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Abstract: Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs with co-
valent closed loop structure. Researchers have revealed that circRNAs play an important role in
human diseases. As experimental identification of interactions between circRNA and disease is
time-consuming and expensive, effective computational methods are an urgent need for predicting
potential circRNA–disease associations. In this study, we proposed a novel computational method
named GATNNCDA, which combines Graph Attention Network (GAT) and multi-layer neural
network (NN) to infer disease-related circRNAs. Specially, GATNNCDA first integrates disease
semantic similarity, circRNA functional similarity and the respective Gaussian Interaction Profile
(GIP) kernel similarities. The integrated similarities are used as initial node features, and then GAT
is applied for further feature extraction in the heterogeneous circRNA–disease graph. Finally, the
NN-based classifier is introduced for prediction. The results of fivefold cross validation demonstrated
that GATNNCDA achieved an average AUC of 0.9613 and AUPR of 0.9433 on the CircR2Disease
dataset, and outperformed other state-of-the-art methods. In addition, case studies on breast cancer
and hepatocellular carcinoma showed that 20 and 18 of the top 20 candidates were respectively
confirmed in the validation datasets or published literature. Therefore, GATNNCDA is an effective
and reliable tool for discovering circRNA–disease associations.

Keywords: circRNA–disease associations; graph attention network; multi-layer neural network

1. Introduction

Circular RNAs (circRNAs) are a new class of endogenous non-coding RNA lacking
a 5′ cap and a 3′ polyadenylated tail [1,2]. Since circRNAs were first discovered, in the
1970s, they have been considered as splicing errors [3,4]. In the past decade, with the
development of high-throughput sequencing technology, a large number of circRNAs
have been identified in mammalian cells [5,6]. Researchers have found that circRNAs are
widely expressed in human tissues, and have stable structure and tissue-specificity. The
mechanism of circRNA expression remains unknown, and how the biogenesis of circRNA
affects its unique regulatory pattern remains limited [7]. Studies have revealed that many
circRNAs perform their biological functions by acting as sponges of microRNA or RNA-
binding proteins, by regulating protein function or by being translated themselves [8–10].

Cumulative evidence has indicated that many circRNAs are involved in human
diseases, especially cancers [11]. For example, circHIPK3 has been found significantly up-
regulated in colorectal cancer (CRC) tissues by sponging miR-7 to inhibit miR-7 activity [12].
Hsa_circ_0000190 was down-regulated in gastric cancer (GC) tissues and plasma from
patients with GC. Compared with common biomarkers such as CEA and CA19-9, it has
better sensitivity and specificity, and can be used as a novel biomarker for diagnosis of
gastric cancer [13]. Researchers have identified that the expression of hsa_circ_0005075 is
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significantly different between hepatocellular carcinoma (HCC) and normal tissues [14].
The expression of Hsa_circ_0001649 was significantly different between HCC and normal
liver tissues [15]. Moreover, circRNAs have also been related to other human diseases.
CircANRIL is related to atherosclerotic disease by binding to pescadillo homolog 1 (PES1),
which then impairs pre-rRAN processing and ribosomal biogenesis, results in the activation
of p53, and thereby induces apoptosis and inhibits proliferation [14]. Recent studies have
shown that the circRNA level in the brain is associated with Alzheimer’s disease (AD) [16].
Compared with the control group, Li et al. have found that 112 circRNAs were up-regulated
and 51 circRNAs were down-regulated in AD patients [17], which also were enriched in
AD-related pathways, and the clinical guidance of circ-AXL, circ-GPHN and circ-PCCA in
disease management of AD patients was identified.

As researchers have realized that circRNAs are abundant in mammalian cells, evolu-
tionarily conserved and stable, and could serve as better biomarkers [18], databases of rich
circRNA information, such as circBase [19], circ2traits [20], CircFunBase [21] have been
built for study. Furthermore, researchers have also manually curated evidence from pub-
lished literature, established databases such as circRNADisease [19], CircR2Disease [22],
Circ2Disease [23], and circAtlas [24]. While experimental verification is expensive and
time-consuming, computational methods have gradually introduced inferring potential
circRNA–disease associations. Lei et al. first proposed a path weighted method to predict
disease-related circRNAs. They calculated disease semantic similarity, disease functional
similarity and integrated with the Gaussian Interaction Profile (GIP) kernel similarities.
Then, they constructed a heterogeneous network and adopted the depth-first search (DFS)
to traverse nodes in the network and calculate the predictive score [25]. Yan et al. devel-
oped the DWNN-RLS method based on Regularized Least Squares of Kronecker product
kernel for predicting circRNA–disease associations, and obtained AUC values of 0.8854,
0.9205 and 0.9701 in fivefold, 10-fold and leave-one-out cross validation, respectively [26].
Another graph-based method KATZHCDA achieved the best AUC values of 0.7936 and
0.8469 in fivefold CV and LOOCV, respectively [27]. Xiao et al. developed a weighted
low-rank approximation optimization method with dual-manifold regulations to infer
potential circRNA–disease associations [28].

Deep learning algorithms have also been introduced in this field. Deepthi et al. pro-
posed an ensemble method named AE-RF, which extracted features via deep autoencoder,
and then used random forest for prediction. As a result, this method achieved 0.9486 and
0.9552 in fivefold and 10 fold CV, respectively [29]. Li et al. used DeepWalk to extract
node features in the circRNA–disease network, and used a network consistency projection
algorithm for circRNA–disease interactions prediction [30]. Wang et al. designed GC-
NCDA using FastGCN to extract high-level features, and by applying Forest PA classifier
for prediction [31]. As a result, it achieved an AUC value of 0.909 in fivefold CV based on
circR2Disease dataset. Bian et al. developed GATCDA method based on graph attention
network to obtain representation of circRNAs and diseases, calculated the probability score
by dot production [32], and yielded an AUC value of 0.9011.

In this study, we proposed a novel computational method named GATNNCDA
to predict potential circRNA–disease associations, based on graph attention network and
multi-layer neural network. To be specific, GATNNCDA first integrates circRNA functional
similarity, disease semantic similarity and the GIP similarities. Secondly, GATNNCDA
utilizes linear transformation to project the integrated similarity matrices into the same
space, and applies a graph attention network to extract dense representations of nodes in
the heterogeneous circRNA–disease graph. Furthermore, a multi-layer neural network is
constructed to infer the associations between circRNAs and diseases. The framework of
GATNNCDA is shown in Figure 1. In summary, our contributions are listed as follows:

• We proposed an end-to-end framework for inferring disease-related circRNAs, which
can effectively and accurately infer the potential associations between circRNAs
and diseases.
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• We made use of GAT to extract low-dimensional dense representations of circRNAs
and diseases, and these presentations had rich structural and semantic information of
the heterogeneous circRNA–disease graph.

• We proposed a NN-based classifier, and applied a sampling strategy to construct
balanced samples. In addition, we designed cross-entropy loss with L2 regularization
to make the training process fast and robust.

• We demonstrated the predictive performance of our method by extensive experiments
via fivefold cross validation and case studies, and achieved competitive results on
CircR2Disease and circRNADisease datasets.

Figure 1. The framework of GATNNCDA. It consists of three steps: (a) similarity integration for
circRNA and disease, (b) GAT-based feature extraction, and (c) NN-based classification.

2. Results and Discussion
2.1. Experiments Settings

In our experiments, we conducted fivefold cross-validation (fivefold CV) to evaluate
the prediction performance of GATNNCDA. In particular, we randomly split all samples
into five groups, of which four of them were used for training and the other group for
validation. Furthermore, we carried out several commonly used criteria in this field [33–35]
to quantitatively analyze the performance of our method, such as accuracy, precision, recall
and F1-score. Moreover, we also plotted the receiver operating characteristic curve (ROC)
and precision-recall (PR) curve, and calculated the area under the ROC curve (AUC) and
the area under the PR curve (AUPR).

The implementation of our method was based on Python machine learning library
PyTorch v1.6.0 [36]. Graph attention network was developed by using PyTorch Geometric
deep learning library [37]. We carried out our experiments on the Ubuntu 16.04, with two
Tesla V100 GPUs. The default settings for GAT are 2 GAT layers and 4 heads. While the
dimension size is set to 32, the classifier is 2-layer fully-connected layers. In addition, We
used Adam optimizer [38] to update parameters of GATNNCDA iteratively.
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2.2. Performance Analysis

To evaluate the performance of our method, we conducted the fivefold CV on
CircR2Disease [22]. Here, Nc = 585 and Nd = 88 denote the number of circRNAs and
diseases. We performed fivefold CV 50 times on CircR2Disease, and the best performance
is shown in Table 1, with average accuracy of 0.9315, precision of 0.9714, recall of 0.9615,
F1-score of 0.9336, AUC of 0.9742 and AUPR of 0.9707. We also plotted the ROC and PR
curves as shown in Figure 2. The average AUC and AUPR values of 50 times are 0.9619 and
0.9452, respectively.

We also performed the fivefold CV on another commonly used circRNA–disease
association dataset, cicRNADisease [19]. In circRNADisease, the number of circRNAs
Nc = 313, and the number of disease Nd = 44. We can construct a circRNA–disease
graph, calculate the similarities and train and validate GATNNCDA by similar criteria.
The results are shown in Table 2. It can be seen that GATNNCDA obtained an aver-
age accuracy of 0.9638, precision of 0.9852, recall of 0.9910, F1-score of 0.9649, AUC of
0.9882 and AUPR of 0.9848. Therefore, the results on CircR2Disease and cicRNADisease
showed that GATNNCDA performed well and can promote the prediction performance of
potential disease-related circRNAs.
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Figure 2. The framework of GATNNCDA.

Table 1. Results of fivefold CV based on CircR2Disease dataset of best performance.

Test Fold Accuracy Precision Recall F1-Score AUC AUPR

1 0.9346 0.9821 0.9692 0.9368 0.9839 0.9820
2 0.9346 0.9720 0.9769 0.9373 0.9800 0.9706
3 0.9077 0.9305 0.9308 0.9098 0.9497 0.9285
4 0.9308 0.9793 0.9692 0.9333 0.9801 0.9791
5 0.9500 0.9933 0.9615 0.9506 0.9925 0.9932

Average 0.9315 0.9714 0.9615 0.9336 0.9742 0.9707

Table 2. Results of fivefold CV based on cicRNADisease dataset of best performance.

Test Fold Accuracy Precision Recall F1-Score AUC AUPR

1 0.9478 0.9799 1.0000 0.9504 0.9826 0.9794
2 0.9627 0.9944 0.9701 0.9630 0.9938 0.9943
3 0.9776 0.9719 1.0000 0.9781 0.9831 0.9703
4 0.9776 0.9879 0.9851 0.9778 0.9895 0.9877
5 0.9531 0.9921 1.0000 0.9552 0.9922 0.9920

Average 0.9638 0.9852 0.9910 0.9649 0.9882 0.9848
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2.3. Comparison with Other Methods

As some methods have been proposed for inferring circRNA–disease association,
we compared the performance of GATNNCDA with other state-of-the-art methods by
fivefold CV. Some methods used different evaluation criteria or datasets. To compare
fairly, we chose nine methods and mainly used CircR2Disease dataset and AUC as the
criteria, including DWNN-RLS [26], PWCDA [25], KATZHCDA [27], NCPCDA [39], AE-
RF [29], Wang’s method, [40], iCircDA-MF [41], GCNCDA [33] and GATCDA [29]. We
performed the experiment 50 times, and selected the best performance and the average
performance for comparison, denoted as GATNNCDA-best and GATNNCDA-average.
The results are shown in Table 3. It can be seen that GATNNCDA is superior to the other
nine methods. It is worth noting that the latter two methods are graph neural network
based. We found that the data used in GCNCDA and GATCDA are not exactly the same
as for us. GCNCDA uses all known circRNA–disease associations in the CircR2Disease
dataset, while GATCDA integrates the data with other datasets. However, the AUC value
of our method outperforms these methods by a large margin, which demonstrates that
GCTNNCDA can effectively and accurately predict underlying disease-related circRNAs.

Table 3. The fivefold CV AUC comparison with the other nine methods based on
CircR2Disease dataset.

Models AUC

DWNN-RLS [26] 0.8854
PWCDA [25] 0.8900

KATZHCDA [27] 0.7936
NCPCDA [39] 0.9201

AE-RF [29] 0.9486
Wang’s method [40] 0.8667

iCircDA-MF [41] 0.9178
GCNCDA [31] 0.9090

GATNNCDA [42] 0.9011

GATNNCDA-best 0.9742
GATNNCDA-average 0.9613

2.4. Ablation Study

In this section, we quantitatively evaluated the effect of different components, such as
similarity integration, GAT-based feature extraction, and multi-layer NN-based classifica-
tion, we performed the ablation study by using fivefold CV based on the CircR2Disease
dataset. Specially, we defined the variants of GATNNCDA as follows:

• GATNNCDA w/o features: It uses randomly initialized SD and SC as initial node
features, instead of integrated similarities.

• GATNNCDA w/o GAT: It removes the GAT from GATNNCDA, and uses the inte-
grated similarities as features and a two-layer NN as a predictor.

• GATNNCDA w/o NN: It uses dot production to calculate the prediction score, instead
of a two-layer NN as a predictor.

The results are shown in Figure 3. GATNNCDA w/o features has the lowest values
of AUC and AUPR, indicating that the integration similarities as initial node features can
greatly improve the performance. GATNNCDA w/o GAT and GATNNCDA w/o NN
have about 10% performance degradation. Therefore, our proposed method, GATNNCDA,
combines the advantages of these components to obtain the best performance.
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Figure 3. The comparison results of GATNNCDA and its variants based on CircR2Disease dataset.

2.5. Effect of the Parameters

GATNNCDA has several hyper-parameters that also affect the predictive performance.
In this section, we performed the experiments to evaluate the effect of the parameters, such
as the dimension size of nodes, number of heads in GAT, and the regularization factor,
based on CircR2Disease dataset. Figure 4 shows the results of AUC and AUPR under
different parameter values.

Recall dimension size of nodes not only affect the similarity parameter matrices MC,
MD, but also impact the input features in the GAT and the NN-based classifier. In our
experiment, we chose the values of {8, 16, 32, 64, 128, 256} to test the influence of dimension
size. As shown in Figure 4a, we can see that GATNNCDA achieves the lowest AUC and
AUPR when the dimension is set to 8, and obtains the best performance at 32. As the
dimension increases beyond 32, the performance degrades slightly. The result demonstrate
that too small dimensions could lead to under expression of diseases and circRNAs, while
too large dimensions may lead to high noise. Therefore, we set 32 as our default dimension.

As reported in a previous study, the deeper GNN can degrade the performance [43].
We set 2 as the default number of the GAT layer. Then, we conducted an experiment on the
different number of heads of GAT. Figure 4b shows that GATNNCDA achieves the best
AUC at four GAT heads, and the best AUPR at one GAT head. Considering most methods
use AUC as a criteria in performance comparison, we finally choose four as the default
number of heads of GAT. In addition, we also designed the experiment to evaluate the
regularization factor λ. As shown in Figure 4c, GATNNCDA acquires the best AUC and
AUPR at λ = 1× 10−2.
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2.6. Case Studies

To further evaluate the prediction ability of our proposed method, we performed
two case studies in this section. We trained GATNNCDA on CircR2Disease dataset [22],
and then verified the candidates on circRNADisease [19] and circAtlas v2.0 [24] datasets.
The first case study was conducted on breast cancer, which is one of the most common
cancers in women. In particular, we constructed the positive samples with all known asso-
ciations between circRNAs and diseases in the CircR2Disease. Meanwhile, we randomly
chose the same number of negative samples from the unknown associations. Based on
these training samples, we built the GATNNCDA and calculated the scores between breast
cancer and each circRNA. Finally, we selected the top 20 related circRNAs for analysis.
As shown in Table 4, 18 of the top 20 are confirmed by the validation datasets. The other
two candidates have been verified in the recently published literature.

The second case study is performed on hepatocellular carcinoma. It is the most
common form of liver cancer, with a higher incidence in patients with long-term liver
diseases [44]. We utilized GATNNCDA to calculate the correlation score with circRNAs
and then sorted by descending order. The top 20 hepatocellular carcinoma related cir-
RNAs are listed in Table 5. We can see that 10 of the top 20 are verified by the valida-
tion datasets, and the other eight candidates have been conformed in relevant literature,
e.g., hsa_circ_0000520 is one of the three circRNAs that showed significantly different
expression levels in HCC tissues [14]. Therefore, the unknown associations with high
scores are likely to be correlated.

Table 4. Top 20 predicted circRNAs related to Breast cancer based on circR2Disease dataset.

Rank circRNA Evidence Rank circRNA Evidence

1 hsa_circ_0007534 I I 11 hsa_circ_0068033 I; I I
2 hsa_circ_0011946 I I 12 circamotl1hsa_circ_0004214 I; I I
3 hsa_circ_0093859 I I 13 hsa_circ_0006528 I; I I
4 circrna-000911 I I 14 hsa_circ_0002874 I; I I
5 circrna-001283 PMID:29431182 15 hsa_circ_0001667 I; I I
6 circrna-001175 I I 16 hsa_circ_0085495 I; I I
7 circrna-100438 PMID:29431182 17 hsa_circ_0086241 I; I I
8 hsa_circ_0001982 I; I I 18 hsa_circ_0092276 I; I I
9 hsa_circ_0001785 I 19 hsa_circ_0003838 I; I I

10 hsa_circ_0108942 I; I I 20 circvrk1 I; I I
I, I I denote circRNADisease, circAtlas v2.0.

Table 5. Top 20 predicted circRNAs related to hepatocellular carcinoma based on circR2Disease dataset.

Rank circRNA Evidence

1 circc3p1 I I
2 hsa_circ_0067531 I I
3 circarsp91hsa_circ_0085154 I I
4 circmto1hsa_circrna_0007874hsa_circrna_104135 I I
5 hsa_circ_0005986 I;I I
6 hsa_circrna_100338circsnx27 PMID:28710406
7 hsa_circrna_104075 I;I I
8 hsa_circrna_102049 PMID:28710406
9 circrna_000839 I I

10 circzkscan1hsa_circ_0001727 I;I I
11 hsa_circ_0004018 I;I I
12 hsa_circ_0005075 I I
13 hsa_circrna_100571 PMID: 29609527
14 hsa_circrna_400031 PMID:29609527
15 hsa_circrna_102032 PMID: 29609527
16 hsa_circrna_103096 PMID:29609527
17 hsa_circrna_102347 PMID:29609527
18 hsa_circrna_000167hsa_circ_0000518 unknown
19 hsa_circ_0000520 PMID:27258521
20 hsa_circ_0000172 unknown

I, I I denote circRNADisease, circAtlas v2.0.



Int. J. Mol. Sci. 2021, 22, 8505 8 of 12

3. Materials and Methods
3.1. Known circRNA-Disease Associations

The experimentally verified circRNA–disease association dataset used in this paper is
CircR2Disease [22]. We directly downloaded the dataset from the website
(http://bioinfo.snnu.edu.cn/CircR2Disease, retrieved 7 June 2021). It contains 739 exper-
imentally validated associations collected from some published studies, and includes
661 circRNAs and 100 diseases. After preprocessing, we obtained 585 circRNAs and 88 dis-
eases. We defined the adjacent matrix Y ∈ RNc×Nd to denote the known circRNA–disease
associations. The element Y(ci, dj) is 1 if the association between circRNA ci and disease dj
has been verified in CircR2Disease. Otherwise, Y(ci, dj) is 0. Nc = 585 and Nd = 88 are the
number of circRNAs and diseases.

3.2. Disease Semantic Similarity

We used the Disease Ontology dataset (DO) to calculate the similarity score between
disease–disease pairs, which can be download from https://disease-ontology.org (retrieved
7 June 2021). Every disease has a term structure, including a unique ID, name, and the
is-a relation with its parents. Given a disease d, we can build a Directed Acyclic Graph
(DAG) represented as DAGd = (Td, Ed). Td and Ed denote the nodes and edges in the
DAGd. Based on the assumption that the more shared the nodes in the DAGs between two
diseases are, the more similar they are, we can calculate the semantic similarity between
disease di and dj using DOSE package, and denote matrix SS ∈ RNd×Nd as the semantic
similarities between diseases.

3.3. circRNA Functional Similarity

As proposed in the previous work for computing functional similarity between miR-
NAs [45], we assumed that the more similar the diseases connected to two circRNAs,
the more similar their functions will be [45]. In particular, we denoted circRNA functional
similarity between circRNA ci and cj as CS(ci, cj). Let Di and Dj represent the related
disease groups that were calculated from the known circRNA–disease associations. Then,
we defined the functional similarity between circRNA ci and cj as following:

FS(ci, cj) =
∑dk∈Dj

S(dk, Di) + ∑dl∈Di
SS(dl , Dj)

|Di|+ |Dj|
(1)

where S(d, D) = maxdi∈D(SS(d, di)) is the disease similarity between disease d and group
D. |Di| and |Dj| are the number of diseases in the group Di and Dj.

3.4. Gaussian Interaction Profile Kernel Similarity for Disease

Based on the assumption that similar circRNAs are more likely connected to similar
diseases [46], we denoted i-row of Y and j-column of Y as the representations of circRNA
ci and disease dj, and then calculated the we Gaussian interaction profile (GIP) kernel
similarities between two circRNAs or diseases as follows:

GC(ci, cj) = exp(−γc‖Yi· −Yj·‖2) (2)

GD(di, dj) = exp(−γd‖Y·i −Y·j‖2) (3)

where γd and γc are the kernel bandwidth control parameters, and are defined by the
following equations:

γc =
1

1
Nc

∑Nc
i=1 ‖Yi·‖2

(4)

γd =
1

1
Nd

∑Nd
j=1 ‖Y·j‖2

(5)

http://bioinfo.snnu.edu.cn/CircR2Disease
https://disease-ontology.org
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3.5. Integrated Similarities for circRNA and Disease

We observed that the similarity matrices SS and FS are very sparse. Therefore, we
integrated GIP similarities to improve the expression of disease similarity and circRNA
similarity. The formulas are as follows:

SC(ci, cj) =

{
FS(ci, cj) if FS(ci, cj) 6= 0
GC(ci, cj) otherwise

(6)

SD(di, dj) =

{
SS(di, dj) if SS(di, dj) 6= 0
GD(di, dj) otherwise

(7)

where SC ∈ RNc×Nc and SD ∈ RNd×Nd are integrated similarities.

3.6. Feature Extraction Based on Graph Attention Network

Graph attention network (GAT) is a powerful graph-based method whose node can
aggregate its neighbor’s information by an attention mechanism [47]. In this section, we
used GAT in the circRNA–disease graph to learn the rich representations of circRNAs
and diseases. We first constructed the circRNA–disease graph based on adjacency matrix
Y, and defined it as G = (V, E). V = {v1, v2, . . . , vNc+Nd} are vertices, E represents the
edges between circRNA and disease. In particular, edges in the circRNA–disease graph are
un-directional, so G can be considered as a bidirectional graph.

As the integrated similarities SC and SD are in different dimension size, we introduced
two parameter matrices MC ∈ RNc×F and MD ∈ RNd×F to transform SC and SD to the
same size, and defined the initial node features in graph G as follows:

X = concat(SC×MC, SD×MD) (8)

where F is the dimension size, and concat denotes matrix concatenation. We denoted the
input of l-layer of GAT as H(l) = {h(l)

1 , h(l)
2 , . . . , h(l)

N }, h(l)
i ∈ RF(l)

, and we set H(0) = X as
the initial input to GAT. In the circRNA–disease graph, some vertices have no connections
with others. To keep the dimensions of GAT output the same as the dimensions of input
node features, we set F(l) = F. Then, we defined the coefficient between node vi and the
neighborhood vj by the following formula:

e(l)ij = a(W(l)h(l)
i , W(l)h(l)

j ) (9)

where W(l) is the l-layer shared parameter, and a represents a single-layer neural network
with LeakyReLU as the activation function. Similarly, we calculated the coefficients over
the neighbor Ni, and normalized the score of node vj as follows:

α
(l)
ij = so f tmax(l)j (e(l)ij ) =

exp(e(l)i,j )

∑k∈Ni exp(e(l)ik )

(10)

For node vi, the output of l-layer over multi-head attention mechanisms can be defined
as follows:

h(l+1)
i = σ

(
K
‖

k=1
∑

j∈Ni

α
(l,k)
ij W(l,k)h(l)

j

)
(11)

where σ is a nonlinear activation function. K is the number of independent attention heads.
‖ denotes concatenation of K heads except averaging in the last GAT layer. As the L-layer
GAT calculation, we obtained the final node features, and defined as
H(L+1) = {c1, c2, . . . , cNc , d1, d2, . . . , dNd}.
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3.7. circRNA-Disease Association Prediction

In this section, we constructed a NN classifier to predict the associations between
circRNAs and diseases. The k-layer output of the NN classifier can be defined as follows:

h(k+1) = σ(W(k) × h(k) + b(k)) (12)

where h(0) = concat(c, d) is the input to NN classifier, concatenated by the vectors of
circRNA c and disease d. σ denotes LeakyReLU activation function. W(k) and b(k) are the
parameters of weight and bias in the k-layer of NN classifier. In the last layer (K-layer) of
the NN classifier, we can calculate the correlation score as follows:

f (c, d) = h(K+1) = σ(W(K) × h(K) + b(K)) (13)

where σ is a sigmoid(·) activation function which ensure the score is between 0 and 1. In
GATNNCDA, known pairs of circRNA and disease are taken as positive samples, and la-
beled as 1. However, there are no negative samples in the CircR2Disease; we randomly se-
lected the same numbers of negative samples from the unknown associations, and marked
them as 0. The training samples can be denoted as G. Finally, we can define our loss
function by the following equation:

L = − 1
N ∑

(c,d)∈G
(y log f (c, d) + (1− y) log(1− f (c, d))) + λ‖Θ‖2

(14)

where N is the number of training samples. λ denotes the control factor to the regulariza-
tion, and Θ is the parameters of our model.

4. Conclusions

Cumulative evidence has shown that circRNAs play an important role in progres-
sion of human diseases, and are suitable as promising disease biomarkers for prevention,
diagnosis and treatment. As traditional biological identification is very costly and time-
consuming, more and more computational methods have been introduced in this field.
In this study, we proposed a novel computational method called GATNNCDA for predict-
ing potential circRNA–disease associations. GATNNCDA achieved a better performance
than other state-of-the-art methods by combining similarity integration, graph attention
network and multi-layer neural network. In particular, we performed fivefold CV for eval-
uation, and obtained the best performance of AUC of 0.9742, AUPR of 0.9707. The average
values of AUC and AUPR for under 50 experiments were 0.9613 and 0.9452. Furthermore,
case studies on breast cancer and hepatocellular carcinoma have also demonstrated that
GATNNCDA can be a useful tool for predicting potential disease-related circRNAs.

However, GATNNCDA still has some limitations. The initial node features may not
be perfect. Recall that similarity integration as initial node representations would affect the
final performance. Nonetheless, known interactions between circRNA–disease associations
are insufficient. In addition, circRNA functional similarity and GIP similarity may be
inaccurate. Therefore, more biological information such as circRNA–miRNA association
or circRNA sequence will be used for further study to construct more accurate node
features, especially for some unseen circRNAs. Furthermore, the NN-based classifier of
GATNNCDA requires negative samples for training, which are rarely reported in the
literature. Randomly sampling from the unknown associations in a CircR2Disease dataset
would introduce bias. In the future, we will seek a better negative sampling strategy to
promote the performance of GATNNCDA.
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