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Abstract

Almost 2 years ago, the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered 
to be the causative agent of the disease COVID-19. Subsequently, SARS-CoV-2 has spread across the world infecting millions 
of people, resulting in the ongoing COVID-19 pandemic. The current ‘gold standard’ for COVID-19 diagnosis involves obtaining 
a nasopharyngeal swab (NPS) from the patient and testing for the presence of SARS-CoV-2 RNA in the specimen using real-
time reverse transcription PCR (RT-qPCR). However, obtaining a NPS specimen is an uncomfortable and invasive procedure 
for the patient and is limited in its applicability to mass testing. Interest in saliva as an alternative diagnostic specimen is of 
increasing global research interest due to its malleability to mass testing, greater patient acceptability and overall ease of 
specimen collection. However, the current literature surrounding the sensitivity of saliva compared to NPS is conflicting. The 
aim of this review was to analyse the recent literature to assess the viability of saliva in COVID-19 diagnosis. We hypothesize 
that the discrepancies in the current literature are likely due to the variations in the saliva collection and processing protocols 
used between studies. The universal adaptation of an optimised protocol could alleviate these discrepancies and see saliva 
specimens be as sensitive, if not more, than NPS for COVID-19 diagnosis. Whilst saliva specimens are more complimentary to 
mass-testing, with the possibility of samples being collected from home, the RT-qPCR diagnostic process remains to be the 
rate-limiting step and therefore interest in salivary rapid antigen tests, which negate the wait-times of RT-qPCR with results 
available within 15–30 min, may be an answer to this.

INTRODUCTION
The on-going COVID-19 pandemic has drastically impacted all corners of the globe. The rise of new and more infectious severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and with the majority of the world population still to receive 
vaccination against the virus, testing, social-distancing, face-coverings, self-isolation/quarantining and regional/country-wide 
lockdowns remain to be the modus operandi in controlling viral spread [1, 2]. For COVID-19 diagnosis, the World Health 
Organization (WHO) currently recommends real-time reverse transcription PCR (RT-qPCR) to detect SARS-CoV-2 RNA from 
nasopharyngeal and/or oropharyngeal swabs (NPS and OPS), with NPS being the reference standard for routine diagnosis [3]. 
This is primarily because NPS have been established as the specimen of choice for the diagnosis of other viral respiratory infections 
[4, 5]. However, NPS have a number of limitations including the requirement of trained health-care workers (HCWs), personal 
protection equipment (PPE), swabs and viral transport media (VTM) for specimen collection which has resulted in global supply 
shortages and testing ‘bottlenecks’ [6–8]. NPS collection is an invasive and uncomfortable procedure which can lead to physical 
resistance thus affecting specimen quality, cause bleeding in patients with thrombocytopenia and ultimately makes individuals 
less likely to return for future/repeated testing [9–12]. This can also impact NPS’s applicability to COVID-19 surveillance, as 
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repeated swabbing can leave patients with symptoms such as nosebleeds, headaches, rhinorrhoea and general nasal discomfort 
that can last up to 24 h [13]. Additionally, NPS collection puts HCWs at high risk of nosocomial infection as specimen collection 
can induce coughing/sneezing in patients [14]. Therefore, alternatives to NPS have become of global research interest, where in 
particular saliva has come to the fore. Saliva offers a number of advantages over the current reference standard including the less 
invasive nature of specimen collection creates greater patient acceptability and thus individuals are more likely to get tested and 
give repeated specimens [15]. It does not require close-contact with HCWs thus reducing the risk of nosocomial infection and 
demands for PPE. Saliva collection also has the potential to be self-administered from home and is not affected by supply shortages 
as only a sterile container is required for specimen collection [16]. Currently, the WHO does not recommend saliva as the only 
specimen for routine diagnosis, but it is used for COVID-19 surveillance in Hong Kong and parts of the USA where a number 
of saliva-based assays have been granted Emergency Use Authorisation (EUA) by the US Food and Drug Administration (FDA), 
where it has in particular been adopted to carry out surveillance in educational institutes [17–24]. In this review the methods of 
saliva specimen collection, transport and processing, its accuracy compared to NPS especially for mild/asymptomatic patients, 
its potential to be implemented for mass screening/surveillance and the limitations both of saliva as a diagnostic tool and the 
corresponding literature will be discussed.

MAIN
Saliva specimen collection, transportation and storage and their impact on specimen sensitivity
There are a number of possible sources of SARS-CoV-2 in saliva [25]. It was initially uncertain whether SARS-CoV-2 directly 
infected epithelial cells in the oral cavity although the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), and both 
the transmembrane serine protease (TMPRSS) receptors, TMPRSS2 and TMPRSS4, which are required for spike protein cleavage 
to allow receptor binding and membrane-fusion to facilitate viral entry into the host cell, are highly expressed on the surface 
of the minor salivary gland epithelial cells and the oral mucosa [26–32].Whilst furthermore, SARS-CoV, the causative agent of 
the SARS outbreak in 2002–2004, was found to infect salivary gland cells in a Rhesus macaque model [33]. It has recently been 
confirmed through both COVID-19 patient autopsies and mildly symptomatic COVID-19 outpatient samples that SARS-CoV-2 
can directly infect the epithelial cells of the salivary glands and oral mucosa [34]. This not only explains symptoms such as loss 
of taste, dry mouth etc. experienced by many COVID-19 patients but also further strengthens the argument for using saliva 
as a COVID-19 diagnostic by providing a definitive source of the virus in saliva. Other potential sources of SARS-CoV-2 in 
saliva include entry by the exchange of fluids, liquid droplets and/or the mucociliary escalator from the nasal cavity and/or the 
respiratory tract [35]. SARS-CoV-2 present in the blood could also enter saliva via gingival crevicular fluid and indeed has been 
detected in gingival crevicular fluid, or by salivary epithelial cells transporting blood-borne virions across the epithelial barrier 
by endocytosis and exocytosis [36, 37].

A large number of studies have been conducted since the COVID-19 pandemic began to determine the efficacy of saliva for 
COVID-19 diagnosis against the reference standard NPS (Table 1). The results from these studies have varied with some finding 
saliva to be equal to or more sensitive than NPS [38–48] whereas others found it to be less sensitive [49–61]. The specimen 
collection protocol is one factor that could result in the inconsistencies between these studies (Fig. 1). The method of saliva 
collection in these studies has varied from posterior oropharyngeal saliva (POPS), or deep throat saliva, obtained by the patient 
clearing their throat [15, 19, 35, 39, 40, 42, 43, 56, 62, 63] (Fig. 2), to saliva from the oral cavity obtained by spitting/drooling 
[38, 47, 51, 52, 55, 59, 64–71] (Fig. 2), swabs of the saliva glands [45, 57, 72, 73] and others not specifying the collection method 
[41, 49, 50, 53, 54, 58]. Currently, it is unclear whether POPS or oral saliva is the more sensitive specimen, although POPS likely 
has a higher viral load, particularly in the early morning, as it has possibly mixed with nasopharyngeal and bronchopulmonary 
secretions which move towards the posterior oropharyngeal region when individuals are lying down during sleep [35] (Fig. 2). 
However, POPS requires coughing/throat-clearing for specimen collection and therefore results in aerosolization of potentially 
contaminated aerosols and dry coughs are reported in around 80 % of COVID-19 patients which could result in difficulty in 
specimen collection [66, 74]. Additionally, POPS is more likely to be more mucus-rich and viscous which can create difficulties in 
saliva specimen processing (discussed further below), which is likely why [15, 35, 40, 56] added VTM to their POPS specimens. 
To the best of our knowledge, no study has directly compared the sensitivity between different saliva collection methods and 
therefore future research is needed to identify the best collection method for optimum saliva sensitivity [75].

Some studies collected saliva in the early morning [19, 35, 38, 39, 55, 56] when viral load is believed to be highest and/or 
asked patients to refrain from eating/drinking/smoking and/or oral hygiene from 0.5 h to overnight before specimen collection 
[19, 35, 38, 39, 43, 45, 47, 48, 54–56, 60, 62, 65, 70, 71, 76] as this has been demonstrated to increase SARS-CoV-2 concentra-
tion in saliva [77–79] and for example mouth wash has been shown to reduce the SARS-CoV-2 viral load in saliva specimens 
[80, 81]. Whilst one study noted that they did not observe a difference in saliva specimen sensitivity when patients had eaten/
drank/smoked/used oral hygiene within 30 min of sample collection [46], the general consensus in the majority of studies is that 
patients should avoid eating/drinking/smoking and/or oral hygiene before providing a saliva sample. This adds an extra layer 
of variability in saliva sample sensitivity compared to NPS, as such recommendations are not required nor have been shown to 
influence NPS specimen sensitivity (Fig. 1, Table 2).
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The transportation and storage of the saliva before processing also varied, with some adding VTM [15, 19, 35, 40, 56], UTM 
(universal transport medium) [59], amies medium [52], phosphate buffer saline (PBS) [55, 82] and/or storing at 4 °C/freezing 
[41, 45, 54, 55, 83–85] until processing and others using crude saliva and/or stored at room temperature [38, 39, 63, 86]. The studies 
that added VTM, UTM, amies medium or PBS to saliva samples had sensitivities that ranged from 77 % [55] to 91.7 % [15]. The 
studies that used VTM [15, 35, 40, 56], which is the transport medium used for NPS specimens, tended to have higher sensitivities 

Fig. 1. Overview of saliva and NPS specimen collection and processing for COVID-19 diagnosis including potential pitfalls in sample collection and 
processing (red) that could lead to variability in the specimen’s sensitivity.

Fig. 2. Source and location of posterior oropharyngeal saliva and oral cavity saliva. Taken from [105] with permission.
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than those that used other transport media [52, 55, 59, 82], although this may be due to other parameters of these studies such 
as that they [15, 35, 40, 56] all used POPS, which as aforementioned may potentially have a higher viral load compared to oral 
saliva, which was used for the other studies. Some studies have noted that crude saliva can be difficult and time-consuming to 
process due to its viscosity, sometimes congealing after collection and thus recommend the addition of dilutants such as VTM at 
collection or proteases (e.g. mucolyse or proteinase K) before processing to ensure saliva is amenable for pipetting and further 
downstream processing [59, 70, 76, 86, 87]. Although it is not noted in the studies that used POPS examined for this review, this 
may be a particular issue with this specimen type over oral saliva as the potential mixing with sputum during throat clearing to 
obtain the specimen could increase its viscosity. This is especially an issue when trying to automate the diagnostic protocol to 
increase testing speed and capacity, where one study that developed a robotic RNA extraction step noted significant issues in 
using saliva specimens for this due to the inherent variable nature and viscosity of saliva specimens [76]. In many studies, and 
indeed in most saliva diagnostic tests that have been granted EUAs by the US FDA, stabilisers and preservatives are added to 
saliva specimens in order to minimise RNA degradation and thus maximise SARS-CoV-2 detection [16]. However, others have 
concerns that the addition of VTM/other transport media and stabilisers/preservatives may dilute the sample and/or reduce its 
sensitivity [25, 54, 86]. A recent study has found that SARS-CoV-2 RNA remains stable and detectable without a statistically 
significant raise in Ct values in saliva specimens that have both not had preservatives/stabilisers added nor have been stored at 
refrigeration/freezing temperatures, negating the need for these processes in the diagnostic protocol, particularly if additives 
may interfere with/reduce diagnostic sensitivity [16]. This further highlights the applicability of saliva specimens for diagnosis 
particularly in resource-limiting regions where preservatives/stabilisers, as well as VTM which is required for NPS specimen 
collection, and/or refrigeration/freezing facilities may be limited.

Of the studies that mentioned how they stored their saliva samples, those that stored theirs at 4 °C [41, 45, 54, 83] had sensitivities 
ranging from 78.6 % [45] to 92 % [41], those that mentioned storing theirs at −80 °C [55, 84, 85] had sensitivities ranging from 
77 % [55] to 94.5 % [84] and those that mentioned storing theirs at room temperature [38, 39, 63, 73, 86] had sensitivities ranging 
from 69.76 % [73] to 94.12 % [63]. Whilst freeze-thawing can reduce the concentration/integrity of RNA in samples [85, 88], a 
high sensitivity of 94.5 % of −80 °C stored saliva samples were obtained in Vaz et al. [84]. Additionally, Ott et al. did not notice 
a statistically significant rise in Ct values of saliva samples that were stored at room temperature over a number of days [16] 
and thus it remains unclear what is the optimum storage conditions of saliva as clearly high sensitivities can be achieved with 
storage at 4 °C, freezing (−20 °C or −80 °C) and room temperature. The US Centres for Disease Control and Prevention (CDC) 
guidelines advice storing NPS specimens at 2–8 °C for up 72 h before processing and if processing is delayed beyond that, to store 
the samples at −70 °C or below [89].

Thus, there is clearly great diversity in the saliva collection, transport and storage protocols being employed which could explain 
the discrepancies in saliva sensitivity between studies. Comparatively, there are fewer potential variables in collecting NPS due 
to a standard protocol being in place where all NPS are placed only in VTM after collection (Fig. 1), typically refrigerated before 
processing and patients consuming food/beverages etc. does not appear to have any influence on sensitivity. However, reduced 
sensitivity can be seen in NPS specimens if there is poor technique used by the administrator (i.e. if the swab does not reach all 
the way to the nasopharynx or has limited contact time at the nasopharynx thus reducing the chances of collecting the virus) 
[90], which may occur for example if the swab is self-administered such as in [91, 92], or if there is patient resistance due to 
uncomfortable and invasive nature of NPS collection (Fig. 1, Table 2). Czumbel et al. remark that in order for saliva data to be 
reliable and comparable, there must be standardisation of an optimal collection and processing protocol [25]. Otherwise, as Hung 
and colleagues observe, discrepancies between results may be as a result of poor specimen collection technique, such as in one 
study where saliva samples were taken directly from the opening of the salivary glands and thus only correctly identified four 
out of 31 confirmed COVID-19 cases [57, 79].

Table 2. Strengths and weakness of NPS and saliva specimens

Specimen Strengths Limitations

NPS •	 Already established as the specimen of choice for the diagnosis of 
many viral respiratory infections [4, 5]

•	 Likely to be less variation in the sensitivity of the specimen if 
food/drink etc. is consumed before sample is taken

•	 Antigen tests are established for using NPS as their input

•	 Uncomfortable and invasive specimen to collect
•	 Not suitable for children
•	 Requires trained HCWs in order for the sample to be collected
•	 Puts HCWs at risk of nosocomial infection
•	 Incorrect swabbing due to poor technique from administrator or 

resistance from the patient can impact sensitivity
•	 Not suitable for mass-testing/surveillance due to logistics and 

repeated sampling can cause adverse effects to the patient [13]

Saliva •	 Less invasive specimen to collect and therefore patients are more 
likely to get tested and give repeated samples

•	 Can be self-administered from home, so no trained HCWs or test 
sites are required

•	 Suitable for COVID-19 mass testing/ surveillance

•	 No established collection, transport and processing protocol
•	 Time of day of sampling as well as food/drink/oral hygiene/

smoking can impact the specimen’s sensitivity
•	 Antigen tests are not established for using saliva as their input
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Sensitivity of saliva versus nasopharyngeal swabs
Specimen sensitivity for COVID-19 diagnosis, especially in asymptomatic/mild cases, is vital for disease control as the conse-
quences of false negative results can lead to otherwise preventable outbreaks [93]. Importantly, no diagnostic test has both 100 % 
sensitivity and specificity, with NPS only having a detection rate of around 63 % [94, 95], with an estimated false negative rate 
ranging from 20–38 % after symptom onset, which are increasingly more likely in the days before symptoms begin and during the 
convalescent phase [96]. As aforementioned, there is great heterogeneity in the saliva collection, transport and storage protocols 
used in studies examining saliva sensitivity. There is no difference in the processing protocols used for saliva specimens which can 
influence sensitivity of the assay. This is demonstrated by Kernéis et al., where they experimented with three different protocols 
for saliva processing and saw drastic changes in sensitivity [46]. The MGI-1 protocol, which was designed for NPS specimens, 
only had a sensitivity of 23 % with saliva, however, when it was adjusted by changing the lysis buffer to better suit saliva specimens 
(MGI-2 protocol), the sensitivity increased to 94%, dramatically highlighting the importance and standardisation of an accurate 
protocol and how different protocols can influence saliva sensitivity.

In comparing saliva to NPS, most studies reported discordance where neither specimen detected all positive cases with saliva 
samples detecting SARS-CoV-2 RNA where NPS samples were negative and vice versa (Table 1). Jamal et al. note that in studies 
that involving confirmed COVID-19 patients diagnosed using NPS, there may be a bias towards subsequent NPS over other 
specimens being positive [55]. Furthermore, Czumbel et al. point out that this discordance may not be because one specimen 
is ‘better’ than the other, but could be as a result of the varying sites of SARS-CoV-2 replication during the course of infection, 
where it is thought to begin in the nasal mucosa, or potentially in the oral mucosa [34], and subsequently disseminate down the 
respiratory tract, therefore specimen sensitivity may depend on the spatiality and temporality of SARS-CoV-2 replication during 
the course of infection [25, 97]. Borghi et al. found that SARS-CoV-2 was detectable in two saliva samples 48 h before it was 
detected in an NPS from the same individual indicating viral replication may begin in the oropharynx [73]. A similar result was 
seen in Savela et al., who found that although NPS had the higher viral loads overall, saliva was able to detect SARS-CoV-2 up 
to 4.5 days before NPS [92]. However, a limitation of this study was the small sample size (seven in total) and that the NPS were 
self-administered which could diminish sensitivity thus further work with a larger sample size is needed to confirm this. Such 
results also may explain the variation in viral loads between the two specimens, where some studies reported that saliva specimens 
had a higher cycle threshold (Ct) value signifying a lower viral load compared to NPS specimens whereas others reported the 
opposite (Table 1). De Santi et al. found that in a hospitalised symptomatic patient cohort, NPS and saliva specimen sensitivity 
decreased at a consistently similar rate as time progressed over a course of greater than 7 days from the patients' initial positive 
diagnostic result [47]. Whereas Wyllie et al. found that more saliva samples remained positive 10 days after initial diagnosis than 
their corresponding NPS samples [91]. Nonetheless, from these studies it would appear that the sensitivity of saliva and NPS 
decrease at least at a similar rate. To et al. found viral load to be highest in saliva earlier in infection and found it declined over 
the course of disease [15] similar to Zhu et al. who found viral load in saliva to peak 1 week after symptom onset followed by a 
steady decline, but in 8/20 patients it remained detectable greater than 14 days from symptom onset which interestingly, was not 
correlated with disease severity [98]. Another study found the positive percentage agreement (PPA) was highest between saliva 
and NPS when saliva was collected within 9 days of symptom presentation, 65.6–93.5 %, compared to saliva collected 10 days after 
symptom onset, 22.2–66.7 %, and saliva obtained from asymptomatic patients, 40–66.7 % [82]. Similarly Wong et al. reported a 
PPA of 96.6 % when saliva was collected within 7 days of symptom onset and discordance was more likely to occur when saliva 
was collected after 7 days [19].

It has been noted that positive NPS samples with a corresponding negative saliva sample had high Ct values thus indicating that 
the discordant saliva sample may be as a result of low viral loads which are below the detection limit of RT-qPCR [65, 86]. For 
example, De Santi et al. recorded nine saliva only positives and five NPS only positives [47]. This study used the RNA extraction-
free protocol for saliva processing, SalivaDirect, developed by Vogels et al. [24] but were unique among the studies we looked at in 
that they verified their discordant results again, this time using the TaqPath COVID-19 CE-IVD RT-PCR kit and found that 7/9 of 
the discordant saliva results were indeed true positives that had not been detected in the corresponding NPS samples, with only 
two being false positives but these had had Ct values >35 in the SalivaDirect protocol. The corresponding five false negative saliva 
samples remained undetected were likely due to low viral loads in saliva as the corresponding NPS samples had Ct values >30.

In studies that compared saliva sensitivity to NPS in mild/asymptomatic patients, two studies in particular found lower saliva 
sensitivities at 53 % [49] and 68.6 % [50]. This lower sensitivity may be as a result of poor specimen collection as both studies 
poorly described saliva collection protocol. The former pooled saliva specimens and the latter used a novel saliva collection 
kit containing viricidal fluid and preservatives which may have affected sensitivity of detection. Another study with a diverse 
sample cohort of both symptomatic and asymptomatic individuals found that saliva also had much lower sensitivity compared 
to NPS at 51.9 % [60]. However, when this study only included saliva positive results with a Ct value ≤30, the sensitivity of saliva 
specimens increased to 91.6 % indicating low viral load may be a possible reason for this discordance between saliva and NPS 
specimens [60]. Conversely, other studies found much higher saliva sensitivity at 93 % [39], 92 % [41], and 91.37 % [99] in mild/
asymptomatic patients. Wyllie et al. screened 495 asymptomatic HCWs and found 13 positive saliva samples of which only two 
had a corresponding positive NPS indicating saliva is more sensitive for detecting asymptomatic infection [91]. However, a 
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limitation of this study is that the NPS were self-administered and thus may be more likely to be inaccurate due to the technical 
challenge and discomfort of a self-administered NPS.

Thus, it is difficult to directly compare saliva and NPS sensitivities between current studies due to their heterogeneity but from 
the research so far it would appear that saliva sensitivity is at least comparable to NPS, especially if saliva specimen collection is 
supervised [100]. Further research to conclude what conditions i.e. collection and processing protocol, time from symptom onset 
etc., optimise saliva specimen sensitivity is still required to fully determine the optimal saliva collection and processing protocol 
as it is clear that under certain conditions saliva is less reliable and in others it is equal to/more reliable than NPS.

Saliva as a diagnostic specimen for mass-testing and COVID-19 surveillance
Mass testing has been advocated as a key for controlling the pandemic. As the easing of restrictions corresponds with a rise in 
cases, mass testing and surveillance is crucial for breaking this cycle as well as providing countries with opportunities to catch 
new variants before they become widespread. With NPS currently being unable to keep up with testing demands, saliva offers 
a number of advantages to facilitating mass testing. Firstly, it is cost-effective, with one study estimating processing 100 saliva 
specimens costs $8.24 compared to $104.87 for 100 NPS [19]. Secondly, it alleviates specimen collection ‘bottlenecks’ due to 
supply shortages and wait-times as it has the potential to be self-administered from home. Thirdly, the non-invasive nature of 
saliva collection means individuals are more likely to give repeated samples for surveillance and monitoring. Additionally, multiple 
saliva samples, for example from the same household, could be pooled together which could further relieve strains on testing 
facilities allowing 5–10 samples to be processed as one [76, 87, 101, 102]. Although, pooling of saliva samples was shown in these 
studies to slightly reduce detection sensitivity. Ultimately, whilst saliva specimens can relieve some of the pressures seen with 
NPS, the diagnosis step, RT-qPCR, still takes the same amount of time, labour and resources [49]. Whilst in theory, an RT-qPCR 
result should be available in a number of hours from sample collection, in reality, due to testing demand, resource availability 
etc. the lag time between testing and receiving diagnostic results can be up to 3 days with RT-qPCR-based tests [103] which may 
contribute to viral spread particularly if individuals are asymptomatic or are not self-isolating.

This has led to the development of a number of point-of-care tests (POCT) using saliva as the diagnostic specimen, such as 
reverse-transcription loop-mediated isothermal amplification (RT-LAMP) which unlike RT-qPCR does not require thermal 
cycling for nucleic acid amplification, and often excludes an RNA extraction step or uses a simpler RNA extraction method 
such as treatment with a protease followed by heat [104], allowing for rapid diagnosis in hospitals/clinical settings as well as in 
resource-limited settings as the only equipment required is a heat-block [104–107]. However, Taki et al. found that without an 
RNA extraction step, saliva RT-LAMP only had a sensitivity of 47 % but with an RNA extraction step it had a sensitivity of 100 % 
indicating this step is vital for RT-LAMP sensitivity [108]. Other POCTs, such as Cepheid’s Xpert Xpress SARS-CoV-2 assay, 
which has been granted an EUA by the US FDA [109], allows for rapid results within 35–45 min without any extensive sample 
processing steps and has been used with saliva specimens for SARS-CoV-2 diagnosis in some studies with very high sensitivity 
rates when compared to NPS specimens with RT-qPCR at 100 % [110], 95.92 % [64] and 89.7 % [56]. However, as Landry et al. 
note, there are limitations in the applicability of the Xpert Xpress SARS-CoV-2 assay to mass-testing due to the limited availability 
of GeneXpert systems and its unsuitability to process large numbers of samples [70].

The development of point-of-need tests (PONT) such as lateral flow, or rapid antigen, assays that detect SARS-CoV-2 antigens 
like spike protein [111] or nucleocapsid protein [112] have also been developed which allow for rapid, onsite diagnosis within 
15–30 min without any laboratory equipment and thus could be performed in schools, businesses, concerts etc. [105]. The 
majority of these rapid antigen detection (RAD) tests have been designed with NPS as their input which of course carries the 
same disadvantages as with it being the specimen for RT-qPCR. Therefore, a number of studies have examined various RAD tests 
with saliva specimens as their input [82, 112–115]. However, all have found saliva in conjunction with the RAD test to be less 
sensitive than both NPS as the input for the RAD test and RT-qPCR. It is important to consider that these RAD tests are often 
validated and designed for the use of NPS and therefore might by biassed towards NPS over saliva or there may be inhibitory 
factors present in saliva which may explain the reduced sensitivity seen when saliva is the input specimen. Additionally, there 
is a general consensus that RAD tests are typically less sensitive than RT-qPCR, even when NPS is used as the input specimen 
[116, 117]. However, this should not be the primary focus of RAD tests as the purpose of their design is to have a rapid and 
accessible means of testing that would allow for the detection of otherwise undetected cases in social settings that could result in 
a preventable outbreak. Therefore, it is argued that the frequency that these PONTs are employed combined with their rapidity 
is more important than their sensitivity for COVID-19 surveillance [118]. That being said, a recent evaluation of a number of 
RAD tests by Public Health England found that the promising Innova lateral flow test, which uses a nasal swab as the specimen, 
successfully detected 79.2 % of COVID-19 cases when carried out by trained laboratory scientists but only successfully detected 
58 % of COVID-19 cases when carried out by self-trained lay people which raises concerns that if the specificity of these tests is 
dependent on the level of training/expertise of the individual conducting the test it could result in false negative results when 
these tests are widely implemented to the public outside of clinical trials [119]. Whilst both POCT and PONT with saliva as the 
diagnostic specimen would allow for diagnosis in resource-limited regions/countries as well as holding promise for a return to 
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normality allowing for rapid screening in social settings, further research and optimisation of these tests is still required to evaluate 
and optimise their sensitivity in order to maximise their COVID-19 mass-screening potential [82].

It is also important to mention that in addition to saliva being an alternative diagnostic specimen to NPS, it has been demonstrated 
to substitute as a much less invasive and more easily obtainable specimen to serum samples to measure seropositivity following 
COVID-19 infection, with comparable levels of antibodies, in particular IgG, between paired saliva and serum samples [120, 121]. 
Thus, the easily obtainable saliva specimen could potentially be applied for mass ‘sero’-surveillance in addition to mass-testing 
to measure the levels of active infection and immunity, both natural and vaccine acquired, in the community [121, 122]. As the 
end of the COVID-19 pandemic is far from being insight, an easily testable sample to measure immunity might be of particular 
importance in the future as the longevity of vaccine-acquired immunity to COVID-19 infection is unknown.

Limitations
The use of saliva as a specimen for COVID-19 diagnosis is not without its limitations and as aforementioned, a major concern is 
its sensitivity which has been discussed above. However, other limitations of using saliva as a specimen include that several studies 
reported that a number of saliva specimens were of insufficient volume/quality for processing [41, 42, 53, 67, 76, 85, 86, 123]. 
Thus, as Leung et al. note, step-by-step instructions are vital for collection of saliva samples of sufficient quality and quantity 
[40]. However, Fernández-González et al. compared self-collected saliva with only written instructions provided verses trained 
HCW-supervised collection of saliva specimens and found that when supervised, saliva specimens had 86 % sensitivity compared 
to NPS whereas self-collected specimens only had 66.7 % sensitivity, indicating that perhaps supervised collection is necessary 
to maximise saliva specimen quality which may limit the implementation of ‘from home’ self-collected saliva samples [100]. 
Interestingly, as Sagredo-Olivares et al. note, some studies reported employing telemedicine sessions with trained HCWs to ensure 
saliva specimen collection is done correctly and sufficiently from home [45, 124–126], which may offer a number of advantages 
to limit nosocomial infections and testing wait-time bottlenecks allowing at-home specimen collection whilst ensuring saliva 
specimen integrity [127]. Two studies also noted that whilst saliva sample collection has the potential to be self-administered by 
the patient in the absence of a trained HCW, it is important that the tube is decontaminated after as it has been noted that patients 
can spill the sample onto the outside of the tube, which if it contains infectious particles could put individuals processing the 
sample at risk of infection [47, 61]. Finally, saliva is not a suitable specimen for intubated patients as well as for those who may 
have difficulty producing saliva due to co-morbidities and/or medications [49, 54, 59].

As previously outlined, the variation in specimen collection and processing protocols between studies, with variations even within 
some studies [58], is a major limitation of the literature thus far and possibly explains the discordance in results seen between 
studies. It’s difficult to compare the sensitivities/accuracy between studies if the experimental parameters such as specimen 
collection protocol, transport and storage, PCR amplification targets, patients’ status etc. are not the same. In the majority, study 
design was also poor with small sample sizes, lack of blinding and of control-group samples with many studies only containing 
confirmed COVID-19 patients [128]. In order for fair comparisons to be made, there needs to be diversity in the sample cohort, 
particularly containing mild/asymptomatic patients who make up 80 % of COVID-19 cases and are likely to have a lower viral 
load [129, 130]. The implementation of a standard processing protocol, such as the SalivaDirect protocol, which accommodates 
the use of different kits/reagents and eliminates the RNA extraction step, could reduce the variation in sensitivities that occur 
due to differences in sample processing [24]. This protocol has been verified by other research groups, where Rodríguez Flores 
et al. found the SalivaDirect protocol to have 88 % sensitivity compared to NPS [61] and De Santi et al. found it to have 94.3 % 
sensitivity compared with NPS [47]. Interestingly, the former study also used the SalivaDirect protocol with NPS and found this 
to be slightly more sensitive, with 93.7 % sensitivity, than when saliva was used as the input for the SalivaDirect protocol which 
would indicate that NPS is the slightly more sensitive specimen due to higher viral load in this sample type, indicated by lower 
Ct values [61].

Also, a number of studies are not peer-reviewed [24, 38, 46, 49, 54, 58, 65, 76, 92, 99] and therefore these results should be inter-
preted cautiously and more rigorously conducted studies should be carried out before definitive conclusions can be made [10, 79].

Conclusion
It is going to be a significant amount of time before enough of the world’s population are vaccinated and a sustained reduction 
of COVID-19 incidence will be seen. Therefore, identification of positive cases and the subsequent isolation of these individuals 
remains to be the most effective control mechanism of preventing COVID-19 spread thus far. Thus, a test that is accurate, 
convenient, cost-effective, is not dependent on specific supplies such as swabs, has patient acceptability and is suitable for mass-
testing is required. NPS have failed to satisfy these requirements and saliva has emerged as a promising replacement and/or 
alternative specimen with a number of advantages. Whilst concerns over sensitivity of saliva specimens compared to NPS have 
been raised, it is clear that under the right collection, transport/storage and processing conditions saliva can be as sensitive and in 
some studies more sensitive than NPS specimens for COVID-19 diagnosis. Further research into the development of an optimum 
collection and processing protocol could attenuate the variation in sensitivities seen between studies. Nonetheless, a potential 
slight reduction in sensitivity compared to the reference standard might still be acceptable in specific testing environments 
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such as mass-testing/surveillance and resource-limited settings, especially when considering the numerous advantages of saliva 
specimens [10].
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