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Abstract

Background—The development of accurate classification models depends upon the methods

used to identify the most relevant variables. The aim of this article is to evaluate variable selection

methods to identify important variables in predicting a binary response using nonlinear statistical

models. Our goals in model selection include producing non-overfitting stable models that are

interpretable, that generate accurate predictions and have minimum bias. This work was motivated
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by data on clinical and laboratory features of Helicobacter pylori infections obtained from 60

individuals enrolled in a prospective observational study.

Results—We carried out a comprehensive performance comparison of several nonlinear

classification models over the H. pylori data set. We compared variable selection results by

Multivariate Adaptive Regression Splines (MARS), Logistic Regression with regularization,

Generalized Additive Models (GAMs) and Bayesian Variable Selection in GAMs. We found that

the MARS model approach has the highest predictive power because the nonlinearity assumptions

of candidate predictors are strongly satisfied, a finding demonstrated via deviance chi-square

testing procedures in GAMs.

Conclusions—Our results suggest that the physiological free amino acids citrulline, histidine,

lysine and arginine are the major features for predicting H. pylori peptic ulcer disease on the basis

of amino acid profiling.

Keywords

Variable selection; Classification; Amino acid analysis; Peptic ulcer disease; Helicobacter pylori

Introduction

The analysis of high-dimensional data, where the number of predictors exceeds the sample

size, poses many challenges for statisticians and calls for new statistical methodologies in

order to select relevant variables in multivariate data, feature selection is used to overcome

the curse of dimensionality by removing non-essential variables to achieve a model with

predictive accuracy. Consequently, the choice of a variable selection procedure becomes

very important for enhancing the ability to generate reproducible findings and generalizable

conclusions. In high-dimensional data it is desirable to have parsimonious or sparse

representations of prediction models. Since highly complex models are penalized by

increased total error, regularization helps reduce complexity in classification by minimizing

over-fitting of the training data. We evaluated this by maximizing goodness-of-fit and

simultaneously minimizing the number of variables selected.

In this study, we evaluated different models by randomly selecting and withholding the

training data to be used later for testing. The area under the receiver characteristic operating

curve (ROC) was used as a measure for comparing prediction accuracy based on sensitivity

and specificity for both training and test data. In this study discriminative features were

identified that associated with H. pylori peptic ulcer disease. We found that various free

amino acid measurements could be associated with disease outcome. However, many of

these variables are highly correlated and which of the factors will result in the most stable

classifier is unknown. Here we sought to extend this work by comparing the effects of

various feature reduction methods.
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Methods

Study design

Sera were obtained from patients with documented H. Pylori infection undergoing an

endoscopic exam for routine medical management. Thirty subjects with proven duodenal

ulcer were matched using sera collected during the same time period. Samples were

collected after receiving written informed consent as approved by the Institutional Review

Board of Baylor College of Medicine, Houston, TX and the study was conducted in

accordance with the guidelines of the Helsinki Declaration.

Amino acid analysis

Serum was precipitated by mixing equal volumes of 7.5% sulfosalicylic acid (SSA) in 0.02N

hydrochloric acid (HCl). Aminoelthyl cysteine (AEC) was added as the internal standard in

each sample. The precipitate was centrifuged for 15 min at 10,000 × g, and supernatant

containing physiological amino acids was saved. The supernatant was quantified for amino

acids using a Hitachi L8800 Amino Acid Analyzer. Data was reported as nmol amino acid

per 10 μl plasma. Samples were run in duplicate and concentrations varied less than 10%

between duplicates. For measurements below the limits of detection, samples were imputed

with 1/10 the lower limit of detection for the assay.

Feature reduction-modeling strategies

In this paper we use the term feature selection methods to refer to identifying the subset of

differentially-expressed predictors that are useful and relevant in distinguishing different

classes of samples. Similarly, model selection is a process of seeking the model from a set of

candidate models that are the best balance between model fit and complexity. Our research

goal is to evaluate the various model fittings of increasing data complexity and to find the

best models to identify the underlying model by both AIC, BIC, and cross-validation.

Feature reduction using Significance Analysis of Microarray (SAM)

SAM determines significance by using more robust test statistics and permutations to

estimate false discovery rate instead of the conventional “t” distribution level of significance

[1]. Efron et al. [2] developed an empirical bayesian approach using non-informative priors

and deriving the posterior probability difference for each of the predictors without having to

run t-tests or Wilcoxon tests to identify those that were differentially expressed. In some

cases, a heuristic approach was investigated for feature selection by integrating correlation,

histogram, and other statistical measures. We used the information criterion on the

modeling.

Akaike information criterion (AIC) is given by

(1)

where L(M) is the maximum likelihood function of the parameters in the model M, and p is

the number of covariates estimated in the model [3].
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Bayesian information criterion (BIC) is given by

(2)

where n is the sample size, M and p are defined as those variables shown in Equation 1

[4,5]. Specifically, Stone [6] showed that the AIC and leave-one out cross validation are

asymptotically equivalent.

Logistic regression with regularization

Logistic modeling has a binary response yi ∈ {0, 1}, and assumes that

(3)

Regularized and shrinkage estimation methods such as a LASSO (least absolute shrinkage

and selection operator) estimator helps address variable selection and multicollinearity. For

a binary response variable and the logistic regression models, the LASSO estimator is

estimated by penalizing the negative log-likelihood with the L1-norm. The penalty term is

chosen by a cross-validation technique to evaluate the out-of-sample negative log-likelihood

[7]. The EN (Elastic Net) penalty is designed to simultaneously select strongly correlated

variables that combine the L1 and L2 penalizing terms in the model [8].

The coefficient vector β that minimizes the penalized log-likelihood is

(4)

where pi = Pr(y = 1|x).

Fan and Li (2001) proposed the Smoothly Clipped Absolute Deviation (SCAD) penalty,

which compromises between L1 and L2, and the L0 selection methods. The SCAD penalty

deletes small coefficients and keeps large coefficients unshrunken, but sacrifices continuity

and stability. The SCAD penalty can provide a smaller bias in coefficient estimation than

LASSO because it is bounded as a function of β. The SCAD penalized estimator also has an

oracle property [9]. Sparse regression using penalization is one of the most popular tools for

analyzing high dimensional data.

Generalized Additive Models (GAMs) for classification problems

GAMs provide a general frame work moving beyond linearity by allowing nonlinear

functions of each of the variables, while maintaining the additive assumption [10]. Logistic

regression GAM modeling has a binary response yi ∈ {0, 1}, and assumes

(5)
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GAM modeling allowed us to fit a nonlinear function to each predictor, so that we could

automatically model the nonlinear relationship that standard linear regression will miss. The

nonlinear fits can potentially make accurate predictions for the outcome.

Multivariate Adaptive Regression Splines (MARS)

The MARS method of Friedman [11] is a nonparametric regression method that estimates

complex nonlinear relationship by a series of truncated spline functions of the predictors

[12]. The basis functions are combined in the MARS model as a weighted sum of

(6)

where ŷ is the response described by the model, a0 the coefficient of the constant basis

function (intercept), p the total number of basis functions and ak, the coefficient of the kth

basis function Bk(x). MARS models use hockey stick basis functions of the form (x − t)+and

(t − x)+, with t being the knot. The basis functions in MARS are single truncated spline

functions or a product of two or more spline functions for different predictors. The first

order MARS model was built without interactions to over-fit the training data. A maximum

number of basis functions equal to 30 was used as the stopping criterion. The model was

pruned using a ten-fold generalized cross validation. The optimal model was selected based

on evaluation of the model complexity and its predictive quantities for the test sets. Software

implementation of the MARS model is available in Salford Predictive Modeler version 7.0

from Salford Systems.

Bayesian variable selection for GAM

Bayesian variable selection is an approach designed to assess the robustness of results, in

terms of alternatives, by calculating posterior distribution over coefficients and models. One

of the most popular approaches is to assume a spike-and-slab mixture prior for each

coefficient, with one component being a narrow spike around the origin that imposes very

strong shrinkage on the coefficients and the other component being a wide slab that imposes

very little shrinkage on the coefficients [13]. The posterior weights for the spike and the slab

can then be interpreted analogously. To select the models of predictors between smoothing

nonlinear terms and linear effects, we performed Bayesian variable selection in GAMs

implemented in the R package spikeSlabGAM [14]. Bayesian GAMs produce a posterior

probability for each possible model in addition to one for each predictor. Using Bayesian

GAMs, model uncertainty can be incorporated into conclusions about parameters and

predictions. Thus, we have to consider all possible models that fit. Bayesian GAMs can be

applied using the R library BMA (http://cran.r-project.org).

Nonlinear testing procedures

We assessed the linear or non-linear association of binary response variables of selected

variables in each model. Investigation of model predictors and their linear association was

determined using GAMs. We evaluated the partial residual plot as a diagnostic graphical

tool for identifying nonlinear relationship between the response and covariates for
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generalized additive models [10,12,15]. For each part predictor, we also examined the log-

likelihood ratio test p-values, comparing the deviance between the full model and the model

without that variable. We calculated the projection (hat) matrix, Cook’s distance, various

residuals and the estimated probabilities versus each predictor to evaluate outliers and

identify influential points in the models. We used both the change in residual deviance (as in

parametric or nonparametric models), and the ROC to compare the performances of the

statistical models.

Results and Discussion

Descriptive statistics

Sera from 30 subjects with H pylori infection, without endoscopy-documented mucosal

ulceration, and 30 subjects with H pylori infection and peptic ulceration were studied.

Concentrations of the free amino acids were measured in each subject. The concentration of

each amino acid by peptic ulcer disease (PUD) status is shown in Table 1. The

concentrations of taurine (0.15 ± 0.04 no PUD vs 0.19 ± 0.08 with PUD, p<0.05), urea

(42.29 ± 11.41 no PUD vs 54.17 ± 22.42 PUD, p<0.05), glycine (3.97 ± 0.64 no PUD vs

4.64 ± 1.09 with PUD, p<0.05), citrulline (0.34 ± 0.1 no PUD vs. 0.54 ± 0.14 with PUD,

P<0.001) were significantly different. Of note, all amino acids were elevated in the subjects

with PUD, indicating upregulation of the urea cycle.

Parametric and nonparametric modeling

Our objective was to create a serum biomarker panel of amino acids that predict the

occurrence of PUD. Table 2 shows the sparse regression coefficients with the LASSO, EN,

and SCAD penalty which contain important variables and the model selected by using a BIC

criterion. Because the underlying data structure dictates the selection of an appropriate

modeling approach, we analyzed the contributions of parametric (linear) or nonparametric

(spline) features using Bayesian variable selection. This method produces a hierarchy of

structured model selections for parametric and nonparametric relationships to the PUD

outcome for each feature. The posterior probabilities for the linear and spline components

are shown in Table 3. From this analysis, the linear and spline component of citrulline and

the spline component of histidine were significant (Table 4).

As an additional analysis, we examined the relationships of amino acids to outcome using

GAMs. Inspection of the GAM plots indicates that the partial residuals are nonlinear (Figure

1). For example the partial residual plot of citrulline shows a linear component at low

citrulline concentrations until a concentration of 0.5 is reached, at which time the curve

sharply inflects to a horizontal line. A similar inflection is seen in other variables. From this

analysis, we concluded that the modeling of PUD requires a nonparametric approach.

For the nonparametric modeling we applied MARS, an additive modeling technique that

uses piecewise linear spline functions (basis functions) as predictors. MARS uses a two-

stage process for constructing the optimal classification model. The first half of the process

involves addition of basis functions until a user-specified number of basis functions have

been reached. In the second stage, MARS deletes basis functions in order, starting with the

basis function that contributes the least to the model until an optimum model is reached.
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Model performance

The optimal MARS identified four informative amino acids (citrulline, histidine, lysine and

arginine). Evaluation of the model performance is evaluated in several ways. The accuracy

of prediction was evaluated using a confusion matrix. The model produced an overall

accuracy of 91.67%, with a 96.67% ability to correctly identify PUD (Table 5).

The second analysis involved evaluation of the ROC, where sensitivity vs. 1-specificity was

plotted. In the ROC analysis, a diagonal line (45 degree slope) starting at zero indicates that

the output was a random guess, whereas an ideal classifier with a high true positive rate and

low false positive rate would curve positively and strongly towards the upper left quadrant

of the plot. The AUC is equivalent to the probability that two cases, one chosen at random

from each group, are correctly ordered by the classifier. The AUC of the MARS model

predictor was 0.9656 (Figure 2), suggesting that the model performed in a highly sensitive

and specific manner.

The relative contribution of each amino acid to the overall performance of the classifier was

evaluated by the variable importance, a relative measure of the effect of removing a feature

on the model accuracy. Here, citrulline was the most important variable (variable

importance of 100%), histidine and lysine were less important but similar (31.5% and

27.3%, respectively) and arginine was least important (11.6%, Figure 3).

Finally, the basis functions (BFs), which are combinations of independent variables in the

model, are shown in Table 6. Importantly, we note no interaction terms, minimizing the

potential for the model to have over-fitted the data. The addition of two BFs for citriulline

corresponds well to the inflection of citrulline in the GAM analysis (cf. Figure 1).

The distributions of concentrations of the amino acids by disease classification are shown in

the box plots of Figure 4. A nonparametric relationship is seen for each.

These data indicate that physiological concentrations of amino acids are perturbed by H

pylori induced PUD, and combinations of citrulline, histidine, lysine and arginine can be

used to predict PUD using nonparametric modeling. The residuals for modeling GAM fitting

provide information for modeling checking in the GAM check plot of Figure 5.

Conclusion

We evaluated parametric and non-parametric modeling approaches (GAMs, Bayesian

GAMs and MARS) for discovering specific physiological free amino acids as biomarkers

for H. pylori-associated peptic ulcer disease. These studies may have potential benefits by

providing non-invasive identification of individuals at risk for clinically significant

ulceration and for institution of appropriate targeted therapy. This study also suggests host-

interaction pathways (amino acids) related to the pathogenesis of peptic ulcer in H. pylori

infected patients. Interestingly, in Crohn’s disease, a gastrointestinal inflammatory disease,

serum citrulline was found to be inversely correlated with each other [16]. The presence of

amino acids that correspond to the urea cycle could reflect the presence of a urea cycle and a

highly active urease in H. pylori. However, differences the urea cycle amino acids in
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individuals who are infected but do not have PUD versus those that have PUD are not yet

established, but could reflect differences in infected individuals, the infecting strains or both.

We recognize that our study is limited because of the relatively small data set. Further

evaluation of this modeling procedure on a large independent data set is needed.
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Figure 1. Partial Residual Plots
Lines shown are a solid line representing a spline and dotted lines are 95% confidence band

for each predictor. For each is shown the relationship between the predictor with

residualized (adjusted) dependent variable values.
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Figure 2.
ROC analysis. Shown is a Receiver Operating Characteristic (ROC) curve for the predictive

model for peptic ulcer disease. Y axis, Sensitivity; X axis, 1-Specificity.
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Figure 3. Variable Importance for MARS model of PUD
Variable importance was computed for each feature in the MARS model. Y axis, percent

contribution for each analyte.
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Figure 4. Box Plots
For each variable shown, the distribution of each predictor is divided over case (with ulcer)

and control (without ulcer). PUD: endoscopy-documented peptic ulcer.
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Figure 5. GAM Check Plots
GAM plots produce deviance residuals against approximate theoretical quantilies of the

deviance residual distribution. GAM: Generalized Additive Models.
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Table 1

Amino acid measurements in subjects with and without peptic ulcers.

Characteristic Without Ulcer = 30 (50%) With Ulcer = 30 (50%) All subjects = 60

Taurine 0.15 ± 0.04 0.19 ± 0.08 0.17 ± 0.07*

Phosphoserine 1.3 ± 0.49 1.43 ± 0.84 1.36 ± 0.69

Urea 42.29 ± 11.41 54.17 ± 22.42 48.23 ± 18.63*

Aspartic Acid 1.39 ± 0.58 1.46 ± 0.6 1.43 ± 0.59

Threonine 1.85 ± 0.48 2.02 ± 0.52 1.94 ± 0.5

Serine 2.49 ± 0.63 2.69 ± 0.81 2.59 ± 0.73

Glutamic Acid 7.04 ± 1.78 7.92 ± 1.69 7.48 ± 1.78

Glycine 3.97 ± 0.64 4.64 ± 1.09 4.31 ± 0.95*

Alanine 5.74 ± 1.53 5.77 ± 2.01 5.76 ± 1.77

Citrulline 0.34 ± 0.1 0.54 ± 0.14 0.44 ± 0.16 §§

Alpha Aminobutyric Acid 0.19 ± 0.07 0.21 ± 0.08 0.2 ± 0.07

Valine 2.89 ± 0.69 2.94 ± 0.8 2.91 ± 0.74

Isoleucine 0.9 ± 0.25 1 ± 0.3 0.95 ± 0.28

Leucine 2.59 ± 1.08 2.69 ± 1.34 2.64 ± 1.21

Tyrosine 0.88 ± 0.3 0.9 ± 0.32 0.89 ± 0.31

Phenylalanine 1.25 ± 0.31 1.37 ± 0.39 1.31 ± 0.36

NH3 2.95 ± 0.59 2.95 ± 0.88 2.95 ± 0.74

Ornithine 1.09 ± 0.36 1.39 ± 0.74 1.24 ± 0.6

Lysine 2.95 ± 1 3.23 ± 1.7 3.09 ± 1.39

Histidine 0.97 ± 0.28 0.94 ± 0.31 0.95 ± 0.29

Arginine 3.21 ± 1.47 3.2 ± 1.34 3.21 ± 1.39

Methyl Histidine1 0.07 ± 0.06 0.1 ± 0.09 0.09 ± 0.08

Tryptophan 0.02 ± 0.03 0.04 ± 0.07 0.03 ± 0.05

Carnosine 0.09 ± 0.12 0.14 ± 0.17 0.12 ± 0.15

Methyl Histidine3 0.02 ± 0.02 0.03 ± 0.03 0.02 ± 0.02*

Phosphethanolamine 0.02 ± 0.02 0.03 ± 0.06 0.03 ± 0.05

Beta Aminoisobutyric Acid 0.05 ± 0.08 0.03 ± 0.05 0.04 ± 0.07

Sarcosine 0.07 ± 0.09 0.11 ± 0.18 0.09 ± 0.14

*
P<0.05

§§
P<0.001
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Table 2

Sparse penalized logistic regression coefficients.

Characteristic LASSO EN SCAD

Taurine 0 1.204 0

Phosphoserine 0 0 0

Urea 0 0 0

Aspartic Acid 0 0 0

Threonine 0 0 0

Serine 0 0 0

Glutamic Acid 0 0 0

Glycine 0 0.137 0

Alanine 0 0 0

Citrulline 7.38 6.649 9.092

Alpha Aminobutyric Acid 0 0 0

Valine 0 0 0

Isoleucine 0 0 0

Leucine 0 0 0

Tyrosine 0 0 0

Phenylalanine 0 0 0

NH3 0 −0.019 0

Ornithine 0 0 0

Lysine 0 0 0

Histidine 0 −0.545 0

Arginine 0 0 0

Methyl Histidine1 0 0 0

Tryptophan 0 0 0

Carnosine 0 0.518 0

Methyl Histidine3 0 4.491 0

Phosphethanolamine 0 0 0

Beta Aminoisobutyric Acid 0 0 0

Sarcosine 0 0 0

J Proteomics Bioinform. Author manuscript; available in PMC 2014 August 14.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Ju et al. Page 16

Table 3

Model analysis of deviance tests. Two GAM analyses are shown.

GAM analysis incorporating both linear and smoothing components.

Parameters df Chi-square Pr> chisq

Linear(Citrulline) 1 14.4400 0.0004**

Linear(Lysine) 1 1.040 0.315

Linear(Histidine) 1 2.280 0.139

Linear(Arginine) 1 0.078 0.784

Spline(Citrulline) 2 8.596 0.014**

Spline(Lysine) 2 0.145 0.930

Spline(Histidine) 2 6.284 0.043**

Spline(Arginine) 2 2.141 0.343

GAM analysis incorporating only linear components.

Linear(Citrulline) 1 13.0320 0.0007**

Linear(Lysine) 1 0.476 0.494

Linear(Histidine) 1 1.638 0.205

Linear(Arginine) 1 0.0001 0.989

For each, the DF, degrees of freedom and dominant factors significant at the level alpha=0.1 (*) and 0.05(**) are shown for each parameter.
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Table 4

Marginal posterior inclusion probability and term importance. Shown are the posterior model probabilities

from the MCMC 8000 samples from 8 chains, each ran 5000 iterations after a burn-in of 500.

Coefficients P(gamma=1) Pi Dimension

Linear(Citrulline) 0.499 0.657 1*

Spline(Citrulline) 0.750 0.336 8**

Linear(Lysine) 0.006 0.000 1

Spline(Lysine) 0.006 0.000 6

Linear(Histidine) 0.026 −0.003 1

Spline(Histidine) 0.212 0.010 7

Linear(Arginine) 0.016 −0.001 1

Spline(Arginine) 0.015 0.000 7

*
:P(gamma=1)>.25;

**
:P(gamma=1)>.5
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Table 5

Confusion matrix for the MARS model.

Class Total Prediction

H.Pylori PUD

(n=27) (n=33)

H.Pylori 30 26 4

PUD 30 1 29

Total 60 correct = 86.67% correct = 96.67%
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Table 6

MARS Basis Functions. Shown are the basis functions (BF) for the MARS model of PUD prediction. Bm,

each individual basis function, am, coefficient of the basis function.

Bm Definition am Variable descriptor

BF4 0.7615 −Histidine 3.49646 Histidine

BF6 Citrulline −0.338 6.6434 Citrulline

BF10 Citrulline −0.49 −7.00747 Citrulline

BF13 Lysine −1.401 0.121036 Lysine

BF18 Arginine −2.719 −0.104259 Arginine

(y)+, = max(0,y)
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