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ABSTRACT
The formation of amyloid fibrils from soluble peptide is a hallmark of many neurodegenerative diseases such as Alzheimer’s and Parkinson’s
diseases. Characterization of the microscopic reaction processes that underlie these phenomena have yielded insights into the progression of
such diseases and may inform rational approaches for the design of drugs to halt them. Experimental evidence suggests that most of these
reaction processes are intrinsically catalytic in nature and may display enzymelike saturation effects under conditions typical of biological
systems, yet a unified modeling framework accounting for these saturation effects is still lacking. In this paper, we therefore present a universal
kinetic model for biofilament formation in which every fundamental process in the reaction network can be catalytic. The single closed-form
expression derived is capable of describing with high accuracy a wide range of mechanisms of biofilament formation and providing the first
integrated rate law of a system in which multiple reaction processes are saturated. Moreover, its unprecedented mathematical simplicity
permits us to very clearly interpret the effects of increasing saturation on the overall kinetics. The effectiveness of the model is illustrated by
fitting it to the data of in vitro Aβ40 aggregation. Remarkably, we find that primary nucleation becomes saturated, demonstrating that it must
be heterogeneous, occurring at interfaces and not in solution.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5133635., s

I. INTRODUCTION

The self-assembly of proteins into amyloid fibrils is a natural
biological process that has received increasing attention in recent
years due to its close association with a range of widely preva-
lent, incurable, and fatal human disorders such as Alzheimer’s and
Parkinson’s diseases.1 Identifying the reaction processes that lead to
biofilament proliferation is vital for understanding these diseases. It
also holds the key to the rational design of drugs to inhibit these
self-assembly phenomena, with a view to halting or preventing the
related disorders.

Biofilament assembly from monomeric samples is always ini-
tiated by a slow nucleation reaction process in which monomeric
protein molecules associate to form new filamentous structures and
continued by a fast elongation process, which ensures that the
average filament grows to macroscopic lengths.2,3 Secondary

reaction processes that frequently accompany these include filament
breakage (often associated with prions4), filament branching (seen
in, e.g., actin polymerization), and secondary nucleation (nucleation
of new filaments on the surface of existing filaments, first observed
with sickle hemoglobin polymerization5–7). Most of these processes
are multistep reactions. Both theoretical and experimental consid-
erations suggest that elongation is properly described as a two-step,
catalytic process controlled by a Michaelis-Menten-like rate law.8,9 It
has similarly been shown that secondary nucleation is catalytic and
can be well-described by a similar rate law in the case of the aggre-
gation of the Alzheimer’s-associated Aβ40 protein.10 Closed sets of
rate laws describing the kinetics of filamentous self-assembly via
every possible combination of these reaction processes may be writ-
ten down by considering only the monomer concentration alongside
the number and mass concentrations of filaments, rather than the
full size distribution.11–15 Developing analytical solutions to these
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rate laws, and subsequently testing them against experimental data,
has permitted the key reaction processes responsible for the prolif-
eration of a range of biofilaments of interest to be determined in
the past decade.16,17 Most notably, it has revealed that secondary
nucleation is crucial to the aggregation of the Alzheimer’s-associated
Aβ42 protein.18 In these models, it has always been assumed that
concentrations are low enough that enzymelike saturation effects are
rare and that the sampled range of concentrations is small enough
for them to occur in at most one reaction process at a time so that the
remaining processes can be accurately approximated by single-step
mass-action-like rate laws. Moreover, primary nucleation is often
assumed to be homogeneous and occurring in bulk such that no
catalytic saturation effects are possible. However, as larger ranges
of monomer concentrations are measured with increasingly accu-
rate kinetic experiments, these assumptions no longer hold. Thus,
in order to extend our descriptions of amyloid filament formation
at all concentrations of interest, there is a need to allow for all pro-
cesses in the kinetic framework to be explicitly catalytic and have the
potential to saturate in a given experiment. Previous integrated rate
laws were unable to address such concurrent saturation of several
processes.

In this paper, we develop a single, fully general approximate
analytical solution to the kinetics of catalytic protein aggregation.
We demonstrate its accuracy to be superior to preexisting models
for protein aggregation in which at most one reaction process is
multistep. We next use the model to explain exactly how the overall
kinetics are affected by saturation effects in each reaction process.
We finally demonstrate the utility of the model by applying it to the
analysis of experimental kinetic data on in vitro Aβ40 aggregation,
finding that in addition to secondary nucleation, primary nucleation
also saturates in this system.

II. RESULTS
A. Aggregation reaction processes can be described
by Michaelis-Menten-like equations

To understand how enzymelike saturation effects arise in pro-
tein aggregation, we turn to Michaelis-Menten kinetics. This is a
well-known model that describes the conversion of a substrate to
a product through the catalytic action of an enzyme and admits
an analytical solution.19 The fundamental assumptions behind this
model are that the reaction is two-step, with a reversible bimolec-
ular substrate-enzyme binding first step, followed by an irreversible
unimolecular second step that regenerates the enzyme and generates
the product [Fig. 1(a)]. The rate equations describing this reaction
are19

d[ES]
dt
= kb[E][S] − (kd + kcat)[ES], (1)

d[O]
dt
= kcat[ES], (2)

[ES] + [E] = [E]0, (3)

where [E], [S], [ES], [O], and [E]0 are the concentrations of enzyme,
substrate, enzyme-bound substrate, product, and the total concen-
tration of enzyme molecules overall.

FIG. 1. The catalytic nature of key reaction processes in biofilament assembly.
(a) Catalytic conversion of substrate S to product O by an enzyme E, featuring
an intermediate enzyme-substrate complex. (b) In secondary nucleation, the fib-
ril surface acts as a catalyst. (c) In elongation, the growing fibril ends act as a
catalyst. Although the chemical species (a shorter fibril) is not regenerated, the
pseudospecies (the fibril end) is. (d) In heterogeneous primary nucleation, any sur-
face or interface (we denote the total concentration of binding sites on the interface
as [I]0) present in the reaction vessel may act as a catalyst. In all cases, where the
concentration is high enough, the surface may become completely saturated with
monomers; at this point, further increases in concentration do not affect the rate,
which is then given simply by kcat ⋅ [catalyst]t =0. The 50% binding concentration
Kx (x = P, E, S) is given by setting the intermediate bound state to steady-state,
and in the usual case that kd ≫ kcat, Knx

x is approximately the dissociation con-
stant for the corresponding dissociation reaction. We may thus interpret Kx as the
geometric mean of the dissociation constants for each fundamental step in the
dissociation reaction.

The key additional assumption that permits an analytical solu-
tion to be determined is that the enzyme-substrate complex is
either at quasi-steady-state (QSS) or at pre-equilibrium with the
free substrate (PE). If this is satisfied, then the rate of reaction r is
given by19

r =
vmax[S]
KM + [S]

, (4)

where vmax = kcat[E]0 is the maximum rate achievable by the sys-
tem and the Michaelis constant KM is the substrate concentration at
which the rate is half of vmax.

Almost all of these assumptions hold for the catalytic reaction
processes underlying biofilament formation, when the substrate is
monomeric protein, and the “enzyme” is a filament surface, a grow-
ing end, or another interface in the reaction vessel [see Table I
and Figs. 1(b)–1(d)]. The only assumption not generally satisfied is
that the first step is bimolecular, since multiple monomers may be
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TABLE I. Criteria for Michaelis-Menten type kinetics are only fully satisfied by the elongation reaction. Secondary nucleation
does not satisfy assumption 7 and is therefore described by the closely related Hill type kinetics instead. Primary nucleation
only satisfies assumptions 4 and 5 when heterogeneous and not homogeneous. Assumption 6 is generally satisfied when
the concentration of the catalyst-bound substrate is low. This may not be the case for heterogeneous primary nucleation in
general, but it is for Aβ40; if the monomer-bound catalyst was present at a significant concentration relative to monomers,
an extended slow increase in the fibril mass concentration toward the end of the reaction would be visible, as remaining
monomers detach from the interface and attach to the ends of growing fibrils. This effect is not seen in the aggregation
kinetics of Aβ40 suggesting that the concentration of surface-bound monomers is low. Assumption 6 is also satisfied for
elongation due to the comparatively low concentration of growing filament ends, and for secondary nucleation because at the
early times at which secondary nucleation plays a significant role, the fibril mass concentration is still much lower than the
monomer concentration.

Criterion for Michalis-Menten kinetics 1○ nucleation Elongation 2○ nucleation

1: Reversible initial step ✓ ✓ ✓

2: Irreversible final step ✓ ✓ ✓

3: Unimolecular final step ✓ ✓ ✓

4: Substrate-catalyst binding in initial step (✓) ✓ ✓

5: Final step regenerates catalyst (✓) ✓ ✓

6: Quasi steady-state bound catalyst (✓) ✓ ✓

7: Substrate-catalyst binding is bimolecular ✗ ✓ ✗

involved in primary and secondary nucleation. However, the math-
ematics are easily generalized for higher reaction orders with respect
to monomers, yielding instead a Hill equation for r, which resembles
the Michaelis-Menten equation (4) but has the monomeric substrate
raised to the power of the new reaction order.

For instance, secondary nucleation has been shown to be well-
described by the Michaelis-Menten style rate law,10

rS =
k2m(t)n2

1 + (m(t)KS
)
n2
M(t), (5)

where m(t) is the concentration of monomeric protein at time t,
M(t) is the mass concentration of fibrils (proportional to the con-
centration of fibril surface), KS is the monomer concentration at
which for a given M(t), the rate is equal to half the maximum
possible rate k2Kn2

S M(t), and k2 and n2 are the rate constant and
the reaction order of secondary nucleation at low monomer con-
centrations, respectively. Note that secondary nucleation has alter-
natively been described as the bimolecular binding of monomers
to fibril surfaces, which then are free to diffuse and to react
with one another to form fibrils.20 However, the resultant kinetic
curves for biofilament assembly too closely resemble those gen-
erated by the Michaelis-Menten style model to be distinguished
by data fitting, so we use only the Michaelis-Menten style model
here.

Filament elongation has previously been modeled as a dock-
lock mechanism21–23 and as a diffusive barrier-crossing reaction.8,9

Although there is no chemical species that is regenerated during an
elongation reaction, the number of free fibril ends [concentration
2P(t)] is recovered unchanged after temporarily decreasing, while a
rearranging monomer is bound to the end. Therefore, we may con-
sider the fibril ends as a catalytic pseudospecies24 playing the role of
the enzyme E in Eq. (1). By identifying kb from Eq. (1) as the rate
constant for diffusion-limited attachment of the monomer to the
fibril end, kd as the detachment time, and kcat as the rearrangement

time for a bound monomer to form a new fibril subunit, a Michaelis-
Menten rate law identical in the functional form to those proposed
in Refs. 8 and 9 may then be obtained,24

rE =
2k+m(t)

1 + m(t)
KE

P(t), (6)

where k+ is the rate of elongation at low monomer concentrations
and KE is the monomer concentration at which the rate is 50% of the
theoretical maximum for a given concentration P(t). Note that both
KE and KS can also be interpreted as approximate equilibrium dis-
sociation constants of monomers from fibril ends and fibril surfaces,
respectively.

Finally, if primary nucleation is heterogeneous, then it too can
be expected to be catalytic and to obey a Michaelis-Menten-style law
of the form

rP =
knm(t)nc

1 + (m(t)KP
)
nc , (7)

where kn and nc are the rate constant and the reaction order of
primary nucleation at low monomer concentrations, respectively,
and KP is the equilibrium dissociation constant of the monomer to
nucleation surface and also the monomer concentration at which
primary nucleation is 50% saturated.

B. Rate equations for catalytic filamentous
self-assembly

The classical single-step moment equations describing the
kinetics of filament number and mass concentrations11,12,16 can
therefore be generalized for catalytic aggregation to read

dP
dt
=

knm(t)nc

1 + (m(t)KP
)
nc +

k2m(t)n2

1 + (m(t)KS
)
n2
M(t), (8a)
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dM
dt
=

2k+m(t)

1 + m(t)
KE

P(t). (8b)

As usual, the small contributions of nucleation processes to the rate
of increase in filament mass concentration have been neglected,26

as have contributions from processes such as filament annealing.27

Also note that fragmentation, instead of secondary nucleation, may
be captured in these equations by setting n2 = 0. These equa-
tions can therefore describe a wide variety of filament self-assembly
reactions.

C. Analytical solutions to the kinetics of catalytic
filamentous self-assembly

To solve Eqs. (8), we first nondimensionalize them and com-
bine them into a single equation (Appendix A), yielding

−[
1
KE

d2μ(τ)
dτ2 +

d2 logμ(τ)
dτ2 ]

=
λ2

κ2
μ(τ)nc

1 + μ(τ)nc/Knc
P

+
μ(τ)n2[1 − μ(τ)]
1 + μ(τ)n2/Kn2

S
, (9)

where λ =
√

2k+knmnc
tot and κ =

√

2k+k2mn2+1
tot are the effective non-

catalytic fibril proliferation rates through primary and secondary
processes, respectively;28 μ(τ) =m(τ)/mtot is the nondimensionalized
monomer concentration; and KP, KE, and KS are the nondimen-
sional dissociation constants KP/mtot, KE/mtot, and KS/mtot, respec-
tively. Finally, the rate constant k+ now affects the kinetics solely via
the nondimensionalized time τ = κt.

In most systems, the formation of new filaments is domi-
nated by secondary processes, suggesting that a productive approach
might be to seek a perturbation series solution in ε = λ2/2κ2. The
resultant perturbative solution describes the early-time dynamics of
Eqs. (8) as exponential growth. However, this formula is not accu-
rate at long times as it does not account for monomer depletion and
therefore does not converge. To remove this divergence and develop
a global solution, we employ a perturbative renormalization group
methodology similar to that used in Ref. 29 (see Appendix B for
details). The resulting closed-form solution is

M(t)
mtot

= 1 − [1 +
ε′

c′
(eκ

′t + e−κ
′t
− 2)]

−c′

, where (10a)

ε′ =
k′nm

nc
tot

2k′2m
n2+1
tot

, (10b)

κ′ =
√

2k′+k′2m
n2+1
tot , (10c)

c′ =
3

2n′2 + 1
, (10d)

and ε′ can be interpreted as the relative importance of primary vs
secondary nucleation as a source of new fibrils. k′n, k′+, and k′2 are
the perturbed rate constants for primary nucleation, elongation, and
secondary nucleation, respectively, given by

k′n = kn
Knc

P

1 + Knc
P

, (11a)

k′+ = k+
KE

1 + KE
, (11b)

k′2 = k2
Kn2

S

1 + Kn2
S

. (11c)

Note that these are simply the effective rate constants at t = 0, as
shown by comparison with Eqs. (5)–(7). Finally, n′2 + 1 is the effec-
tive reaction order of filament proliferation, which also depends on
the monomer concentration, given by

n′2 = n2
Kn2

S

1 + Kn2
S
−

2
1 + KE

. (12)

In the limit that KP, KE, and KS tend to infinity (i.e., when initial
monomer concentrations are far below the saturation concentra-
tions), k′n → kn, k′+ → k+, k′2 → k2, and n′2 → n2, and single-step
kinetics are recovered as required.

Previously, a range of different approximate solutions have
been developed for the kinetics of biofilament formation in which
at most one of the processes displays saturation effects. Compar-
ison of these legacy models to the solution given by Eqs. (10) in
Appendix C demonstrates that in almost all cases when reactions
from initially monomeric samples are considered, our new solution
describes the kinetics with improved accuracy. Moreover, it has a far
simpler mathematical form than most of these earlier models (see
Table II). In Appendix D, we further generalize the solution so that it
accurately describes the kinetics of biofilament formation even when
secondary processes no longer dominate over primary processes.

D. The effect of saturation on filamentous
growth kinetics

The simple structure of the analytical model derived here, and
its general nature, makes it particularly easy to determine the effect
of saturation in different processes on the overall kinetics. From
Eqs. (10), we see that the most significant effect of saturation in
any process is to reduce its effective rate constant according to
Eqs. (11). Saturation in elongation or in secondary nucleation also
has the subsidiary effect of reducing the effective monomer depen-
dence of the self-assembly process, by reducing n′2. In addition to
affecting the relative difference between reactions performed at dif-
ferent initial monomer concentrations, this also governs how the
filament mass concentration approaches its maximal value toward
the end of the aggregation reaction, as the monomer is heavily
depleted. Primary nucleation saturation does not affect this, as in
typical small-ε′ systems, secondary nucleation dominates and pri-
mary nucleation ceases to affect the kinetics relatively early in the
reaction.30

It has been shown elsewhere31 that κ may be interpreted as the
effective first order rate constant for the proliferation of mature fib-
rils via secondary processes under constant-monomer conditions; κ′
inherits this interpretation. The kinetics are most sensitive to κ′ due
to the exponential dependence ofM(t) on κ′; saturation of secondary
nucleation or of elongation therefore has a stronger effect on the
kinetics than the saturation of primary nucleation [Figs. 2(b)–2(d)],
which does not enter κ′. Increasing saturation in these processes
dilates the reaction time, or stretches the kinetic curve on the t-axis,
by reducing κ′.
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TABLE II. Performance compared to pre-existing models for biofilament assembly featuring primary nucleation, elongation, and secondary processes.✓ indicates improvement
and ≈ indicates little difference. No models have previously been derived for biofilament assembly via a catalytic primary nucleation process, but earlier models do exist in which
either elongation or secondary nucleation is catalytic. In every case, it is found that the general model derived in this paper is superior to these previous specialized models,
either in accuracy or in mathematical simplicity (or in both). The most notable improvement is in our description of biofilament formation with secondary nucleation and catalytic
elongation for which the previous model gave a comparatively poor description. See Appendix C for full details. Note that many other combinations of reaction processes have
never previously been modeled but can also be accurately described by our new approach.

Earlier model Reaction steps Improvement in accuracy? Improvement in model simplicity?

Reference 11 1○ nucleation; elongation; fragmentation ✓ ≈

Reference 13 1○ nucleation; elongation; 2○ nucleation ≈ ✓

Reference 25 1○ nucleation; elongation; 2○ nucleation ✓ ≈

Reference 16 1○ nucleation; catalytic elongation; fragmentation ≈ ✓

Reference 16 1○ nucleation; catalytic elongation; 2○ nucleation ✓✓ ✓

Reference 10 1○ nucleation; elongation; catalytic 2○ nucleation ✓ ✓

Saturation of elongation does not affect the parameter ε′,
whereas saturation of secondary nucleation increases ε′, which
counteracts the reduction in κ′ to a certain extent. However, the
kinetics are typically more sensitive to saturation in secondary

FIG. 2. (a) Plot of the rate, scaled by the maximal rate vmax, vs the monomer
concentration m, scaled by the half-saturation concentration KM , for an elonga-
tion reaction (cyan) and for nucleation reactions with orders 2 (green) and 4
(magenta). Elongation obeys Michaelis-Menten kinetics precisely, with a sublin-
ear dependence of the rate on monomer concentration, whereas the higher-order
nucleation reactions obey Hill kinetics with the rate exhibiting a sigmoidal monomer
dependence. (b)–(d) investigating the effect of saturation in elongation, secondary
nucleation, and primary nucleation, respectively, on aggregation curves. Aβ40 rate
constants employed with m(0) = 35 μM. Solid lines: KM = 1M, i.e., no satura-
tion. Dashed lines: KM = 35, 20, or 10 μM. Shorter dashed lines correspond to
lower saturation concentrations. Saturation in elongation and secondary nucle-
ation mainly reduces the aggregation rate, whereas the sole effect of saturation in
primary nucleation is to increase the lag time. Due to the logarithmic dependence
of the half time on primary nucleation,26 saturation in the latter has the smallest
effect on aggregation kinetics. Saturation in secondary nucleation has the largest
overall impact, despite increasing ε, due to the higher reaction order of secondary
nucleation compared to elongation.

nucleation overall [Figs. 2(b) and 2(c)], due to the higher reaction
order of secondary nucleation compared to elongation [Fig. 2(a)].
ε′ gives the relative rate of primary nucleation compared to sec-
ondary processes and is typically expected to be small in most
amyloid-forming systems. It may also be interpreted as the loga-
rithm of an effective starting time; the only effect of increasing satu-
ration in primary nucleation on the kinetics is therefore to shift the
concentration curve to the right [Fig. 2(d)].

At concentrations far below the saturation concentration for
a given process, its effective rate constant is unchanged and loses
its dependence on the saturation concentration, which can there-
fore not be determined with any accuracy through kinetic model
fitting. Far above the saturation concentration, by contrast, the effec-
tive constant for process (x = P,E, S) becomes kxKnx

x , and neither the
rate constant nor the saturation concentration may be determined
with any accuracy but only their product, the conversion rate con-
stant kcat,x (multiplied by the nucleation site concentration [I]0 in the
case of primary nucleation). This follows since the effective rate con-
stants enter the model as k′nm

nc
tot, k

′
+mtot, and k′2m

n2
tot, which reduce in

this limit to knKnc
P = kcat,P[I]0, k+KE = kcat,E, and k2Kn2

S = kcat,S. Mod-
ulo factors ofM(t) and P(t) for secondary nucleation and elongation,
respectively, these are also the maximum rates vmax,x attainable by
each reaction process. Thus, depending on the monomer concentra-
tions spanned by the data to which the model is fitted, for a given
reaction process, it may be appropriate to report both the satura-
tion concentration and the rate constant (if the concentrations span
the saturating region), or just the rate constant (if the concentra-
tions measured are well below the saturation concentration), or just
vmax (if the concentrations measured are well above the saturation
concentration).

E. Aβ40 undergoes heterogeneous
primary nucleation

We now apply our model to study the aggregation of Aβ40 pep-
tides into amyloid fibrils, which is believed to be a key upstream
event in the development of Alzheimer’s disease. In addition
to the obligatory primary nucleation and elongation processes,
the aggregation reaction has been shown to depend critically on
secondary nucleation.10 In the case of Aβ40, this process is known
to undergo saturation at a monomer concentration of c. 6 μM, at
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pH 7.4, and 37 ○C. It was also suspected to undergo saturation in
filament elongation at a higher concentration,10 since catalytic sec-
ondary nucleation alone could not describe the lack of concentration
dependence of the aggregation rate at the highest concentrations
studied [Fig. 3(a)]. However, this could not be verified, since the
kinetic models available at the time could describe either catalytic
secondary nucleation or catalytic elongation, but not both simul-
taneously. Equation (10a), however, permits this kind of analysis
and allows simultaneous determination of KE, KP, and KS from
kinetic curves for filament formation from a wide range of initial

FIG. 3. Aggregation of Aβ40 monomers into filaments; fractional aggregation mon-
itored by ThT fluorescence vs time. Initial monomer concentrations ranging from
3.5 μM to 70 μM (only 9.1–70 μM shown here). Data taken from Ref. 10. (a) The fit
to the model by Meisl et al.10 is only able to reproduce aggregation curves below
35 μM. (b) Equation (10a) with KP set to an arbitrarily large value fits the data
significantly better, yielding KE = 103 μM. (c) When fully unconstrained, Eq. (10a)
fits the data better still, yielding a larger value of KE and a moderate value of KP ,
suggesting that saturation in primary nucleation is more important than in elonga-
tion for this system. However, the improvement in fit quality is too small to reach a
firm conclusion and more analysis is needed.

monomer concentrations. Although catalytic elongation and sec-
ondary nucleation together offer a reasonable description of the
kinetics [Fig. 3(b)], the data are in fact better described by catalytic
primary and secondary nucleation, without saturation in elonga-
tion [Fig. 3(c)]. Additional support for this conclusion comes from
a re-examining of the highly seeded aggregation experiments from
Ref. 10. The initial rates of filament formation under highly seeded
conditions are dominated by the elongation process.16 The linear
dependence of these rates on monomer concentration indicates the
absence of significant saturation effects in the elongation process
at the concentrations studied (Fig. 4). Therefore, all data indicate
that a saturation of primary nucleation, in addition to a satura-
tion of secondary nucleation, occurs in the aggregation of Aβ40 at
high micromolar concentrations (Fig. 5). This finding provides fur-
ther insight into the molecular details of the nucleation mechanism
responsible for the formation of the first aggregates directly from
the monomer; since homogeneous primary nucleation cannot dis-
play saturation effects, the primary nucleation process undergone
by Aβ40 in vitro must be a heterogeneous process in order to satu-
rate. Heterogeneous nucleation is indeed much more common than
its homogeneous counterpart for a wide range of nucleation phe-
nomena, from simulations of hard sphere interactions to water con-
densation on dust particles.32–36 In the context of the highly purified
Aβ40 samples studied in this work, nucleation most likely occurs
at an interface such as the air-water interface or the surface of the
reaction vessel. For some amyloid forming proteins, the effect of
surface nucleation is so significant that aggregation can be com-
pletely inhibited in the absence of an air-water interface.37–39 In the
context of the study of disease-related amyloids, our findings high-
light the importance that surfaces may play a role in determining

FIG. 4. Initial rates of aggregation of Aβ40 monomers into filaments in the pres-
ence of 21 μM seeds; initial monomer concentrations ranging from 3.5 μM to
70 μM. Data taken from Ref. 10. The initial rates in the presence of such high
seeds should depend only on the elongation rate; if saturation effects are present
in the elongation reaction, the initial aggregation should have a sublinear depen-
dence on initial monomer concentration [see the cyan curve in Fig. 2(a)]. Instead,
an approximately linear dependence on the monomer concentration is observed,
demonstrating the absence of significant saturation in elongation at the monomer
concentrations studied. This supports the tentative conclusion from Fig. 3 that
the saturation effects additional to those from secondary nucleation, visible at the
upper end of the concentration range studied, originate from primary nucleation
and not from elongation.
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FIG. 5. The degree of saturation of the reaction processes of Aβ40 kinetics: blue for
secondary nucleation; purple for elongation, and green for primary nucleation. (a)
The concentrations at which the different reaction processes are 50% saturated. At
these concentrations, saturation effects reduce the overall rates by 50%. (b) The
fractional occupation of the catalytic surface for each reaction process over the
range of monomer concentrations studied here. This makes a suitable definition
for the degree of saturation of each process. Secondary nucleation is essentially
fully saturated over all concentrations of interest, whereas elongation is largely
unsaturated. Primary nucleation is fully saturated at the higher end of the range
of concentrations studied. Where the fractional occupation is small, dissociation
dominates over binding; where it is large, binding dominates over dissociation.

the rates of primary nucleation and that this effect should be taken
into account when drawing disease-related conclusions from in vitro
measurements.

III. CONCLUSIONS
We have derived a single unified analytical solution to the

kinetics of amyloid filament formation in which all reaction pro-
cesses may be multistep and catalytic in nature. This model encom-
passes a wide range of filamentous growth kinetics and is superior to
all prior analytical solutions in terms of accuracy and generality for
the description of unseeded aggregation kinetics.

It has been suspected for some time that primary nucleation
in amyloid formation is heterogeneous. This study presents some of
the first direct evidence that this is indeed the case. The use of our
model to fit kinetic data on amyloid aggregation at high monomeric
protein concentrations provides a route to confirming the hetero-
geneous nature of amyloid nucleation for other proteins in the
future.

To date, reaction conditions have often been chosen carefully
to avoid multiple saturation effects, as they were previously diffi-
cult to interpret. By providing the ability to analyze such multiple
saturated data, our results open the field up to wider studies of
the effects of temperature, pH, and other important reaction con-
ditions on filamentous growth kinetics. This may permit a move
toward studying amyloid formation in body fluids, where reaction
conditions may promote saturation effects, and toward studying
other aggregating systems previously deemed pathological from a
modeling perspective. Finally, our model will facilitate thermody-
namic studies of activation energies, which require data to be col-
lected over a range of temperatures, often including those at which
multiple saturation effects occur. Overall, this new model has the
potential to be transformative in the field of amyloid aggregation
kinetics.
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APPENDIX A: REDUCING EQS. (8) TO A SINGLE
DIMENSIONLESS EQUATION

Making use of the conservation-of-mass relation m(t) + M(t)
= mtot, Eq. (8b) can be written as

1 + m(t)
KE

m(t)
dM(t)
dt

= −[
1

m(t)
+

1
KE
]
dm(t)
dt

= 2k+P(t). (A1)

Using τ = κt, this may be written as

− [
d logm(τ)

dτ
+

1
KE

dm(τ)
dτ
] =

2k+

κ
P(τ). (A2)

Differentiating with respect to τ and noting that κdP/dτ = dP/dt, we
obtain

−[
d2 logm(τ)

dτ2 +
1
KE

d2m(τ)
dτ2 ]

=
2k+

κ2

⎛
⎜
⎝

knm(τ)nc

1 + (m(τ)KP
)
nc +

k2 m(τ)n2

1 + (m(τ)KS
)
n2
M(τ)

⎞
⎟
⎠

, (A3)

and Eq. (9) is recovered by the substitution of m(t) = mtotμ(t) and
M(t) = mtot(1 − μ(t)).

APPENDIX B: DERIVATION OF GENERAL
ANALYTICAL SOLUTION

To develop a perturbative solution to Eq. (9), we first define
ε = λ2/2κ2 as our small parameter,

μ(τ) = μ(0)(τ) + ε μ(1)(τ) + ε2 μ(2)(τ) + O(ε3
), (B1)

where O(ε3
) denotes a remainder term of the same order of magni-

tude as ε3. After solving the resulting equations separately for each
order of ε and applying the initial conditions μ(0) = 1 and μ′(0) = 0,
we find the following perturbation expansion:
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μ(τ) = 1 − εaebτ +
2 + n′2

3
ε2a2e2bτ + R, (B2)

a =
1 + KS

KS

KP

1 + KP
, (B3)

b =
√

KE

1 + KE

KS

1 + KS
, (B4)

n′2 = n2
Kn2

S

1 + Kn2
S
−

2
1 + KE

, (B5)

where R denotes either terms of O(ε3
) or terms that vanish in com-

parison to the dominant terms at each order in the limit eτ≫ 1. Since
outside of this limit all terms of O(ε) and above can be neglected
anyway, we may ignore R for the time being.

We see that the perturbative solution describes the early-time
dynamics of Eqs. (8) as exponential growth. However, this formula
is not accurate at long times, as it does not account for monomer
depletion and therefore does not converge. To proceed, we note that
this perturbation expansion has the same form as that given by the
kinetics of noncatalytic biofilament self-assembly in Ref. 29 but with
ε→ εa, τ→ bτ, and n2 → n′2. In that paper, the divergence was tamed
by the use of dynamical renormalization group methods, yielding a
remarkably accurate solution in the form of a Richards curve y(x)
= 1 − (1 + x/c)−c, with x = εeτ , y = μ, and c = 3/(1 + 2n2). Given the
identical functional form of the perturbative expansions for catalytic
and noncatalytic biofilament self-assembly, the Richards solution
may be immediately adopted here with appropriate replacements
for x and c.

For small but nonvanishing values of εa, i.e., when most new
filaments are formed through secondary processes, an expression of
the above Richards form is expected to lose some accuracy at very
early times, since the boundary conditions are met only in the limit
εa→ 0. However, since our perturbative expansion only corresponds
to the Richards solution asymptotically in the limit ebτ ≫ 1, we are
free to modify our solutions so that they satisfy the boundary con-
ditions M(0) = 0, as long as they recover their original form in this
limit. The obvious choice is to replace εaebτ with εa(ebτ + e−bτ − 2),
which additionally ensures that the solution matches the first-order
perturbative solution exactly. This yields Eq. (10) directly.

APPENDIX C: COMPARISON TO PRIOR
ANALYTICAL SOLUTIONS
1. The analytical solution is almost exact
in the low-concentration limit

For initial monomer concentrations sufficiently far below the
saturation concentrations and in the limit eτ ≫ 1, Eq. (10a) recov-
ers the universal single-step model for filamentous growth discov-
ered in Ref. 29. We may investigate the solution error in this limit
explicitly by comparing the ratio of the 3rd order terms of the per-
turbation expansions of the exact kinetics, μ(3), and of the Richards
curve, L(3),

L(3)

μ(3)
=

80 + 64n2

81 + 63n2
. (C1)

Not only is this remarkably close to 1, it is also exact for n2 = 1.
We therefore expect this solution to be highly accurate. Indeed,

in Fig. 6(a), we see that it is even more accurate for secondary
nucleation than the highly accurate Hamiltonian solution given
in Ref. 25.

To date,11,25 the kinetics of breakable filament assembly have
been modeled with fairly high accuracy with a Gompertz curve,
which is equal to the Richards solution presented here in the limit
c →∞. However, our identification of c = 3/(1 + 2n2) suggests that
this is not the best approximation possible. Instead, setting n2 = 0
gives c = 3. We discover that this Richards curve is indeed a superior
approximation, converging on the exact kinetics almost precisely
[Fig. 6(b)].

The Richards curve is traditionally used to model biologi-
cal growth kinetics. More generally, the Richards curve describes
autocatalytic growth kinetics for a system with a defined max-
imum product concentration. The parameter 1/c identifies the
substrate dependence of the growth rate (here, the substrate is
identified as monomer). The Gompertz solution, given by 1/c
= 0, describes a system in which the substrate concentration
does not limit the growth rate, and other factors, e.g., physi-
cal space limitations, give rise to a maximum product concentra-
tion. Viewed in this way, it is eminently reasonable that we do
not use the Gompertz solution to describe fragmentation kinet-
ics. Although the secondary process itself does not have substrate
dependence (unlike secondary nucleation), the elongation process
does, and aggregation should therefore still slow down as the
monomer is depleted. The value given by our new approximation,
1/c = 1/3, may therefore be justified on conceptual and mathematical
grounds.

2. Singly catalytic kinetics are captured with greater
accuracy than earlier models

We now investigate the limit in which one of secondary nucle-
ation or elongation may saturate but not both. Models have been
previously derived for such singly saturating kinetics; we also com-
pare our new solution to these models in this limit.

When only elongation may saturate, i.e., KS, KP → ∞,
Eq. (10a) is usually highly accurate and found to be generally
more accurate than the existing analytical solution based on the
Lambert-W function (Fig. 7).

FIG. 6. (a) The Richards solution (in blue) captures the dynamics of a system with
secondary nucleation (n2 = 4) even more accurately than the Hamiltonian solu-
tion (in red). (b) The kinetics of fragmenting filament assembly are almost exactly
captured by the new c = 3 Richards solution, significantly more accurately than
the current standard; the Gompertz solution (in red) and the numerical solution (in
black) to the moment equation for fragmenting filament assembly. ε = 0.01.
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FIG. 7. The kinetics of filament assembly with secondary nucleation and satu-
rating elongation are almost exactly captured by Eq. (10a), which is a significant
improvement upon an earlier analytical solution based on the Lambert-W function.
However, the Richards solution offers little advantage over the Lambert solution for
fragmenting systems. Black: numerical solution to the moment equations. Red: old
(Lambert) analytical approximate solution. Blue: new (Richards) analytical approx-
imate solution. ε = 0.01. (a) n2 = 2, KE = 2. (b) n2 = 2, KE = 0.4. (c)
n2 = 0, KE = 2. (d) n2 = 0, KE = 0.4.

FIG. 8. (a) and (b): using rate constants for Aβ40 aggregation taken from Ref. 10,
we calculate kinetic curves for initial monomer concentrations of 3 μM (a) and
70 μM (b). The curve calculated according to the solution developed in this paper
[blue, Eq. (10a)] matches the numerical solutions (black) almost precisely; even
better than the already highly accurate analytical solution developed in Ref. 10
(red). (c) Raw Ab40 data from Ref. 10 at a range of concentrations 35–3.5 μM (d)
Scaling by κ′, and addition of t0 = ln(ε′)/κ′, effectively collapses the data onto
a universal curve, since experimental errors in these data are a greater source
of variation from universality than the small differences in n′2 for each individual
curve.

When only secondary nucleation may saturate, i.e., KE, KP
→ ∞, Eq. (10a) is almost an exact match to the numerical solu-
tions of Eq. (8). The existing analytical solutions are highly accu-
rate; however, Eq. (10a) still offers a small improvement in accu-
racy [Figs. 8(a) and 8(b)]. Moreover, the scaling of the solution is
demonstrably correct since by scaling time by κ′ and offsetting it by
t0 = ln(ε′)/κ′, the aggregation curves for Aβ40 at different starting
concentrations almost fully collapse onto a single curve. A perfect
collapse is prevented only by small variations in experimental con-
ditions, for instance initial monomer concentration or sites for pri-
mary nucleation, and by each curve’s different value for c′ [Figs. 8(c)
and 8(d)].

APPENDIX D: EXTENSION TO THE CASE OF SLOW
SECONDARY PROCESSES

For larger values of ε such that it can no longer be said that sec-
ondary processes dominate over primary nucleation for the produc-
tion of new filaments, Eq. (10a) starts to break down at later times,
since the secondary reaction order n2 no longer should control the
late-time kinetics. To improve our solution, we can first investigate
what form it should take in the limit τ → 0, i.e., when secondary
processes are absent. We drop the final term in Eq. (9) and solve
perturbatively, yielding (to second order in ε)

μ(τ) = 1 − ετ2 KE

1 + KE

Knc
P

1 + Knc
P

+ ε2τ4 K2
EK2nc

P (3KE + 3KEKnc
P + Knc

P nc + KEKnc
P nc)

6(1 + KE)3(1 + Knc
P )

3 . (D1)

We find that this matches our solution Eq. (10a) to the first order in
ετ2 already; moreover, if we replace c′ with

c′ =
3
n′c

, where n′c =
Knc

P

1 + Knc
P
nc −

3
1 + KE

, (D2)

it is matched to the second order in ετ2 as well. We may compute
the error in this approximation by comparing the third-order term
of its expansion in ετ2 with that of the exact Oosawa solution in the
unsaturated limit. The ratio of these terms, rerr, is

rerr =
15(1 + nc) + 10n2

c/3
15(1 + nc) + 4n2

c
. (D3)

We see that this is exact in the limit nc = 0 and loses accuracy as
nc increases (with a limiting value of 5/6 as nc →∞). We therefore
expect that such a representation is accurate for values of nc that are
not too large, e.g., nc < 4.

Of course, this is insufficient for describing intermediate values
of ε′ and is not a single solution. By appropriate manipulation to
obtain an effective n′2 in the limit of no secondary processes, n′2p,
we can instead use a switching function for the secondary processes
reaction order,

n†
2 = n

′
2p + (n′2 − n

′
2p) exp(−2ε′), (D4)

where
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n′2p =
1
2
[nc

Knc
P

1 + Knc
P
− 1 −

3
1 + KE

]. (D5)

Using n†
2 instead of n′2 in Eq. (10a) yields a fully universal solution

valid for any possible kind of filamentous growth kinetics, single-
step or catalytic multistep, and with or without secondary processes.
Its only caveat is that it may not accurately describe filamentous
growth under the rather specific circumstances of slow significant
secondary processes, a high value of nc > 3, and no saturation in
primary nucleation.

APPENDIX E: EXTENSION TO THE CASE
OF SIMULTANEOUS FRAGMENTATION
AND SECONDARY NUCLEATION

When a protein aggregation reaction that features secondary
nucleation occurs under shaking conditions, both fragmentation
and secondary nucleation may occur simultaneously. The same
methods as employed in the rest of the paper may be employed to
capture this behavior, yielding a modified expression for k′2 and n′2,

k′2 =
Kn2

S + f (1 + Kn2
S )

1 + Kn2
S

, (E1)

n′2 = n2
Kn2

S

1 + Kn2
S

Kn2
S

Kn2
S + f (1 + Kn2

S )
−

2
1 + KE

, (E2)

f =
k−

k2mn2
tot

, (E3)

where k_ is the rate constant for fibril fragmentation [and k_M(t) is
the corresponding rate].

This approximation is reasonably accurate but less so than the
other cases considered in this paper.
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