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Abstract: Culture-independent studies have identified DNA of bacterial pathogens in the gallbladder
under pathological conditions, yet reports on the isolation of corresponding live bacteria are rare.
Thus, it is unclear which pathogens, or pathogen communities, can colonize the gallbladder and cause
disease. Using light microscopy, scanning electron microscopy, culture techniques, phylogenetic
analysis, urease assays and Western blotting, we investigated the presence of live bacterial
communities in the gallbladder of a cholecystitis patient after cholecystectomy. 16S rRNA gene
sequencing of isolated bacterial colonies revealed the presence of pathogens most closely resembling
Corynebacterium urinapleomorphum nov. sp., Staphylococcus saprophyticus and Helicobacter pylori.
The latter colonies were confirmed as H. pylori by immunohistochemistry and biochemical methods.
H. pylori cultured from the gallbladder exhibited both the same DNA fingerprinting and Western
cagA gene sequence with ABC-type EPIYA (Glu-Pro-Ile-Tyr-Ala) phosphorylation motifs as isolates
recovered from the gastric mucus of the same patient, suggesting that gastric H. pylori can also colonize
other organs in the human body. Taken together, here we report, for the first time, the identification
and characterization of a community consisting of live S. saprophyticus; C. urinapleomorphum, and
H. pylori in the gallbladder of a patient with acute cholecystitis. Their potential infection routes and
roles in pathogenesis are discussed.

Keywords: gallbladder; cholecystitis; immunohistochemistry; electron microscopy; Helicobacter pylori;
Staphylococcus saprophyticus; Corynebacterium urinapleomorphum; protein profiling; 16S rRNA gene
sequencing; urease test; CagA; EPIYA; GGT; HtrA

1. Introduction

Acute cholecystitis is considered a serious, potentially life-threatening complication and
is one of the most common surgically treated diseases. Bacterial infection is commonly
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reported in 50 to 90% of the cases [1–3]. Gallbladder infection appears to be typically
linked with severe pain, often associated with colics, that can last for several hours. Diverse
bacterial flora in the bile and gallbladder of patients with cholecystitis have been described, as
detected by PCR (polymerase chain reaction) and culture-dependent methods [1,3–5]. The most
frequently identified pathogens in biliary infections are Gram-negatives, primarily Escherichia coli,
Salmonella enteritidis, Acinetobacter baumannii, Citrobacter freundii, Enterobacter cloacae, and Klebsiella
species. Within Gram-positives, Clostridium perfringens is most commonly observed. Additionally,
in some Asian countries, the presence of Helicobacter pylori has been detected infrequently in the
gallbladder by PCR [2,6–8]. This pathogen is as a type-I carcinogen responsible for gastritis,
gastro-duodenal ulcers, and gastric malignancies in the human stomach [9]. However, there are
no reports of gallbladder colonization by this pathogen in individuals from Western countries, nor is it
understood how potential H. pylori infections could lead to gallbladder disease. In this report, an acute
case of cholecystitis was presented to our hospital, and after surgical removal, the gallbladder was
used for microbial analysis. Here, we present the results of studies using light microscopy, scanning
electron microscopy, culture techniques, phylogenetic analysis, urease assays, and Western blotting to
investigate the presence of live bacterial communities in the gallbladder of this patient.

2. Results

2.1. Case Presentation

A 50-year-old male patient with a history of nightly lower abdominal pain for three months was
transferred to the emergency room at Erlangen University Hospital. First routine examinations revealed
that heart, spine, liver and kidney showed no pathological changes. The patient had no diarrhea,
no fever and no apparent changes in blood values. Gastroscopy revealed a moderately chronic slightly
active H. pylori gastritis as determined by Warthin silver staining and culturing. After collecting a
sample by endoscopy, a conventional triple antibiotics therapy for 7 days was prescribed to eradicate
gastric H. pylori. As the nightly colics continued for the next three weeks, ultrasound diagnostics
was performed revealing a thickened gallbladder wall and signs of inflammation, suspicious for
cholecystitis. Two gallstones measuring up to 1.5 cm were detected before removal of the gallbladder
by standard laparoscopic surgery. Histopathology suggested a microbial infection as the etiology for
the observed pathological changes of the gallbladder.

2.2. Identification of Live Bacteria in the Gallbladder

To investigate if viable bacteria were present in the tissue, samples were incubated on
different culture plates at 37 ◦C under aerobic, anaerobic and microaerobic conditions. The most
prominent bacterial growth was seen after 3–6 days of incubation on Columbia agar plates
supplemented with sheep blood, in a microaerobic atmosphere generated by CampygenTM (Oxoid,
Wesel/Germany) [10,11]. Three different colony morphologies were observed, suggesting the presence
of at least three different species. Bacterial DNA was isolated from all colonies and subjected to PCR
for the amplification of a ~1 kb segment of the 16S rRNA gene using universal primers [12,13].
PCR products with the expected sizes were produced from all colonies and were subsequently
sequenced. Three different sequences corresponding to the three different colony morphologies
were further analyzed by a BLAST (Basic Local Alignment Search Tool) query to determine the identity
of the isolated bacteria. Query and reference sequences were aligned using CLUSTAL in MEGA7
(Molecular Evolutionary Genetics Analysis 7) [14] and clustered using the unweighted pair group
method and arithmetic average (UPGMA) [15]. Their evolutionary distances were computed using
the Maximum Composite Likelihood method, given in the units of the number of base substitutions
per site [16]. This analysis confirmed the presence of three different bacterial species. The sequence of
Isolate 1 was identical to Staphylococcus saprophyticus ATCC 15305 (Figure 1A). Isolate 2 had the closest
similarity to uncultured bacterial DNA sequences and resembled Corynebacterium urinapleomorphum
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nov. sp. strain P2799, and this may represent a novel Corynebacterium species (Figure 1B), but a more
detailed characterization would be needed to confirm this assumption. The 16S amplicon of Isolate 3
was identical to Helicobacter pylori strain BM012B (Figure 1C). No other bacterial species were grown
from the gallbladder samples. Taken together, the genetic analyses based on the 16S rRNA gene
fragments identified the presence of S. saprophyticus, C. urinapleomorphum, and H. pylori.
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Figure 1. Three isolates of live bacterial species isolated from the gallbladder of a patient with
cholecystitis were subjected to 16S rRNA gene sequencing and phylogenetic analysis. The DNA
relatedness of sequences with known taxa is shown using the unweighted pair group method and
arithmetic average method (UPGMA). The optimal tree with the sum of branch length was 1.04, 0.51,
and 1.22 for panels (A–C), respectively. All positions containing gaps and missing data were eliminated,
and the analyses were conducted in MEGA7.
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2.3. Microscopic Examination of Gallbladder Bacteria

To corroborate the above findings, the gallbladder tissue samples were subjected to microscopic
investigation. First, the specimens were stained with hematoxylin–eosin and examined independently
by two attending pathologists, who specialized in biliary diseases. Acute cholecystitis was diagnosed
by the presence of predominantly mononuclear inflammatory infiltrates, fibrosis with thickening of
the gallbladder wall, cholesteatosis, and metaplastic changes. Lymphoid aggregates were found in
the wall of the gallbladder but not within the mucosa. Remarkably, the bacteria that were observed in
the tissue were primarily bended, curved, and spiral-shaped bacteria that were in close association to
the epithelial cells (Figure 2A, blue arrows). Suspected Gram-negative H. pylori were approximately
0.5–1 µm in diameter and varied in length from 2–3 µm. In addition, spherical round-shaped bacteria
were observed, which could either represent Gram-positive species or coccoid forms of H. pylori
(red arrows). These morphological results suggested the presence of live, spiral-shaped, and spherical
bacteria in the gallbladder tissue, in agreement with the culture results and their above described
identification. Notably, these bacteria were mostly detected focally and only in certain locations.

The gallbladder tissue was further subjected to Warthin–Starry silver staining, which revealed the
presence of bended, curved, and spiral-shaped bacteria, as well as some spherical bacterial cells in
the close vicinity of epithelial cells in the mucosa (Figure 2B). These observations were very similar
to the results from hematoxylin–eosin staining and confirmed the presence of different types of
bacteria. Finally, to identify and localize putative H. pylori in the tissue, samples were subjected to
immunohistochemistry staining using anti-H. pylori antibodies. A positive red signal detected bended,
spiral-shaped or coccoid bacteria, as expected (Figure 2C, blue and red arrows). These bacteria were
mainly located on the epithelial cell surface and within the mucosal glands, scattered or aggregated.
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Figure 2. Histological sections from the gallbladder of the patient. The magnification is 40× for the 
left panels, and a 200× magnification of the identified section (white box) is shown to the right. (A) 
Identification of collagen-rich fibrosis using hematoxylin–eosin staining and mucosal cholesteatosis. 
Very focal active inflammatory infiltrates are present; (B) Warthin–Starry silver staining of the 
section shown in panel A inside the white square; (C) Immunohistochemistry using a monoclonal 
antibody against Helicobacter pylori showing red, partly intracellular positive signals. In the right 
panel, H. pylori-like spiral shaped bacteria of approximately 2–3 µm in length are visible (blue 
arrows). Coccoid bacteria with up to 1 µm in diameter are also present (red arrows). 
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Figure 2. Histological sections from the gallbladder of the patient. The magnification is 40× for
the left panels, and a 200× magnification of the identified section (white box) is shown to the right.
(A) Identification of collagen-rich fibrosis using hematoxylin–eosin staining and mucosal cholesteatosis.
Very focal active inflammatory infiltrates are present; (B) Warthin–Starry silver staining of the section
shown in panel A inside the white square; (C) Immunohistochemistry using a monoclonal antibody
against Helicobacter pylori showing red, partly intracellular positive signals. In the right panel,
H. pylori-like spiral shaped bacteria of approximately 2–3 µm in length are visible (blue arrows).
Coccoid bacteria with up to 1 µm in diameter are also present (red arrows).

2.4. Biochemical Characterization of Gallbladder H. pylori

The observation of H. pylori was surprising as there are no reports on the presence of these bacteria
in gallbladders from patients from the Western hemisphere. To exclude artifacts, we screened for
H. pylori urease, a telltale enzyme which bacteria express at high levels to neutralize the gastric pH
in the lumen [17] and controls the inflammasome in immune cells [18]. For this purpose, bacteria
were grown on selective acidified agar plates supplemented with urea, the substrate of H. pylori
urease [17]. These experiments showed that two gallbladder isolates (Hp-1 and Hp-2) expressed
functional urease enzymes, with activity indistinguishable from that of the fully sequenced and
stomach-derived H. pylori control strains 26695 and P12 [19,20]. In contrast, retarded growth and
no urea hydrolysation was observed in a ∆urease knockout mutant of the reference strain that was
included as a negative control (Figure 3A), or in the strains putatively identified as S. saprophyticus
and C. urinapleomorphum (our unpublished data). To further characterize these gallbladder H. pylori
isolates, we performed protein profiling of total cell lysates using Coomassie staining. Bands migrating
at positions typical of highly expressed proteins CagA, Urease A, and Urease B [21] were identical
between Hp-1, Hp-2, and the two H. pylori control strains (Figure 3B). Furthermore, Western blotting
experiments using specific antibodies [22,23] confirmed the presence of several other well-known
H. pylori-specific pathogenicity factors, including the typical gamma-glutamyl transpeptidase GGT,
serine protease HtrA, the vacuolating cytotoxin VacA, as well as CagA proteins (Figure 3C, arrows).
Thus, various independent methods clearly confirmed the successful isolation of live H. pylori from
the gallbladder.

2.5. Genetic Comparison of Stomach and Gallbladder H. pylori

Lastly, we compared the H. pylori isolates of the stomach and gallbladder from the same patient
phenotypically and genetically. Isolates subjected to field-emission scanning electron microscopy [24]
revealed spiral-shaped H. pylori organisms with high similarity between the gastric (Figure 4A) and
gallbladder samples (Figure 4B). These candidate H. pylori were approximately 0.5–0.8 µm in diameter,
varied in length from 2–3 µm, and had typical monopolar flagella (yellow arrows). The genetic profiles
of these strains were analyzed using random amplified polymorphism DNA (RAPD) fingerprinting
method as described in ref. [25,26]. Because clinical H. pylori typically display DNA sequence diversity
between individuals, different isolates are easily distinguishable by RAPD, even with a single RAPD
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primer [27]. This analysis produced identical fingerprinting patterns for all isolates (Figure 4C).
To further confirm these findings, we amplified a 1.6 kb fragment of the 3′end in the cagA gene
containing the EPIYA phosphorylation sequences and subjected the PCR products to sequencing.
The results also showed identical cagA sequences for every strain and revealed a typical Western-type
EPIYA-motif ABC arrangement (our unpublished data). Together, these data suggest that a single
H. pylori strain of Western origin colonized both the stomach and the gallbladder.
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Figure 3. Urease test and Western blotting analysis of H. pylori-specific pathogenicity factors from
gallbladder strains. (A) Two H. pylori isolates (Gallbladder Hp-1 and Hp-2) were grown on acidified
agar supplemented with urea (left samples). The observed color change from orange to red indicated
that bacterial colonies were producing functional urease. The right samples represent positive controls.
The color change occurred with the wild-type (wt) strain 26695 as expected, and was not observed with
the negative control of an isogenic ∆ureB deletion mutant, indicating that functional urease enzyme
was not being produced; (B) Protein profiling using Coomassie staining. Asterisks label the following
protein bands: CagA (*), Urease B (**), and Urease A (***); (C) Western blots of two reference strains
(P12 and 26695) and the two gallbladder isolates that identifies presence of H. pylori proteins CagA,
VacA, GGT and HtrA.
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Figure 4. Scanning electron microscopic and genetic analyses of the stomach and gallbladder H. pylori
isolates. High resolution scanning electron microscopy of the cultures obtained from the stomach
(A) and gallbladder (B) of the same patient revealed spiral-shaped H. pylori bacteria. Arrows in the
enlarged sections indicate typical monopolar flagella being present; (C) PCR-based randomly amplified
polymorphic DNA (RAPD) produced identical fingerprints for the two H. pylori strains isolated from
stomach and gallbladder. This method uses a set of single indicated primers (D1254 or D14307, top and
bottom), which arbitrarily anneal and amplify genomic DNA resulting in strain-specific fingerprinting
patterns. M = DNA size marker.

3. Discussion

Infections of the human gastrointestinal tract have been proposed to frequently propagate to
the gallbladder [3,28,29]. Recurrent microbial infections may play a role in the development of
gallstones and contribute to inflammation and acute cholecystitis in patients. For example, acute
calculous cholecystitis caused by an impacted gallstone is often complicated by a secondary bacterial
infection, representing a major cause of morbidity and even mortality [30]. In addition, a wide variety
of pathogenic microbes can be associated with acute acalculous cholecystitis, a less common, but
potentially more severe form of acute cholecystitis [1,3–5,7]. As in the present case, calculus and
gallbladder diseases are regularly treated by cholecystectomy [28]. Our report represents the first
description of a combination of live S. saprophyticus, C. urinapleomorphum, and H. pylori from the
gallbladder of a patient with gallstones and symptoms of cholecystitis.

Staphylococcus saprophyticus, a Gram-positive, coagulase-negative Staphylococcus species, is a
regular cause of community-acquired urinary tract infections [31,32]. S. saprophyticus is commonly
isolated from food such as meat, cheese, and vegetables, and often colonizes the human and animal
gastrointestinal and genital tracts. S. saprophyticus causes about 10 to 20% of urinary tract infections,
and patients commonly exhibit symptomatic cystitis. Similarly, Corynebacterium urinapleomorphum
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strain Marseille-P2799T (CSURP2799) has been isolated from a urine sample of a two-months-old
child with gastroenteritis [33], while H. pylori is commonly found in the human stomach and is
responsible for diseases ranging from gastritis to severe malignancies [34]. Attempts to identify
other natural reservoirs or routes by which H. pylori is transmitted to the stomach have been widely
unsuccessful [35,36]. Some studies from Asia have reported the presence of H. pylori in the gallbladder
of cholecystitis patients [2,5–8]. However, to date, it was not clear if this remarkable colonization route
occurs in patients from Western countries, too.

Here, we unequivocally identified H. pylori in the gallbladder of a German patient. To our
knowledge, this is the first report on the discovery of viable H. pylori from a gallbladder sample of
a patient from the Western hemisphere, a phenomenon which deserves further investigation with
large patient cohorts. Some of the bacteria were seen as intracellular, which is in agreement with
earlier studies showing invasive H. pylori in gastric epithelial cells [37]. Using RAPD fingerprinting,
we could also confirm that the obtained gallbladder isolate was genetically indistinguishable from
the one previously cultured from the stomach of the same patient. In addition, the cagA gene may
represent a good marker as genome sequencing projects have never revealed two identical cagA genes
from different strains. Here, we could demonstrate that the cagA gene sequences in the patient are
identical from gallbladder and stomach, encoding a typical Western-type CagA with classical ABC
composition in the EPIYA-motif phosphorylation sites, and not the ABD-type present in East Asian
isolates [38,39]. Extra gastric colonization could explain why very sensitive stool tests are positive
for H. pylori, while the stomach was proven to harbor no H. pylori bacteria at all, for example, after
eradication with antibiotics. In addition, it should be mentioned that H. pylori has never been found
before together with live S. saprophyticus or C. urinapleomorphum at the same infection site. The regular
habitat of these pathogens is the gastrointestinal or urogenital tract of humans, respectively. It can
therefore be proposed that a gastrointestinal pathway, rather than transport through the bloodstream
or other routes of infection, may be involved in the colonization of the gallbladder.

The possible contribution of S. saprophyticus, C. urinapleomorphum, and H. pylori to gallbladder
pathology is still unclear. Further studies are therefore necessary to investigate if this environment
may represent a reservoir for survival and growth that could serve as a potential source for bacterial
transmission. In this case, it is remarkable that the antibiotic therapy eradicated H. pylori from the
stomach, but not from the gallbladder. The reason for this treatment failure is not clear and deserves
further investigation.

4. Materials and Methods

4.1. Ethics Statement, Biopsy Preparation, and Immunohistochemistry

All studies on human biopsy specimens were reviewed and approved through the FAU Ethics
Bureau at Erlangen/Germany (license 344-16 BC to S.B., 29 November 2016). The patient gave his
informed consent for inclusion before he participated in the study. Routine biopsy specimens were
fixed in 4% neutral buffered formalin and paraffinized in an increasing series of alcohol and xylene.
The paraffin blocks were cut into 4-micron thick slices and stained with hematoxylin and eosin.
For detection of H. pylori, a Warthin–Starry Silver stain was performed. In addition, α-H. pylori
antibodies (clone SP48 rabbit monoclonal, Ventana Medical Systems, Tucson, AZ, USA) were used to
identify and localize H. pylori in the biopsy samples. Incubation for about 1 h at 4 ◦C was carried out
for binding of the α-H. pylori primary antibody as described [40]. Antibody detection was performed
using the ultra-view Universal Alkaline Phosphatase Red Detection Kit (Tucson, AZ, USA) according to
the manufacturer’s protocol (Ventana Medical Systems, Tucson, AZ, USA).

4.2. Bacterial Isolation

Biopsy specimens were collected in sterile Falcon tubes, incubated with brain heart infusion (BHI)
medium (2.5 mL per 0.5 g material), and shaken at 37 ◦C for 15 min at 5000× g. The mixture was then
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centrifuged for 5 min at 500× g to remove larger particles and cell debris. Bacteria were then cultured
in different amounts (25, 50, 100 or 200 µL) on various culturing media including Mueller–Hinton agar
plates, GC agar plates with 10% horse serum, H. pylori selective agar plates, and Columbia agar plates
with 5% sheep blood. We used the gas generating systems Anaerogen and Campygen (Oxoid-Fisher
Scientific, Wesel, Germany) for incubation of the agar plates in anaerobic jars or cultured the plates
under aerobic conditions at 37 ◦C [41,42]. These plates were incubated for 2–7 days. All single colonies
were selected and grown for further studies.

4.3. Bacterial Gram-Staining

The method was utilized in the initial phase of studies to examine the homogeneity, morphological
features, and pureness of all grown bacteria. For this purpose, bacterial samples were analyzed by the
conventional Gram-staining method using crystal violet, Gram’s iodine, acetone–ethanol (50:50 ratio),
and 0.1% basic fuchsin solution as described [43].

4.4. Bacterial Urease Test

All isolated H. pylori strains were grown on GC agar plates under standard conditions as described
above. To investigate for active urease enzyme activity, the bacteria were transferred to selective
acidified GC agar plates complemented by the urease substrate urea and phenol red as a pH indicator
according to a described protocol [17].

4.5. DNA Isolation and 16S rRNA Gene Analysis

Bacterial DNA was isolated from all colonies using Wizard® Genomic DNA Purification Kit
(Promega, Madison, WI, USA) and subjected to PCR for the amplification of a ~1 kb segment of the
16S rRNA gene using universal primers 27F (5′-AGA GTT TGA TCM TGG CTC AG-3′) and 926R
(5′-CCG TCA ATT CCT TTR AGT TT-3′), as well as 16S-FW (5′-GAA GAG TTT GAT CAT GGC
TCA G-3′) and 16S-Rev (5′-ACG ACA GCC ATG CAG CAC CT-3′), respectively [12,13]. The 16S
rRNA gene sequences from the various strains were determined by standard sequencing at GATC
Biotech (Konstanz, Germany). The sequences from isolates 1, 2, and 3 were sent to a Nucleotide
BLAST search (available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi), and similar sequences were
determined [43]. The results were downloaded and aligned using CLUSTAL in MEGA7 (available
online: http://www.megasoftware.net) [14]. Similarity coefficients among sequences were performed
using the unweighted pair group method and arithmetic average (UPGMA) [15]. The evolutionary
distances were computed using the Maximum Composite Likelihood method [16] and are in the units
of the number of base substitutions per site.

4.6. Protein Profiling

Total protein profiling of the bacteria was done using SDS polyacrylamide gel electrophoresis
(SDS-PAGE) according to an adapted protocol [44]. In brief, prepared bacterial cell pellets of the
obtained gallbladder isolates and gastric control H. pylori strains 26695 and P12 were suspended in 1×
SDS-PAGE buffer and boiled for 5 min [36,45]. The samples were subjected to 8% SDS-PAGE gels.

4.7. Western Blotting and Antibodies

Bacterial samples were resolved in 6% and 8% SDS-PAGE gels, followed by Western blotting
using the semidry blotting method. Mouse monoclonal anti-CagA antibodies were purchased from
Austral-Biological (San Ramon, CA, USA). Polyclonal rabbit α-VacA antiserum was kindly provided by
Prof. Timothy Cover (Nashville, TN, USA). Additional polyclonal rabbit antisera against the H. pylori
virulence proteins HtrA and GGT were raised against conserved peptide residues (HtrA amino acids
90–103: DKIKVTIPGSNKEY and GGT amino acids 175–188: RQAETLKEARERFL) derived from
H. pylori strain 26695 [22,46]. These antibodies were generated, purified, and prepared using standard

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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protocols of the manufacturer (Biogenes GmbH, Berlin, Germany). Polyvalent goat anti-rabbit or
anti-mouse immunoglobulins coupled to horseradish peroxidase were utilized as secondary antibodies
(DAKO, Glostrup, Denmark). The immunoblots were developed using the ECL Plus Western blot kit
(GE Healthcare, Buckinghamshire, UK) [47,48].

4.8. Field Emission Scanning Electron Microscopy

Bacteria were fixed for 1 h on ice in cacodylate buffer (0.1 mM cacodylate, 0.09 mM sucrose,
10 µM MgCl2, 10 µM CaCl2 at pH 6.9) containing 2% glutaraldehyde and 5% formaldehyde [49,50].
The solution was passed through a 0.21 µm sterile filter (Sigma-Aldrich (St. Louis, MO, USA).
After subsequent washing steps in cacodylate buffer and TE buffer (1 mM EDTA, 20 mM Tris at
pH 6.9), the specimen were dehydrated for 15 min on ice in each step using serial dilutions of 10%,
30%, 50%, 70%, 90%, and 100% acetone, respectively. The samples were then further incubated at
room temperature, followed by incubation in fresh 100% acetone. The samples were afterwards
subjected to a critical point drying step using liquid CO2 (CPD030; Bal-Tec, Balzers, Liechtenstein).
All samples were subsequently covered with 10 nm gold–palladium films using the sputter coating
method (SCD500; Bal-Tec). Specimen examination was performed by the Zeiss–Merlin field emission
scanning electron microscope operating with Everhart–Thornley and in-lens SE-detectors in a 25:75
ratio at 5 kV acceleration voltage (Oberkochen, Germany).

4.9. RAPD Fingerprinting

We applied the RAPD fingerprinting methodology to distinguish the identified H. pylori
isolates [27]. The procedure utilizes arbitrary oligonucleotide sequences to prime DNA fragments
across the entire genome. Twenty ng of genomic DNA from each strain were used as template
in PCR reactions of a total volume of 50 µL including 20 pmol of each primer (D1254 or D14307,
respectively) [27]. PCR buffer, one unit Taq-DNA polymerase (Qiagen, Hilden, Germany), 250 mM
dNTPs and sterilized double distilled water were added. A Peqlab Primus 96 advanced® thermal
cycler was used for amplification reactions. The cycling program was four cycles of (94 ◦C, 5 min;
40 ◦C, 5 min; 72 ◦C, 5 min), thirty cycles of (94 ◦C, 1 min; 55 ◦C, 1 min; 72 ◦C, 2 min), and a final
incubation at 72 ◦C for 10 min.

4.10. CagA Gene PCR and Sequencing

To analyze the origin of the strains, EPIYA-motifs in different CagA proteins, cagA gene
subfragments from H. pylori strains were amplified by PCR using primers 48F (5′-AAA GGA
TTG TCC CTA CAA GAA GC-3′) and 38R (5′-CTC GAG ATT TTT GGA AAC CAC CTT TTG-3′),
followed by purification via NucleoSpin® Gel and PCR Clean-up columns (Macherey-Nagel, Dueren,
Germany). Sequences of cagA subfragments from the various strains were determined by GATC
Biotech. The obtained sequences were analyzed by CLUSTAL Omega multiple sequence alignment
analysis (available online: https://www.ebi.ac.uk/Tools/msa/clustalo/) and a BLASTX search to
determine the EPIYA-motif patterns (available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi).
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