1B1 gene. In humans, the CYP1B1 gene, which is composed of three exons and two introns, is mapped on 
chromosomal location 2p21‑22. The coding region of the CYP1B1 gene ranges from the 5' end of the 2nd exon to the last exon. A set of conserved core 
structures for the heme‑binding region corresponds to the carboxy‑terminal region of the cytochrome P450 enzyme. Chr, chromosome; CYP1B1, cytochrome 
P450 family 1 subfamily B member 1.

Table I. Genetic loci and genes associated with the pathogenesis of PCG.

Locus	 Chromosomal region	 Gene	 Functions	 Pathway implicated in PCG

GLC3A	 2p21‑22	 CYP1B1	 Endogenous steroid metabolism	 Retinoic acid‑independent pathwaya

GLC3B	 1p36.2‑36.1	 Unknown	 Unknown	 Unknown
GLC3C	 14q24.3	 LTBP2	 Extracellular matrix organization	 BMP/TGF‑β pathwaya

			   and formation
Undesignated	 lq24.3‑q25.2	 MYOC	 Trabecular meshwork inducible	 IL‑1/NF‑κB inflammatory stress
			   glucocorticoid response protein;	 responsea
			   compound variations with CYP1B1
Undesignated	 17q21.33	 COL1A1	 A core component of the	 Unknown
			   extracellular matrix in ocular
			   tissues, such as TM and SC
Undesignated	 6p25.3	 FOXC1	 Development of anterior segment	 Unknown
Undesignated	 8q23.1	 ANGTP1	 Effects on pro‑angiogenic and	 ANGTP/TEK signaling pathway
			   vascular stabilizing through
			   activation of TEK
Undesignated	 9p21.2	 TEK	 Formation and homeostasis of SC	

aImplicated in glaucoma, but still unknown in PCG. PCG, primary congenital glaucoma; CYP1B1, cytochrome P450 family 1 subfamily B 
member 1; LTBP2, latent transforming growth factor β binding protein 2; MYOC, myocilin; COL1A1, collagen type I α1 chain; FOXC1, 
forkhead box C1; TEK, TEK receptor tyrosine kinase; ANGTP1, angiopoietin 1; BMP, bone morphogenetic protein; IL, interleukin; 
TGF, transforming growth factor; TM, trabecular meshwork; SC, Schlemm's canal.
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L107V and R390H were common CYP1B1 mutations with 
allele frequencies of 3.19 and 3.09%, respectively, in Chinese 
patients with PCG. Therefore, L107V and R390H may be 
the most relevant pathogenic mutations in Chinese patients 
with PCG.

Among the known loci, two variants, which had not been 
previously associated with PCG, were identified in Brazilian 
patients (c.182G>A, c.241T>A) (73). Rashid et al (74) identi-
fied three novel (c.542T>A, c.1436A>G and c.1325delC) 
and five known (c.868dupC, c.1168C>T, c.1169G>A, 
c.1209insTCATGCCACC and c.1310C>T) variants of CYP1B1 
in 14 Pakistani families. Furthermore, 5 different CYP1B1 
variants in 7 families were investigated, indicating that the 
patients with missense mutations (c.1169G>A and c.1311G>A) 
had severe phenotypes and poor vision following surgical 
intervention compared to patients with null variants  (75). 
Talebi et al (76) recruited an Iranian family with PCG and 
discovered three novel CYP1B1 mutations (c.G701>A, 
c.707delG and c.710delA). These mutations expanded the 
database of known CYP1B1 gene mutations associated with 
PCG, which may be useful for genetic counseling and prenatal 
diagnosis for affected families.

Although >150 CYP1B1 variants have been reported 
in PCG cases worldwide, they only explain 87% of cases in 
inbred populations and 25‑27% of cases in heterogeneous 
ethnicities (77).

MYOC gene. MYOC is located on chromosome lq24.3‑q25.2 
and contains three exons (604, 126 and 782 bp in length). 
MYOC encodes myocilin, which is composed of 504 amino 
acids  (78). MYOC is expressed in numerous different 
types of eye tissue, including TM, sclera, ciliary body and 
retina. The majority of mutations of this gene identified 
are located in the third exon and mutations of the MYOC 
gene may result in structural changes in TM and the ciliary 
body, impeding the flow of aqueous humor and increasing 
IOP (78).

Nazir  et  al  (79) performed genotyping for rs74315341 
and rs879255525 in MYOC in a cohort of 100 patients with 
glaucoma and 100 control subjects. They demonstrated 
that the single nucleotide polymorphisms rs74315341 and 
rs879255525 in MYOC were associated with glaucoma. 
Millá et al (80) identified a novel variation (p.Glu352Lys) of 
MYOC in 207 Canadian patients with glaucoma; however, its 
pathogenicity remains to be determined. Recent studies on the 
MYOC gene are primarily focused on primary open‑angle 
glaucoma. A study in a Chinese pedigree with primary 
open‑angle glaucoma spanning four generations identified a 
novel mutation (c.1309T>C, p.Y437H) in the MYOC gene (81). 
Kaur et  al  (82) detected a compound mutation (CYP1B1: 
c.G1103A, Ar9368His; MYOC: c.G114T, p.Gln48His) with a 
detection rate of 1.4% (1/72) in PCG. A Gln48His mutation of 
MYOC was observed in 5 patients with PCG in India (83), and 
Kim et al (84) identified two novel MYOC mutants (c.L228S 
and p.E240G) in two Korean patients with PCG (detection 
rate of 2.4%, 2/85) using a bi‑directional sequencing method. 
Chen et al (85) hypothesized that MYOC gene mutants may 
act in association with CYP1B1 through compound variants 
in patients with PCG, while the mechanism remains to be 
determined. Although the detection rates of MYOC mutations 

are lower than CYP1B1 mutations, they may still explain the 
pathogenic causes in a proportion of PCG cases.

FOXC1 gene. FOXC1 encodes forkhead box protein C1, which 
is composed of 553 amino acids. FOXC1 is expressed in the 
cornea, TM and optic nerve. FOXC1 is present in mesodermal 
and neural crest‑derived cells, including cells of the anterior 
segment of the eye, and it regulates the external flow and IOP 
of the aqueous humor. Siggs et al (86) noticed that patients 
with PCG and FOXC1 variants were frequently complicated 
with systemic features associated with Axenfeld‑Rieger 
syndrome, including hearing loss, heart murmur and develop-
mental delay. Smith et al (87) observed abnormal development 
of the anterior segment (including Schlemm's canal, TM and 
iris) in mice with a FOXC1 gene mutation and these abnor-
malities were similar to the phenotypes observed in anterior 
ocular dysplasia in patients with PCG. Amongst 210 patients 
with PCG, two heterozygous missense mutations (H128R 
and C135Y) and three code shift mutations (g.1086delC, 
g.1155del9 bp and g.1947dup25 bp) were observed in FOXC1 
in 5 subjects (2.38%) (88). Medina‑Trillo et al (89) analyzed 
FOXC1 variants (rs77888940, c.‑429C>G; rs730882054, 
c.1134_144delCGGCGGCGCGG; rs35717904, c.*734A>T; 
rs185790394, c.‑244C>T; rs79691946, c.*454C>T) in 133 pedi-
grees with PCG and demonstrated that FOXC1 mutations may 
affect the formation of goniodysgenesis in PCG. These results 
suggest that FOXC1 may be associated with the pathogenesis 
of PCG.

COL1A1 gene. COL1A1 is located on chromosome 17q21.33 
and encodes the pro‑α1 chains of type I collagen, whose triple 
helix comprises two α1 chains and one α2 chain. Mutations in 
the COL1A1 gene are typically associated with skeletal and 
dermatological conditions, including Ehlers‑Danlos syndrome, 
bone mineral density variation, osteoporosis and Caffey 
disease (90). Mauri et al (91) identified compound heterozy-
gous variants of COL1A1 (p.Met264Leu; p.Ala1083Thr) in 
26 patients with PCG by whole‑exome sequencing. Collagen 
protein is a core component of the extracellular matrix (ECM) 
of the TM, SC and lamina cribrosa, all of which are ocular 
tissues involved in the development of glaucoma. In addition, 
pedigree studies have indicated that variants of COL1A1 may 
affect the development of central corneal thickness and thus 
result in PCG (92,93).

Latent transforming growth factor (TGF)‑β binding protein 
2 (LTBP2) gene. LTBP2 is mapped to 14q24.3, located 
~1.3 Mb from the GLC3C locus (14q24) (94). The LTBP2 
gene consists of 36 exons (95). LTBP2 is expressed in elastic 
tissues and was determined to be a PCG‑associated gene by 
Narooie‑Nejad et al (96) and Ali et al (97) in 2009. Subsequently, 
LTBP2 was demonstrated to be localized to the anterior 
segment and ciliary body. LTBP2 may be associated with PCG 
due to its putative effect on TGF‑β signaling and the ECM of 
TM. The study of mutations of the LTBP2 gene in patients with 
PCG thus came into focus. A homozygous variant of LTBP2 
(c.895C>T, p.R299X) was identified in two Marfan‑like 
phenotype Roma patients (98). Patients with Marfan syndrome 
frequently present with lens luxation with a high IOP, which 
may develop into glaucoma (99). Yang et al (100) identified 
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a nonsense mutation (c.2421G>A, p.W807X) in LTBP2 in 8 
Indian patients with PCG. Shazia et al (101) identified two 
mutations in the LTBP2 gene (c.4934G>A, p.Arg1645Glu; 
c.4031_4032insA, p.Asp1345Glyfs*6) in two Pakistani fami-
lies with PCG. Kuehn et al (102) observed certain symptoms, 
including increased IOP, globe enlargement of the eye and elon-
gated ciliary body in 8‑week‑old cats, which had a 4 base‑pair 
insertion in exon 8 of the LTBP2 gene. Inoue  et  al  (103) 
illustrated that the LTBP2 mutants had an abnormal domain 
structure, which may have resulted in the arrest of secretion of 
this protein, a process which is essential for the formation of 
microfibril bundles in ciliary zonules. Consequently, mutations 
of LTBP2 are a plausible cause of congenital ocular structural 
abnormalities that may result in PCG; however, the underlying 
mechanisms by which these mutations lead to PCG remain to 
be determined.

ANGPT1/TEK: Vascular development in PCG. The ANGPT1 
gene is located on 8q23.1 and encodes ANGPT1. ANGPT1 is 
a secreted glycoprotein, which activates receptors by inducing 
tyrosine phosphorylation. It serves an essential role in blood 
vessel maturation and is also involved in the development of 
SC. Developmental disorders in aqueous humor drainage in 
the SC and TM were frequently observed in patients with PCG 
with increased IOP (104,105). The ANGPT/TEK pathway was 
demonstrated to be involved in the development of SC and 
aqueous outflow (106,107).

The ANGPT/TEK signaling pathway is composed of 3 
ligands (ANGPT1, ANGPT2 and ANGPT4) and its receptor 
TEK  (108). TEK (also known as TIE2) is a receptor tyro-
sine kinase encoded by the TIE2 gene, which is expressed 
in endothelial cells. Defects in TEK may result in vascular 
malformations (109). In human eyes, expression of the TEK 
receptor is notably high in the SC endothelium. ANGPT1 is a 
vascular growth factor which affects endothelial activation and 
dysfunction (110) ANGPT1 is the primary ligand of TEK in the 
iridocorneal angle and is additionally expressed in certain other 
vascular‑supporting cells (111). The ANGPT1 gene exerts its 
pro‑angiogenic and vascular‑stabilizing effects through the acti-
vation of TEK. ANGPT2, another ligand of TEK, is a cellular 
context‑dependent agonist/antagonist of ANGPT/TEK signaling. 
ANGPT2 compensates for the loss of ANGPT1 in ANGPT/TEK 
signaling (112). The third ligand of TEK is ANGPT4, which is a 
poorly characterized ligand in mouse models (113). ANGTP4 is 
important for retinal fluid clearance (114).

Commonly, aqueous humor flow produced by the ciliary 
body is exhausted through TM and SC, which lie on the 
iridocorneal angle of the eye. Under normal circumstances, 
when TEK combines with ANGPT1, it may activate signals, 
and subsequently, the endothelial cells on the inner wall of SC 
are under the pressure generated by aqueous humor flow and 
the gradients. As a result, vacuoles form on endothelial cells, 
while the pressure‑dependent outer pouches of endothelial 
cells create a channel for aqueous humor flow to cross the SC. 
The ANGPT/TEK pathway preserves the stability of SC and 
TM functions (Fig. 2). Its inactivation leads to degeneration 
of TM and SC, which may further develop into irregular canal 
formation, increased IOP and glaucoma.

Thomson et al (115) demonstrated that genetic disrup-
tion in the ANGPT/TEK signaling pathway may result 

in increased IOP, buphthalmos and possibly even retinal 
ganglion degeneration. Subsequently, Thomson et al (116) 
determined that loss‑of‑function of the ANGPT/TEK 
signaling pathway resulted in severely hypomorphic canals 
with elevated IOP in humans and in ANGPT‑knockout 
mice. They identified 3 mutations (p.Q236*, p.R494* and 
p.K249R) of ANGPT1 among 284  patients with PCG. 
Souma et al (117) described 10 heterozygous mutations of 
TEK in 189 pedigrees with PCG. These results suggested 
that the ANGPT/TEK signaling pathway may be implicated 
in the development of PCG. Therefore, numerous genes 
associated with the ANGPT/TEK signaling pathway may be 
involved in the development of PCG.

6. Conclusions

PCG is a complex ocular disorder associated with consider-
able clinical and genetic heterogeneity. It is a type of serious 
glaucoma, which primarily affects children of consanguineous 
couples. Although sporadic cases of PCG may occur, the rele-
vant clinical data and genetic studies provide strong evidence 
to illustrate that PCG is an autosomal recessive disease. At 
times, PCG may also be accompanied by other rare genetic 
diseases, including hypoplasia corpus callosum. Genetic 
abnormalities may be suspected in pediatric patients with 
PCG and it may be recommended to exclude the presence of 
other genetic syndromes such as Axenfeld‑Rieger syndrome. 
The pathogenesis and therapy of PCG are a focal point of 
research regarding this disease. To date, genetic studies have 
identified several PCG‑associated genes and enlarged the gene 
map of PCG. However, the associated genes and mechanisms 
underlying the development of PCG have remained to be fully 
identified.

Patients with PCG are predominantly from small fami-
lies, which causes difficulties in studying the genetics of this 
disease. Developed techniques, including molecular genetics 
technology and applications of whole‑exome sequencing and 
next‑generation sequencing (NGS), have a unique value for 
the study of cases of PCG, particularly in small families. The 
elucidation of the pathogenesis of PCG may be assisted by the 
exploration of novel pathogenic genes, identification of muta-
tions and understanding of the functional relevance of these 
genes and mutations. The ‘third generation of high‑throughput 
NGS technology’ or single‑molecule real‑time sequencing has 
the advantage of being able to analyze short read lengths. With 
developments in sequencing technology, it may be possible to 
perform quantitative analyses of full‑length genes on an entire 
transcriptome level in patients with PCG.

Studies on known PCG‑associated genes, including 
CYP1B1, LTBP2, FOXC1 and MYOC and the ANGPT/TEK 
pathway, may form a basis for potential gene therapies. It is 
worthwhile to elucidate the association between CYP1B1, 
LTBP2, FOXC1 and MYOC and the ANGPT/TEK pathway. 
The genes reported so far do not fully explain the pathogenesis 
of PCG, and thus, other genes may also be associated with 
the development of PCG. Further studies are required to fully 
understand the complex association between the genotype 
and phenotype of patients with PCG. The use of transgenic 
and gene knockout animal models may be necessary to study 
the function of the PCG‑associated genes and mutations 
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in vivo and in vitro, and elucidate the molecular mechanisms 
underlying the development of PCG.

Compared with the traditional treatments, gene therapy 
as a novel therapeutic method has been gradually applied 
in the field of medicine, providing a broad prospect for the 
prevention and treatment of PCG. However, it has limitations 
regarding gene targets, which are used in the treatment of 
PCG. The potential gene targets used in PCG therapy must to 
satisfy the following conditions: i) Genes with mutations asso-
ciated with PCG, ii) gene expression is altered under primary 
congenital glaucomatous conditions, iii) genes that are known 
to be involved in pathways recognized as having an effect 
on IOP or aqueous humor outflow. Gene therapy for PCG 
is promising but still in the initial stage of experimentation 
in the field of ophthalmology. Bioinformatics databases and 
functional genomics may contribute to improved counseling 
and treatment strategies for patients with PCG.
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