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Abstract: Exhausted sugar beet pulp (ESBP), a by-product of the sugar industry, has been used as a
substrate to produce lactic acid (LA). Due to the fact that ESBP contains a high percentage of pectin
and hemicellulose, different pretreatments were studied to solubilize them and to facilitate the access
to cellulose in the subsequent enzymatic hydrolysis. Several pretreatments were studied, specifically
biological, oxidant with alkaline hydrogen peroxide (AHP), and thermochemical with acid (0.25, 0.5,
or 1% w/v of H2SO4). Pretreated ESBP was enzymatically hydrolysed and fermented with the strain
Lactiplantibacillus plantarum for LA production. The hydrolysis was carried out with the commercial
enzymes Celluclast®, pectinase, and xylanase, for 48 h. After that, the hydrolysate was supplemented
with yeast extract and calcium carbonate before the bacteria inoculation. Results showed that all the
pretreatments caused a modification of the fibre composition of ESBP. In most cases, the cellulose
content increased, rising from 25% to 68% when ESBP was pretreated thermochemically at 1% w/v
H2SO4. The production of LA was enhanced when ESBP was pretreated thermochemically. However,
it was reduced when biological and AHP pretreatments were applied. In conclusion, thermochemical
pretreatment with 1% w/v H2SO4 had a positive impact on the production of LA, increasing its
concentration from 27 g/L to 50 g/L.

Keywords: sugar beet pulp; biological pretreatment; alkaline hydrogen peroxide pretreatment;
thermochemical pretreatment; enzymatic hydrolysis; lactic acid fermentation

1. Introduction

Lactic acid (LA) is considered one of the top ten green molecules and has recently
gained interest because it can be used as the precursor for several other molecules like
acrylic acid, which is used for the synthesis of polyacrylates used to produce plastics,
paints, fibres, etc., or 2,3-pentanedione, which is used as an aroma or flavouring component
in beverages [1]. It is a versatile organic acid that is widely used in the food industry as
a preservative (acidifier) and flavour-enhancing agent [2–4]. Likewise, LA is extensively
employed in cosmetics formulations and the pharmaceutical industry [5]. In addition
to these uses, LA has gained interest as a precursor of poly-lactic acid (PLA), which is a
bio-degradable and bio-based bioplastic [6].

Lactic acid is usually produced through biotechnological processes by the action of
lactic acid bacteria [7]. The main drawback of this process at an industrial scale is the
great influence that the raw material has on its economy, due to the use of simple sugars
that allow the production of a pure product and reduce purification costs [8]. Recently,
lignocellulosic biomasses have been used as a low-cost alternative. Lactic acid fermentation
from these materials involves a previous hydrolysis process where the sugars are released
from the cell wall of the biomass [9].

Exhausted sugar beet pulp (ESBP), which is one of the main by-products of the sugar
industry, is an interesting raw material for LA production. ESBP is the solid residue
obtained after the sugar extraction from sugar beet. Nowadays, the pulp is used for animal
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feed. Thus, it is pressed, dried, and conformed in the form of pellets. Instead, the ESBP can
be valorised and used to produce value-added products because it is composed mainly
of cellulose, hemicellulose, and pectin. Currently, ESBP has been used as raw material
to produce biogas [10], hydrogen [11], ethanol [12], succinic acid [13], lactic acid [14], or
enzymes [15].

The polysaccharides contained in ESBP are broken down into a mixture of hexoses
and pentoses during the enzymatic hydrolysis. The matter is the small number of microor-
ganisms that are able efficiently and simultaneously to convert hexoses and pentoses into
lactic acid [16]. To overcome this challenge, pretreatment can be performed before the
hydrolysis to obtain a solid rich in cellulose and solubilizing hemicellulose and pectin.
Thus, the lactic acid yield produced from ESBP can be improved.

Pretreatment is a stage used before the enzymatic hydrolysis and the main goal is
to improve the digestibility of the lignocellulosic biomass by changing its structure and
making cellulose more accessible to enzymes. Pretreatments can be classified as physical,
chemical, physicochemical and biological. Physical pretreatments reduce the particle size
of the biomass and/or the crystallinity of the cellulose in the solid. [17,18]. Chemical
pretreatments are performed by the action of alkalis or acids, providing different effects
on the pretreated solids. Alkaline pretreatment is focused on the solubilisation of lignin
and some hemicelluloses and frequently used reagents like sodium, potassium, calcium,
and ammonium hydroxide [19]. On the contrary, acid pretreatment is more effective in
solubilising hemicellulose [17] and generally uses inorganic acids, e.g., sulphuric, nitric,
or hydrochloric acid. Physicochemical pretreatments combine physical and chemical
pretreatments. Biological pretreatments involve using microorganisms such as fungi to
degrade lignin and hemicellulose, and in some cases cellulose [17].

Dilute acid pretreatment is the most common pretreatment applied to ESBP. Donkoh et al.
conducted this pretreatment on ESBP and reached a hydrolysis yield of 82% [20]. Also, El-
gendy et al. optimized the dilute acid pretreatment of ESBP, establishing as best conditions
120 ◦C with 0.1 N HCl and 14% w/w of solid loading for 6 min [21]. The authors observed
high solubilization of pectin and hemicellulose fractions after this pretreatment, obtaining a
yield of 0.14 g of ethanol per gram of ESBP by the alcoholic fermentation of the saccharified
pretreated ESBP [21]. Zheng et al. also studied the effect of dilute acid pretreatment on
ESBP hydrolysis, obtaining the optimum conditions at 120 ◦C, 0.66% sulphuric acid, and
6% of solid loading [22]. They performed enzymatic hydrolysis and alcoholic fermentation
after the pretreatment, obtaining a hydrolysis yield of 92% and an increase in the ethanol
production from 0.16 g to 0.4 g ethanol/g ESBP after the pretreatment [22].

Some papers can be found in the literature as regards the use of acid pretreatment
on ESBP. However, most of these studies are focused on the hydrolysis of the pretreated
biomass and to release sugars for ethanol production. The novelty of the present research is
that it evaluates the influence of different pretreatments of ESBP for lactic acid production.
Thus, the present study aimed to improve the lactic acid yield by comparing the effect
of different pretreatments on ESBP: biologic, alkaline hydrogen peroxide (AHP), and
thermochemical acid. The effect of these pretreatments was evaluated by analysing the
fibre composition before and after the pretreatment. Moreover, the effect on the yield of the
lactic acid produced from the hydrolysates of the pretreated solids was also studied.

2. Materials and Methods
2.1. Raw Material

Exhausted sugar beet pulp (ESBP) was used as raw material to produce lactic acid.
ESBP was provided by the British company AB-Sugar located in Jerez de la Frontera (Cadiz,
Spain) in the form of pellets. The dried pellets showed a diameter of 6 mm and variable
length (10–40 mm). They were composed of 15% molasses and 85% exhausted pulp, being
the total solids contents in the range of 80–90%. Samples were collected and stored at
–20 ◦C until use.
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2.2. Pretreatment of ESBP
2.2.1. Biological Pretreatment

Biological pretreatment consisted of fungal solid-state fermentation (SSF) of ESBP by
Aspergillus awamori 2B.361 U2/1, a sequential mutant of Aspergillus niger NRRL 3312. Before
SSF, spores of A. awamori were grown on disposable Petri dishes containing a synthetic
medium composed of (g/L): 6 xylan, 5 avicel, 1 pectin, 1 peptone, 0.5 yeast extract, and
15 agar. Petri dishes were incubated at 30 ◦C for 5 days. After that, spores were suspended
in 0.9% v/v NaCl solution by gentle shaking. The spore concentration was measured with
a Neubauer counting chamber. Spores not used were stored in glycerol (50% v/v) at –25 ◦C
until use.

SSF was performed in Petri dishes. Hence, 5 g of sterile and dried ESBP was soaked
with an appropriate volume of a nutrient solution to adjust the initial moisture content
to 70% w/w and the required volume of spore suspension to obtain a final inoculum
concentration of 1 × 107 spores/g of solid. The nutrient solution was composed by (g/L):
2.4 urea, 9.8 g (NH4)2SO4, 5.0 KH2PO4, 0.001 FeSO4·7H2O, 0.0008 ZnSO4·7H2O, 0.004
MgSO4·7H2O, and 0.001 CuSO4·5H2O at pH 5. The Petri dishes were incubated at 30 ◦C
for 8 days. The conditions used for SSF were based on our previous research [15].

2.2.2. Alkaline Hydrogen Peroxide Pretreatment

Alkaline hydrogen peroxide (AHP) pretreatment of ESBP was carried out by soaking
the solid at a solid/liquid ratio of 1:20 (w/v) with a solution of 1% w/v hydrogen peroxide
at pH 11.5 (adjusted with NaOH). The mixture was placed in an Erlenmeyer flask (1 L),
covered with aluminium foil to avoid the photodegradation of H2O2, and incubated at
30 ◦C for 24 h. After that, the slurry was filtered through a Whatman No.1 filter paper
and the solid fraction was washed with tap water until a neutral pH was reached to
eliminate undesired chemicals. Lastly, the solid was dried in a forced convection oven at
40 ◦C for 24 h and stored at room temperature until needed for subsequent experiments
of enzymatic hydrolysis. The conditions used for AHP pretreatment were based on our
previous research [23–25].

2.2.3. Thermochemical Pretreatment

Sulphuric acid pretreatment of ESBP was performed by soaking the solid at a solid/liquid
ratio of 1:20 (w/v) with a solution of sulphuric acid at 0.25, 0.5, or 1% w/v. The mixture was
autoclaved at 120 ◦C for 20 min and, after that, the slurry was filtered through Whatman
No.1 filter paper. The solid fraction was washed with tap water until neutral pH. Finally,
the solid was dried in a forced convection oven at 40 ◦C for 24 h and stored at room
temperature until needed. Moreover, the same procedure was performed by using distilled
water as a control.

2.3. Enzymatic Hydrolysis of Pretreated Solid

Enzymatic hydrolysis was performed by mixing 6 g (dry wt.) of pretreated ESBP with
60 mL of phosphate buffer (0.05 M, pH 5) in an Erlenmeyer flask (250 mL) and sterilized
in an autoclave (120 ◦C for 20 min). The following enzyme activities of commercial
enzymes cocktails were added to the flask: 3.2 FPU per gram of dry biomass (cellulase from
Trichoderma reesei, Celluclast®, Sigma, Darmstadt, Germany), 46.1 U of xylanase per gram of
dry biomass (from Thermomyces lanuginosus, Sigma), and 46.5 U of exo-polygalacturonase
per gram of dry biomass (from Aspergillus niger, Sigma). The flask was incubated at 50 ◦C
and 150 rpm for 48 h. Samples were taken throughout the process and stored at –20 ◦C
until use. Each experiment was carried out in triplicate.

2.4. Lactic Acid Fermentation of Pretreated ESBP Hydrolysate

Lactiplantibacillus plantarum (CECT 748) was used for lactic acid fermentation of ESBP
hydrolysates. The strain was maintained as frozen stocks (–70 ◦C) in Man-Rogosa-Sharpe
(MRS) medium supplemented with 15% w/v glycerol. MRS medium was composed of
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(g/L): 15 glucose, 10 peptone, 10 meat extract, 5 yeast extract, 5 sodium acetate, 2 ammo-
nium citrate, 0.2 MgSO4·7H2O, 0.05 MnSO4·7H2O, and 2 K2HPO4.

For inoculum preparation, 6 mL of MRS medium were inoculated with 0.1 mL of
the bacterial frozen stocks and incubated in a 10 mL screw-capped test tube (anaerobic
conditions) at 30 ◦C for 24 h. Afterwards, the cultures were propagated two more times in
6 mL of MRS medium with 0.2 mL of the previous culture at the same conditions. In all
steps, the concentration of inoculum was 107 cells/mL.

Lactic acid fermentation was performed in ESBP hydrolysates. For this purpose, 60 mL
of ESBP hydrolysate were added to a 250 mL Erlenmeyer flask. According to previous
studies about the lactic acid fermentation of ESBP hydrolysates [26], the medium was
supplemented with 5 g/L of yeast extract, as a source of nitrogen, and 18 g/L of CaCO3
for pH control. The pH of the suspension was adjusted to 6.5. After adding 0.6 mL of
L. plantarum inoculum to the flask, it was incubated at 30 ◦C and 150 rpm for 7 days.
Samples were collected throughout the fermentation and stored at –25 ◦C for analysis.
Fermentations were carried out in triplicate.

2.5. Analytical Techniques
2.5.1. Determination of Fibre Composition

Detergent fibre analysis of the solids was carried out following the standard meth-
ods. The methodology described in EN ISO 13906:2008 was employed to determine acid
detergent fibre (ADF) and acid detergent lignin (ADL), while the one described in AOAC
2002:04/ISO 16472:2006 was used to determine amylase-treated neutral detergent fibre
(aNDF). Both methods were carried out in Fibertec™ 8000 (FOSS IBERIA, Barcelona, Spain)
y FT 121 Fibertec (FOSS IBERIA, Barcelona, Spain). The former was used for ADL determi-
nation and to analyse fats, while the second one was used for the analysis of aNDF and
ADF.

Solid samples were milled until the obtention of a particle size smaller than 1 mm.
Then, they were dried in an oven (2 h, 105 ◦C) to remove the humidity. Finally, they were
kept at room temperature in a desiccator for 30 min.

This methodology allows the quantification of the following fractions: removable with
acetone (fats, oils, etc.), removable with neutral detergent (proteins, enzymes, pectin, etc.),
removable non-calcined (soluble salts), removable calcined (rest of extractable material but
not saline), removable with acid detergent (hemicellulose), extractable with concentrated
acid (cellulose and soluble lignin), non-removable but calcined (insoluble lignin), non-
removable and non-calcined (insoluble salts), and finally a fraction of totally calcined (total
salts). Analyses were made in triplicate.

2.5.2. Determination of Moisture Content of ESBP

ESBP moisture content was determined by drying a proper amount of ESBP until
constant weight in an oven at 105 ◦C. The moisture content was calculated as follows:
percent moisture content (initial) of ESBP = (weight of ESBP − dry weight) × 100/dry
weight.

2.5.3. Determination of Sugar Concentration

Samples collected during enzymatic hydrolysis and fermentations were centrifuged at
10,000 rpm for 10 min at 4 ◦C. The supernatant was collected to analyse the concentration
of reducing sugars and simple sugars. Reducing sugars concentration was measured by a
modification of the 3,5-dinitrosalicylic acid method (DNS) adapted to microplates [27,28].

Simple sugars were measured by ion chromatography (Metrohm 930 Compact IC
Flex, Herisau, Switzerland) with a pulse amperometric detector with a gold electrode
as a working electrode. Elution was carried out in isocratic at a 0.35 mL/min flow rate
with 300 mM sodium hydroxide (NaOH) and 1 mM sodium acetate (NaOAc). Separation
was achieved with two sequential columns: Metrosep Carb 2-150/4.0 and Metrosep Carb
2-250/4.0 (Metrohm, Herisau, Switzerland).
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The monosaccharide contents in samples were determined by comparing their re-
tention times against the retention times of the pure standards. Standard curves of the
following sugars were used to quantify the sugar concentration (linear range used in
g/L): glucose (0.4–2 × 10−5), xylose (0.1–5 × 10−5), arabinose (0.1–5 × 10−5), galactose
(0.1–5 × 10−5), fructose (0.4–5 × 10−5), lactose (0.1–5 × 10−5), cellobiose (0.1–5 × 10−5),
and saccharose (0.1–5 × 10−5). Sugars measurements were performed by using the Periph-
eral Research Services of IVAGRO at the University of Cádiz.

2.5.4. Determination of Organic Acid Concentration

Samples collected during fermentations were centrifuged at 10,000 rpm for 10 min
at 4 ◦C. The supernatant was collected to analyse organic acids. Organic acids (lactic acid
and acetic acid) were measured by ionic chromatography (Metrohm, 930 Compact IC
Flex, Herisau, Switzerland) with conductivity detection and a Metrosep Organic Acids-
250/7.8 column (Metrohm, Herisau, Switzerland). The separation was carried out using as
eluent a solution composed of 0.4 mmol/L sulphuric acid and 0.12 mL/mL acetone, at an
isocratic flow rate of 0.4 mL/min.

The organic acids content in samples were determined by comparing their retention
times against the retention times of the pure standards. Standard curves of the following
organic acids were used to quantify the organic acid concentration (linear range used in
g/L): citric acid (0.2–1 × 10−3), galacturonic acid (0.2–1 × 10−3), lactic acid (0.2–1 × 10−3),
and acetic acid (0.2–1 × 10−3). Organic acids measurements were performed by using the
Peripheral Research Services of IVAGRO at the University of Cádiz.

2.5.5. Determination of Cell Growth in Lactic Acid Fermentation

The cell growth during LA fermentations was measured using the colony-forming
unit (CFU) counting method. Samples taken during fermentations were serially diluted
in NaCl solution (9 g/L) and cultured in MRS-agar plates, which were incubated in static
conditions at 30 ◦C for 48 h.

2.5.6. Statistical Analysis

All experiments and assays were performed in triplicate. Statgraphics 18 was used for
data analysis. Data were analysed using one-way analysis of variance (one-way ANOVA)
and Fisher’s least significant differences (LSD, p < 0.05) was used to determine significant
differences among tested conditions.

3. Results and Discussion
3.1. Pretreatment Effects on the Fibre Composition

The non-pretreated and pretreated ESBP were subjected to a fibre analysis. The results
obtained are shown in Figure 1, where the percentages (% w/w) of pectin, hemicellulose,
and cellulose are represented in a bar diagram. These results show how each of the three
pretreatments tested affected the fibre composition of ESBP. Firstly, it can be observed that
the total percentage of hydrolysable polysaccharides (the sum of cellulose, hemicellulose
and pectin) decreases from 82.9% w/w to 77.7% w/w when the solid was biologically
pretreated. In this case, the pretreated ESBP showed a loss of 22.8% in pectin and 32.8% in
hemicellulose and as a consequence, the content in cellulose increases to 34.7% w/w. During
SSF, the fungus secreted hydrolytic enzymes, such as xylanases and pectinases, which
mainly hydrolysed the hemicellulose and pectin fractions, and the released sugars were
used for fungal growth [15]. For this reason, these fractions are reduced in the biological
pretreatment. Similar results were observed by Shi et al. in the biological pretreatment of
cotton stalks with Phanerochaete chrysosporium. They observed a reduction in hemicellulose
of around 60% after 14 days of fermentation, due to the action of the xylanases produced
by the fungus [29]. Another study performed by Wan and Li resulted in a loss of 22%
of hemicellulose when corn stover was pretreated with Ceriporiopsis subvermispora for
18 days [30].
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Secondly, in the solid pretreated with alkaline hydrogen peroxide, the total percentages
of hydrolysable polysaccharides were similar to the non-pretreated ESBP (84.4% w/w
vs. 82.9% w/w), with the differences being not statistically significant (p-value > 0.05).
However, it can be observed that the percentage of cellulose increases to 47.0% w/w
while the percentage of hemicellulose decreases to 4.0% w/w (75.8% of hemicellulose loss).
Additionally, the percentage of pectin dropped to 33.4% w/w (18.9% of pectin loss). Thus,
this pretreatment was effective in the solubilisation of the hemicellulose, while the cellulose
is hardly affected. In the literature, it is established that AHP pretreatment affects mainly
the lignin fraction of the lignocellulosic biomass. However, the low content of lignin in ESBP
can lead to the solubilization of the hemicellulose fraction [31]. Park and Kim also observed
the solubilization of hemicellulose fraction when various alkaline pretreatments were
applied on different lignocellulosic biomass, such as eucalyptus residue, Larix leptolepis,
Pinus rigida, rice straw, and barley straw [32]. They found solubilisation percentages
between 5% and 13%, depending on the alkaline pretreatment and the lignocellulosic
biomass used. Comparing the results obtained by Park and Kim with the ones of this study,
a similar percentage of hemicellulose solubilization was measured (12%).

Regarding the thermochemical pretreatment with sulphuric acid, several concentra-
tions of acid were studied (0, 0.25, 0.5, and 1% w/v H2SO4). In this case, it can be seen
how the total percentage of hydrolysable polysaccharides increases when the solid was
pretreated with distilled water (0% w/v H2SO4) compared to the non-pretreated ESBP
(97% w/w vs. 83% w/w). On the contrary, when 1% w/v H2SO4 was added, a slight
reduction in hydrolysable polysaccharides was observed (97% w/w vs. 93% w/w), while
the percentage of cellulose increased by 69% w/w (vs. 25% w/w on non-pretreated ESBP).
This increase was the consequence of the reduction of pectin and hemicellulose content
due to their solubilisation. Consequently, the fraction of pectin decreased when 1% w/v
H2SO4 was used, from 41% w/w to 14% w/w and hemicellulose from 17% w/w to 10%
w/w. Comparing 0% and 0.25% w/v H2SO4 hydrothermal pretreatments, hemicellulose
content is reduced significantly (from 32% w/w to 19% w/w) but not pectin (from 42%
w/w to 40% w/w). Such findings were expected because ESBP contains a high amount of
amorphous hemicellulose which can be easily hydrolysed by dilute acids at temperatures
in the range of 110–140 ◦C [33,34]. On the other hand, cellulose is more recalcitrant towards
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dilute acid hydrolysis at such temperatures, being practically unchanged up to 170 ◦C and
only efficiently hydrolysed at temperatures greater than 240 ◦C [34,35]. Similar results
were obtained by Canilha et al. They performed an optimization of the dilute sulphuric
acid pretreatment of sugarcane bagasse considering three variables: temperature, acid
concentration, and time. Almost complete removal of the hemicellulose fraction, with low
cellulose solubilisation, was reached with 2.5% w/v of H2SO4 at 150 ◦C for 30 min [33]. As
in our study, Canilha et al. observed the lowest solid solubilization when it was pretreated
in absence of acid, confirming that an acid catalyst is necessary to degrade hemicellulose at
moderate temperatures [33,36].

3.2. Pretreatment Effects on Enzymatic Hydrolysis and Lactic Fermentation

All pretreated solids were hydrolysed and subsequently fermented with L. plantarum.
Briefly, the enzymatic hydrolysis was performed by suspending 6 g of pretreated ESBP in
60 mL of the appropriated buffer and adding Celluclast® (Sigma, Darmstadt, Germany)
supplemented with commercial xylanase and pectinase. The suspension was incubated at
50 ◦C for 48 h. Afterwards, the hydrolysate obtained was supplemented with yeast extract
and CaCO3 and the pH was adjusted to 6.5. Finally, it was inoculated with L. plantarum
and incubated at 30 ◦C.

The results obtained are shown in Figures 2 and 3. For non-pretreated solid (Figure 2),
the maximum reducing sugars concentration (50 g/L) was obtained after 48 h of hydrolysis
and the maximum lactic acid concentration (27 g/L) after 144 h. After 48 h of hydrolysis, the
hydrolysate was composed of glucose (23 g/L) and arabinose (13 g/L). For the biologically
pretreated ESBP (Figure 2), 48% less RS concentration was produced (26.7 g/L), while the
maximum lactic acid concentration decreased by 15% (23 g/L). These differences could
be related to the decrease in the percentage of total hydrolysable polysaccharides of the
biologically pretreated ESBP. However, despite this reduction in the RS concentration, most
of them were glucose, being consumed in the lactic acid fermentation, as it is the main
sugar fermented by L. plantarum [26]. Thus, the hydrolysate obtained from the biologically
pretreated ESBP is richer in glucose than the one obtained from the non-pretreated solid,
due to its higher content in cellulose. In this way, the concentration of lactic acid produced is
only reduced by 15%. Although there is a reduction in the percentage of total hydrolysable
polysaccharides after the biological pretreatment, a high percentage of hemicellulose and
pectin are not solubilized. Similar findings were reported by Shi et al. for the enzymatic
hydrolysis of biological pretreated cotton stalks with Phanerochaete chrysosporium [29]. They
also observed that the concentration of sugars released in the hydrolysis of the pretreated
solid was lower than for the non-pretreated solid. Shi et al. stated that the spreading of
fungal mycelia and the attachment on cotton stalks of the ligninolytic enzymes produced by
the fungus during the microbial pretreatment hinders the binding of cellulolytic enzymes
onto cellulose [29]. In the present study, it seems that the fungus A. awamori grows using
mainly hemicellulose and pectin fractions of ESBP, leaving cellulose untouched. Moreover,
it was observed in our previous studies that the fungus produced low cellulase activity
during solid-state fermentation [15].

Comparing the results obtained for AHP pretreated ESBP with non-pretreated ESBP
(Figure 2), maximum RS concentration rose by 10% (55 g/L) while maximum LA concentra-
tion fell by 15% (23 g/L). These results are in line with the increase in the percentage of total
hydrolysable polysaccharides observed in fibre composition analysis. The slight reduction
in the maximum concentration of lactic acid and the slower fermentation rate may indicate
the presence of inhibitors, such as 5-hydroxymethylfurfural or furfural, produced from
sugar degradation during oxidant pretreatments [37]. However, the percentage of cellu-
lose in AHP pretreated ESBP is higher compared to the non-pretreated and biologically
pretreated solids and, therefore, higher glucose concentration (34 g/L) was produced and
higher lactic concentrations would be expected. From the shape of the lactic acid produc-
tion curve, it can be deduced that the fermentation is not yet finished and the concentration
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of lactic acid tends to continue to rise. So, the maximum LA concentration is likely to be
reached at a longer fermentation time.
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Regarding the results obtained with the thermochemical pretreatment (Figure 3),
various concentrations of sulphuric acid were tested (0, 0.25, 0.5, and 1% w/v H2SO4).
Compared to non-pretreated ESBP (50 g/L of RS and 27 g/L of LA), with 0% w/v H2SO4,
the maximum concentration of reducing sugars and lactic acid increased by 8% (54 g/L)
and 7% (29 g/L), respectively (Figure 3a). However, for 0.25 and 0.5% w/v H2SO4, the RS
concentration decreased by 6% and 10% (47 and 45 g/L) while lactic acid increased by 11%
and 37% (30 g/L and 37 g/L), respectively. Finally, for 1% w/v H2SO4, RS also decreased by
10% (45 g/L) but lactic acid increased substantially (50 g/L). In summary, as the sulphuric
acid concentration increases, the maximum achievable sugar concentration drops and the
LA concentration rises. This effect can be explained with the fibre composition, given that
the percentage of total hydrolysable polysaccharides is reduced as the concentration of
sulphuric acid is increased. Although compared to non-pretreated ESBP the percentage of
total hydrolysable polysaccharides is higher for all the sulphuric acid concentrations tested,
the maximum RS concentration reached is only higher for 0% w/v H2SO4. This effect could
be due to the most suitable enzymatic cocktail was not used in all the conditions. The same
enzymatic cocktail was added at different sulphuric acid concentrations. However, huge
differences were found on the composition of ESBP pretreated with different concentrations
of this acid. Regarding the maximum concentration of lactic acid produced, it can be
observed that it can be increased at least until 50 g/L for 1% H2SO4, and an even higher
concentration of LA could be achieved at longer fermentation times. Despite the solid
showing a lower content of hydrolysable polysaccharides at 1% H2SO4, it contains a high
percentage of cellulose (69%), which can be hydrolysed to glucose and fermented to lactic
acid. It can also be observed that the maximum LA concentration increases, and the
maximum acetic acid concentration decreases, with the amount of sulphuric acid added.
This is also in agreement with the differences in the fibre composition and consequently
in the type of sugar available in the hydrolysate for the subsequent fermentation. So, the
concentration of acetic acid decreases at a higher concentration of sulphuric acid because it
is generally produced by L. plantarum in the fermentation of arabinose [26], a sugar present
in hemicellulose, whose content is lower in these conditions.

The results obtained in the enzymatic hydrolysis of the thermochemically pretreated
ESBP were compared with the ones obtained by other authors. Wei et al. also observed that
the thermochemical acid pretreatment of eucalyptus chips released a hydrolysate richer in
glucose when the concentration of sulphuric acid on the pretreatment was increased [38].
They observed that a higher fraction of hemicellulose was solubilized when the pretreat-
ment was carried out at higher acid concentrations, temperature, or pretreatment time,
obtaining a hydrolysate richer in glucose rather than a mixture of glucose and xylose. They
also establish that the optimum acid concentration to pretreat eucalyptus chips was 0.75%
w/w because higher concentrations of acids produced a lower concentration of glucose in
the hydrolysate, probably due to the cellulose solubilization during the pretreatment [38].
Similar results were obtained by Tang et al. when wheat straw was thermochemically pre-
treated with dilute sulphuric acid and enzymatically hydrolysed, producing a hydrolysate
richer in glucose when the acid concentration used in the pretreatment was increased [39].

In the present work, it was also observed that the hydrolysis rate was lower when
the solid was pretreated with high concentrations of sulphuric acid. This can be due to
the proportion of the different enzyme activities in the cocktail added to the pretreated
solid was not adequate. The solid obtained after the pretreatment with 1% w/v H2SO4
shows a high content of cellulose and a reduced content of hemicellulose and pectin. On
the contrary, the solid pretreated with 0% w/v H2SO4 shows a higher percentage of pectin
and hemicellulose than cellulose. Therefore, the solid pretreated with 1% w/v H2SO4 will
probably need an enzymatic cocktail with a higher cellulase content and lower pectinase
and xylanase activity.

Comparing all the pretreatments studied, it seems that the production of lactic acid
can be notably improved (as much as 85% compared with non-pretreated ESBP) with
the thermochemical acid pretreatment at 1% w/v H2SO4. In addition, the application of
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this pretreatment on ESBP can make the process more viable on an industrial scale. The
industrial production of lactic acid from lignocellulosic biomass is usually performed in
four stages: pretreatment, enzymatic hydrolysis, fermentation, and product extraction and
purification [1]. Conventionally, several steps of purification are needed after fermenta-
tion to produce the final lactic acid product, accounting for up to 50% of the production
cost [40,41]. Comparing the results obtained in this study with and without the pretreat-
ment stage, a more concentrated and purer product is obtained when ESBP is pretreated
with 1% w/v H2SO4. This result would decrease the costs of extraction and purification
of the lactic acid and, although the application of the pretreatment would increase the
production costs, the high concentration of lactic acid obtained could make the process
feasible on an industrial scale. Moreover, the raw material cost is reduced due to the use of
a by-product of the sugar industry (ESBP). However, future studies would recommend
the use of a microorganism that produces a pure optical isomer of L(+) or D(-)-lactic acid,
as the strain selected in this study produces a racemic mixture of lactic acid. The pure
isomers have greater value than the racemic mixture because they are used for specific
industrial applications, e.g., L(+)-lactic acid is used in the synthesis of L(+)-polylactic acid,
a biodegradable semi-crystalline and thermosetting polymer [42].

4. Conclusions

The pretreatments applied on exhausted sugar beet pulp (ESBP) change its fibre com-
position, increasing the relative cellulose content. Alkaline hydrogen peroxide pretreatment
causes mainly hemicellulose solubilisation while the thermochemical with sulphuric acid
and the biological pretreatments solubilise most of hemicellulose and pectin, increasing the
cellulose content up to 68.5% w/w and 34.7% w/w, respectively. These changes in the fibre
composition of the pretreated ESBP produce different results in the lactic acid fermentation
of its hydrolysates. Thus, the fermentation of hydrolysates from biologically and AHP
pretreated ESBP produces lower lactic acid contents than that from the thermochemically
acid pretreated pulp because the glucose content is lower. From the results obtained, it
seems that the best pretreatment to be applied on ESBP to obtain a hydrolysate rich in
glucose and with a consequently high concentration of lactic acid (of at least 50 g/L) with
Lactiplantibacillus plantarum fermentation is thermochemical with sulphuric acid at 1% w/v.
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