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Background
Structural variants (SVs) contribute significantly to the overall variation of the human 
genome. Their importance in diagnosing hereditary diseases has been recognized, but 
their detection remains a challenge in the modern bioinformatics field. In recent years, 
progress has been made in long-read sequencing, and the accuracy of SVs detection 
has improved [1–3]. However, the majority of available SV data was obtained by whole 
genome short-read sequencing (WGS) technologies [4, 5]. Thanks to their favorable 
price, these technologies are still widely used.
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One of the important challenges within identification of SVs is the breakpoint uncer-
tainty problem, which is often expressed in short-read sequencing technologies. The 
breakpoint uncertainty problem is defined as the inability to accurately determine the 
genomic position of SVs. Together with confidence bounds, the most probable position 
is often reported by SV detection programs. The accuracy of position determination is 
highly dependent on data quality—namely on read coverage and complexity of rear-
rangement around the genomic area where the SV occurs.

The SV population studies are most affected by the breakpoint uncertainty prob-
lem. Population analyses are typically based on many individual samples that must be 
merged to discover which SVs are common for which individuals. If the position of a 
single SV shared by two individuals is incorrectly detected in just one of the samples, 
this SV could then be incorrectly recorded as two different SVs in the resulting database. 
Consequently, this phenomenon can strongly affect studies of SV distribution within the 
genome, creating a false picture of many mutational hotspots.

To overcome this issue, heuristic clustering strategies try to estimate which groups of 
SVs actually correspond to a single SV with an incorrectly determined position within 
a group of individuals. Clusters of SVs of the same type occurring in close proximity 
are identified and then replaced by a single SV. To our knowledge, two main clustering 
strategies exist, differing in the dissimilarity measure used during the clustering proce-
dure. The first strategy is based on the distance between the breakpoints of SVs and is 
implemented in the Linux tool Survivor [6]. The second strategy is based on the degree 
of overlap between SVs and has been used in several large population studies [4, 7].

To our knowledge, there is no study comparing the two above-mentioned clustering 
strategies or systematically examining the optimal clustering parameters represented by 
distance and degree of overlap. We will address both aspects within this study. We have 
also introduced a new measure of SV dataset quality based on the finding of a pattern of 
decomposed SVs within child-parent trios. Based on this measure, we proposed a new 
modification to the traditional methods that improves their performance.

Results
In the presented article, we evaluated two dissimilarity measures ( D1 , D2 ) used in three 
clustering strategies (“trivial,” “corrected,” and “constrained”), as described in the “Meth-
ods.” In total, we examined six clustering scenarios.

The first measure we used for dataset quality evaluation was the average fraction of 
SVs with Mendelian error 

〈

fMEI

〉

 , which measures the average fraction of erroneous gen-
otype configurations within parent–child trios for both examined families (Fig. 1). We 
can see the general pattern valid for both families and all investigated clustering strate-
gies except for the random model ensemble. The value of 

〈

fMEI

〉

 begins to decline rap-
idly, then the rate of decline slows to a constant value, or in the case of trivial strategy, 
starts to grow slowly. We can see that value of 

〈

fMEI

〉

 is roughly constant for D1 ≥ 0.8 
or D2 ≥ 150 in the case of the corrected and constrained clustering strategies and both 
families (Fig. 1a, c). The constrained clustering strategy exhibits the best performance in 
comparison with other strategies.

For the second measure, we used the average number of Mendelian-consistent 
SVs resulting from the merging of SV clusters exhibiting Mendelian errors 〈Nic〉 . We 
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observed approximately inverse behavior of 〈Nic〉 with respect to the 
〈

fMEI

〉

 (Fig.  2). 
The largest increase of 〈Nic〉 had already been observed at the lowest values of D1 and 
D2 . This observation implies that most Mendelian-erroneous clusters were collapsed 
into a single Mendelian-consistent SV at the lowest investigated values of both dis-
similarity measures,D1 = 0.05 and D2 = 50 . The random model exhibited only very 
small values of 〈Nic〉 in comparison with real data. This fact clearly shows that the 
pattern of decomposed SVs represents a statistically significant feature of the data. As 
in the previous case, 〈Nic〉 was roughly constant for value D1 ≥ 0.8 or D2 ≥ 150 in the 
case of the corrected and the constrained clustering strategies and both families. The 
constrained clustering strategy exhibited the best performance in comparison with 
other strategies.

The decline of 〈Nic〉 in the case of the trivial strategy (Fig. 2a, c) is explained by the 
fact that clusters grow with increasing value of D1(2) , and thus the probability of a 
merging-incompatible SV pair occurrence within an identical cluster also increases. 
After a merging-incompatible pair of SVs occurs in a cluster for some value of 
D1(2) = x , the SVs from that cluster will never be merged again for values of D1(2) > x . 

Fig. 1  Average fraction of SVs corresponding to MEI 〈fMEI〉 . The dependence of 〈fMEI〉 on the value of D1 in 
family A (a) and family B (c) and the dependence of the same quantity on the value of D2 in family A (b) and 
family B (d). All data points obtained by randomizations were concentrated in a very thin space, and so we 
represented the random ensemble by the (gray) curve corresponding to minimum values of 〈fMEI〉 obtained 
for every value of D1(2)
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By this mechanism, the SVs that collapsed at smaller values of D1(2) can be decom-
posed back at higher values of D1(2) and thus contribute to the decline of 〈Nic〉.

We also computed the average number of Mendelian inheritance errors (MIEs) 
resulting from merging SV clusters without any MEIs. We found only negligible, con-
stant amounts (< 10) of this type of SV in all clustering scenarios, so we did not pre-
sent this result in a graphical form.

The average degree of separation between different kinship categories achieved by 
the kinship estimator 〈s〉 was used as the third measure. In this case, the average was 
taken over all kinship categories, in contrast to the previous two approaches where 
the average was taken over all family trios as described in the “Methods.” For purposes 
of kinship prediction, we used only Mendelian-consistent SVs that resulted from col-
lapsing SV clusters exhibiting Mendelian error. Our goal here was to rule out whether 
these SVs were incorrectly assembled by the new constrained clustering method and 
thus predicted the kinship less well than other methods. The constrained clustering 
method exhibited the best performance (smallest values of 〈s〉 ) in family A (Fig. 3). In 
family B , constrained clustering performed similarly to the other methods (Fig. 3).

Fig. 2  Average number of Mendelian-consistent SVs resulting from merging SV clusters exhibiting 
Mendelian errors 〈Nic〉 . The dependence of 〈Nic〉 on the value of D1 in family A (a) and family B (c) and the 
dependence of the same quantity on the value of D2 in family A (b) and family B (d). Random ensemble is 
represented by the (gray) curve corresponding to maximum values of 〈Nic〉 obtained for every value of D1(2)
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The last measure we used for our comparison of clustering scenarios was the fraction 
of SVs in Hardy–Weinberg equilibrium fHWeq , which was computed using the data sub-
set of unrelated individuals. The constrained clustering method gave the best results in 
this case (Fig. 4). The function fHWeq corresponding to this method was roughly con-
stant for D2 ≥ 200 , but in the case of D1 , it did not show a tendency to stabilize in con-
trast to the corrected strategy (Fig. 4a).

To compare the performance of dissimilarity measures D1 and D2 , we plotted the 
maximum/minimum achieved values of the investigated quantities when using D1 or 
D2 (Fig. 5). The difference between D1 and D2 is very small in the constrained cluster-
ing strategy if we focus on the three most important variables for benchmarking pur-
poses (Fig.  5a–d, g). Conversely, in the corrected and trivial strategies, we see a more 
significant difference between the D1 and D2 measures, especially when we focus on the 
quantities 〈Nic〉 and fHWeq (Fig.  5c, d, g). It is also clear from Fig.  5 that D2 produces 
consistently better results than D1 in both the corrected and trivial strategies (Fig. 5a–d, 
g). In the case of the variables 〈Nic〉 and 

〈

fMEI

〉

 , it is possible to statistically test the differ-
ence between D1 and D2 because we have a group of Nic and fMEI values associated with 
individual trios. We observed statistical significance only for Nic in the trivial strategy 

Fig. 3  Average degree of separation between kinship categories achieved by the Loiselle kinship estimator 
〈s〉 . The dependence of 〈s〉 on the value of D1 in family A (a) and family B (c) and the dependence of the same 
quantity on the value of D2 in family A (b) and family B (d). Random ensemble is represented by the gray area 
defined from above by maximum values of s and from below by minimum values of 〈s〉
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Fig. 4  Fraction of SVs in Hardy–Weinberg equilibrium fHWeq . The dependence of fHWeq on the value of D1 (a) 
and the dependence of the same quantity on the value of D2 (b). Random ensemble is represented by the 
(gray) curve corresponding to maximum values of fHWeq obtained for every value of D1(2)

Fig. 5  Maximum/minimum values of studied quantities corresponding to best performance. The minimum 
achieved values of 〈fMEI〉 for all clustering strategies with combination of D1 or D2 values are visualized on 
sub-figures (a) and (b), the maximum achieved values of 〈Nic〉 are visualized on sub-figures (c) and (d), the 
minimum achieved values of 〈s〉 are visualized on sub-figures (e) and (f) and the maximum achieved values of 
fHWeq are visualized on sub-figure (g)
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and both families (p < 0.0147, Wilcox test) and in the corrected strategy and family A 
(p = 0.0143, Wilcox test). All other comparisons between D1 and D2 within individual 
strategies were not statistically significant.

Discussion
The main difference between D1 and D2 is that D2 may be relatively low for a pair of dis-
jointed SVs. Conversely, D1 = 1 for any disjointed SV pair, a maximum value obviously 
never used as a threshold for clustering purposes. Consequently, the disjointed SV pairs 
will never be clustered in D1, despite being in close proximity. The higher maximum 
value of 〈Nic〉 in D2 and the simple clustering strategies (Fig. 5c, d) can be explained by 
the existence of disjointed SV pairs resulting in a Mendelian-consistent single SV after 
merging. These pairs are clustered when using D2 but not when using D1.

In constrained clustering strategy, the maximum value of 〈Nic〉 is slightly higher for D1 
than D2 in contrast to the simple clustering strategies (Fig. 5c, d). This is related to the 
combinatorial search of SV groups that can be merged into single Mendelian-consistent 
SV in the initial phase of the algorithm. With higher D1 values, the space for a combi-
natorial search can increase more quickly for D1 than for D2, assuming the existence of 
very large SVs. The greater the combinatorial search space, the greater the probability 
the algorithm will find Mendelian-consistent configurations by chance. Based on the fact 
that very large SVs are more likely artifacts, we can say that D2 dissimilarity measure is 
more robust with respect to this undesirable phenomenon.

According to the MEI-based quantities that we considered the most important, it can 
be deduced from our data that the best performance is obtained for values D1 ≥ 0.8 or 
D2 ≥ 150 for both corrected and constrained clustering strategies. We must emphasize 
here that these thresholds may be dependent on the size of the data and the technolo-
gies used to obtain them. However, the measures presented in this article can be used 
to find optimal values of arbitrarily defined dissimilarity measures in any future study 
addressing the problem of merging individual SV profiles, assuming the presence of par-
ent–child trios.

We also showed that our new constrained clustering strategy produced the best results 
in terms of all measures examined. It can be argued that MEI-based quantities, espe-
cially Nic , have limited informative values in this case because maximization of Nic is 
implicitly included in the constrained clustering algorithm. Therefore, it is important 
to use other independent quantities for the purposes of algorithm assessment. We used 
kinship prediction and the fraction of SVs in Hardy–Weinberg equilibrium for these 
purposes and showed that the constrained clustering strategy exhibits superior perfor-
mance in this case as well. However, other potential quantities should be used for a more 
accurate evaluation of this new method.

We observed a statistically significant enrichment of the pattern of decomposed SVs 
during the evaluation of conventional clustering strategies (Fig.  2). Based on this, the 
implementation of explicit identification of decomposed SVs can be seen as a test of how 
extensive the pattern appears in the data. We hypothesize that other patterns potentially 
exist in the SV data whose relevance for SV reconstruction can be tested using a random 
model ensemble. The method of explicit identification of decomposed SVs is mainly 
beneficial for related samples. However, the incorporation of cannot-link constraints 
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representing merging-incompatible SVs within our constrained clustering strategy 
seems to also be beneficial for unrelated samples (Fig. 4). Future research is needed to 
elucidate the role of these two main components of the constrained clustering approach.

Conclusions
This paper explored different strategies for SV clustering designed to reduce the impact 
of the breakpoint uncertainty problem when merging different WGS samples. Two dis-
similarity measures along with three clustering strategies were benchmarked. We found 
that the D2 dissimilarity measure performed slightly better than D1 when combined with 
simple clustering strategies. We also presented the new constrained clustering strategy 
based on the identification of decomposed SV clusters within parent–child trios and 
demonstrated the best performance of this method.

Methods
Data preparation

Whole genome sequencing of all samples was performed on the NovaSeq 6000 plat-
form with a target coverage of 30 by the commercial provider. The NEBNext Ultra DNA 
Library Prep Kit was used for library preparation.

Dataset structure

We analyzed in total 124 WGS samples, all corresponding to healthy Czech individu-
als. Out of them, 10 samples formed a three-generational family with relationship coef-
ficients of (0, 0.125, 0.25, 0.5) . In the article, we refer to this family as family A . Another 
12 samples within our dataset formed a different three-generational family with relation-
ship coefficients of ( 0, 0.0625, 0.125, 0.25, 0.5 ). In the article, we refer to this family as 
family B . The remaining 102 samples were unrelated individuals.

Data pre‑processing and SV identification

The fastq files corresponding to individual probands were processed by the generic data 
pre-processing pipeline published by Broad Institute [8]. The pipeline aligns sequences 
within fastq files to the hg38 genome build, performs base recalibration, and produces 
analysis-ready bam files. We also performed quality control using another pipeline pub-
lished by Broad Institute [9]. Based on quality analysis, we excluded three samples with 
very low coverage.

The SVs were detected using Manta [10]. The vcf files containing detected SVs were 
merged by Survivor in such a way that variants occurring close to each other were not 
merged by the program. This was achieved by setting the maximum allowed distance 
between merged SVs to 1 bp. We also used only SVs longer than 50 bp for the following 
analyses.

Formal definitions

In this work, the SV data is represented by a genotype matrix with N  rows corre-
sponding to individual SVs and M columns corresponding to individual probands. 
The elements of the matrix correspond to the genotypic state of the variant in a 
given individual. We distinguished three genotypic states: 0 represents the reference 



Page 9 of 14Geryk et al. BMC Bioinformatics          (2021) 22:464 	

homozygous genotype, 1 represents the heterozygous genotype, and 2 represents the 
alternative homozygous genotype.

Every SV can then be represented by a genotype vector vi of length M , containing a 
genotype state of i-th SV for every individual, where i = 1, . . . ,N .

We defined the merging of any subset of SVs as a simple summation: 
∑

i∈s vi , where 
s ⊆ {1, . . . ,N }.

We call SV pair with corresponding vectors vi and vj “merging-incompatible” if 
k ∈ {1, . . . ,M} exists, where vi(k)  = 0 ∧ vj(k)  = 0 and i, j ∈ {1, . . . ,N }.

To demonstrate the concepts used in this work, we also represented separately the 
genotypic state of the i-th SV in the members of any parent–child trio by a vector ui of 
length three, with the convention that the child genotype appears at the first position.

We call ui non-trivial if l ∈ {1, 2, 3} exists, where ui(l)  = 0.

Algorithms for SV clustering

The differences between commonly used clustering strategies lie mainly in the defini-
tion of the dissimilarity measures used for clustering SVs of the same type. Two basic 
definitions are widely used. The first is defined as a function of overlap between genomic 
regions corresponding to SV pair [4, 7]. We used the following form in this work:

where g1 and g2 are genomic intervals corresponding to two SVs.
The second is the maximum of two distances between the starting and ending posi-

tion of the SV pair [6]. We used the following form in this work:

where start
(

g1
)

 denotes the starting genomic position of g1 and end
(

g1
)

 denotes the end-
ing genomic position of g1 , analogically for g2.

With the definition of the dissimilarity measure, the clustering procedure is straight-
forward: we must select a threshold value ( Dmax ) and then find components of the graph 
defined by pairs with a value of D1(2) ≤ Dmax . These components are formed by SVs that 
we assume correspond to a single SV detected with slightly different breakpoints within 
different samples. All SVs forming the component are then merged into one.

There is one ambiguity at this point that must be considered. It could happen that 
during the merging of two SVs, both are presented within a single sample in a non-ref-
erence genomic state. It is ambiguous what the resulting genotype should be for this 
sample after merging both SVs. We call a pair of SVs that cannot be unambiguously 
merged “merging-incompatible” in the article—see the “Formal definitions” section 
above. Surprisingly, this problem is not mentioned in the studies, where SV cluster-
ing is used to merge large numbers of samples. According to our knowledge, there are 
two possible explanations for this: 1) these two SVs are on different strands of DNA, 
or 2) both are on the same strand. It follows that the above-mentioned SVs represent 
different variants detected within a single sample and should not be merged.

D1 = 1−

∣

∣g1 ∩ g2
∣

∣

max
(∣

∣g1
∣

∣,
∣

∣g2
∣

∣

)

D2 = max
(∣

∣start
(

g1
)

− start
(

g2
)∣

∣,
∣

∣end
(

g1
)

− end(g2
∣

∣

)
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A simple solution to this situation may be not to merge SVs in the cluster that show 
the presence of a merging-incompatible SV pair. We presented the results of this strat-
egy within the article for the sake of completeness. We refer to this as “trivial strategy.”

We also used this more convenient strategy to solve the above-mentioned problem.
Let us assume we obtained components for some value of Dmax.

1)	 Find all components where at least one merging-incompatible SV pair exists.
2)	 For every component defined in step 1, do the following:

a.	 Find maximal D < Dmax , where all SVs from the component are distributed 
within sub-components that do not contain any merging-incompatible SV pairs.

b.	 Replace the component with set of sub-components identified in step 2a.

We refer to this strategy as “corrected strategy.”

New algorithm for SV clustering

Combinatorial search of all SV pairs and triplets that can be merged 

into a Mendelian‑consistent single SV

Mendelian-consistent SVs can only be created by merging two or three SVs represented 
by a non-trivial vector u . The addition of any other non-trivial vector u to the triplet 
must result in a merging-incompatible SV pair (see section “Formal definitions”). This 
fact ensures the computational feasibility of the combinatorial search.

From the combinatorial viewpoint, 26 distinct vector pairs u existed, resulting in Men-
delian-consistent SVs after merging. In contrast, there were only seven distinct vector 
triplets u with the same properties.

The algorithm searches for all the pairs and triplets (groups) within every trio and tests 
the following two conditions for every identified group of SVs:

1)	 The group of SVs cannot be merging-incompatible if we consider all samples (not 
only trio members).

2)	 D1(2) ≤ Dmax must hold for every pair of SVs within the group.

Only groups meeting both criteria are considered for the next step of the algorithm.

Reduction to disjoint set of SV groups

It is theoretically possible that the algorithm could identify two non-disjoint groups of 
SVs within a single trio, both satisfying the criteria defined in the previous section. It fol-
lows that these two groups are merging-incompatible, so we must decide which group to 
retain for further analysis. We implemented the following heuristic strategy to deal with 
intersecting SV groups.

At the first step we represented the identified superset of SV groups as an un-oriented 
graph, where every identified SV group corresponded to a unique vertex. The edge 
between two vertices exists if the corresponding SV groups share at least one SV (i.e., 
having a non-zero intersection). We then identified all connected components within 
the graph and applied the following procedure on every such component, ci:
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1)	 Select SVs group from ci which is detected in highest number of trios or randomly if 
all groups are equal.

2)	 Test if the given group is merging-compatible with already merged groups from ci 
and if the merging results in a Mendelian consistent SV in all trios.

3)	 Delete the group from the queue. If the test in step 2 succeeds, merge the group with 
already merged groups from ci and add the group into the newly formed reduced 
component, cir , where cir ⊆ ci.

4)	 Return to step 1.

Constrained clustering

We constructed another type of graph where vertices correspond to individual SVs 
(and not the SVs groups as in the previous case). The edge exists between two SVs if 
both belong to any reduced component ( cir).

Another required ingredient of constrained clustering is a cannot-link matrix 
corresponding to the logical triangular matrix that contains which SV pairs are 
merging-incompatible.

Constrained clustering can be described by the following procedure:

1)	 Select all pairs of SVs with a minimum value of D1(2) that are not part of any single 
component.

2)	 For every pair of SVs identified in the previous step do the following:

a.	 Merge the two components to which the examined SV pair belongs and test if 
the newly formed component contains any merging-incompatible SV pairs.

b.	 If the test in 2a. fails, accept the new edge connecting the investigated SV pair.

3)	 After all pairs with an actual minimum value of D1(2) are examined, delete them from 
the queue and return to step 1.

We refer to this strategy as a “constrained clustering strategy.”

Measures used for SV dataset quality evaluation

Mendelian inheritance error

The first measure used for clustering quality evaluation was the fraction of SVs 
corresponding to Mendelian errors 

(

fMEI

)

 . Mendelian inheritance error (MIE) rep-
resents the combination of a child’s and its parents’ three genotypes that are incon-
sistent with Mendelian inheritance. We computed fMEI for every trio and then 
averaged it over families A and B . There is general agreement that most Mendelian-
erroneous genotype configurations are caused by sequencing/algorithm detection 
errors. Only a tiny fraction of Mendelian errors (where parents’ genotypes corre-
spond to the reference homozygotes and the child genotype corresponds to an alter-
native heterozygote) can be caused by de-novo mutation.
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The number of Mendelian‑consistent SVs resulting from merging SV clusters exhibiting 

Mendelian errors

We defined the new measure of SV dataset quality on the assumption that the Mende-
lian errors exhibit a specific pattern. We assumed that the observed Mendelian incon-
sistency can emerge as a product of erroneous determination of SV position in one or 
more of a trio’s members. The single SV will then be represented as two or three dif-
ferent SVs detected in slightly different positions. As a result, one or more alleles may 
be missing in the genotype configuration of the family trio because it is erroneously 
detected as a different SV with a different position. We will demonstrate this concept 
using formalism established above.

Let us assume we have a parent–child trio with an SV corresponding to Mendelian-
consistent genotype configuration (2, 1, 1) . If this SV is detected in one of the parents 
in a slightly different position, we will observe two neighboring SVs with the following 
genotype configurations: (2, 1, 0) and (0, 0, 1) . We can see that the first configuration 
represents Mendelian error and the second is Mendelian consistent. Both configura-
tions can be unambiguously merged into a single Mendelian-consistent SV.

According to this concept, we propose the following quantity to measure SV dataset 
quality: the number of Mendelian-consistent SVs resulting from merging SV clusters 
exhibiting at least one MEI.

Kinship prediction

We used the R package Demerelate [12] to predict kinship categories for two families 
within our dataset. We used two different estimators: the Loiselle coefficient [13] and 
the proportion of shared alleles 

(

Sxy
)

 [14]. The Loiselle coefficient represents a more 
complex measure that considers population SV frequencies estimated from non-
related individuals within our dataset and corrects for a small sample size. The Loi-
selle coefficient, therefore, reflects the quality of the whole data set. In contrast, Sxy 
represents a simple measure based only on allele sharing between paired individuals. 
We presented the results obtained with Sxy only in Additional file 1 because they are 
similar to the results obtained with the Loiselle estimator.

We used the error related to the ability with which both estimators can separate 
individual kinship categories as a measure of dataset quality. Let us assume we have 
n kinship categories i = 1, . . . , n corresponding to relationship coefficients ri , where 
ri < ri+1 for i = 1, . . . , n− 1 . We computed the following quantity for every kinship 
category:

where δ
(

j, k
)

= 1 if Ci

(

j, k
)〈

min (Ci+1) ∧ Ci

(

j, k
)〉

max (Ci−1) , otherwise δ
(

j, k
)

= 0 
and where Ci

(

j, k
)

 denotes the estimated value of relatedness for individuals j and k , and 
max(Ci) denotes maximum estimated value within kinship category i , analogically for 
min (Ci) . On the basis of quantity Li , we can define the error rate for every kinship cat-
egory as:

Li =
∑

j < k
j, k ∈ i

δ
(

j, k
)
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where |i| denotes the number of pairs of individuals within the kinship category i . For the 
purpose of comparing SV clustering methods, we used the average value of si across all 
kinship categories presented within the pedigree, �s� = 1

n

∑

i

si.

Deviation from Hardy–Weinberg equilibrium

Deviation from the Hardy–Weinberg principle is a widely used measure for quality eval-
uation of datasets containing population genetic variants. We followed the same meth-
odology as applied in the work of Karczewski et  al. [4]. We computed the chi-square 
p-value using the Hardy–Weinberg R package and applied the Bonferroni correction. 
Those SVs with p < 0.05 after the Bonferroni correction were considered to violate the 
Hardy–Weinberg equilibrium. To compare the SV clustering methods, we used the frac-
tion of SVs that are in Hardy–Weinberg equilibrium.

Randomization of SV distribution within clusters

We generated an ensemble of only ten randomized samples for the corrected clustering 
strategy for each dissimilarity measure ( D1 and D2 ). We generated only 20 randomiza-
tions in total due to the high computational complexity. The main purpose of the ran-
dom model within this work was to exclude the null hypothesis that the behavior of the 
quantities used for dataset quality evaluation is determined by randomness, and, thus, 
their importance in clustering method comparisons is limited. Our goal during the ran-
domizations was to preserve the size distribution of clusters before the correction for 
merging-incompatible SVs (as defined for corrected strategy). We performed randomi-
zations by reshuffling the rows of the genotype matrix associated with each SV type. This 
procedure is equivalent to randomly partitioning SVs of the same type into clusters hav-
ing the identical size distribution as exhibited by the real data. The randomization was 
performed before the correction because we needed to ensure that merging-incompati-
ble SV pairs would not be presented within the final clusters.
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Additional file 1. Average degree of separation between different kinship categories achieved by Sxy kinship 
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