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Nitratifractor salsuginis Nakagawa et al. 2005 is the type species of the genus Nitratifractor, a 
member of the family Nautiliaceae. The species is of interest because of its high capacity for 
nitrate reduction via conversion to N2 through respiration, which is a key compound in plant 
nutrition. The strain is also of interest because it represents the first mesophilic and faculta-
tively anaerobic member of the Epsilonproteobacteria reported to grow on molecular hydro-
gen. This is the first completed genome sequence of a member of the genus Nitratifractor and 
the second sequence from the family Nautiliaceae. The 2,101,285 bp long genome with its 
2,121 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria 
and Archaea project. 

Introduction 
Strain E9I37-1T (= DSM 16511 = JCM 12458) is the 
type strain of Nitratifractor salsuginis, which in turn 
is the type and currently only species of the genus 
Nitratifractor [1]. The genus name is derived from 
the Neo-Latin word nitras meaning nitrate and the 
Latin word fractor meaning breaker, yielding the 
Neo-Latin word Nitratifractor meaning nitrate-
breaker [1]. N. salsuginis strain E9I37-1T was iso-
lated from a deep-sea hydrothermal vent chimney 
at the Iheya North hydrothermal field in the Mid-
Okinawa Trough in Japan [1,2]. No further isolates 
of N. salsuginis have been obtained so far. Here we 
present a summary classification and a set of fea-
tures for N. salsuginis E9I37-1T, together with the 

description of the complete genomic sequencing 
and annotation. 

Classification and features 
A representative genomic 16S rRNA sequence of 
strain E9I37-1T was compared using NCBI BLAST 
under default settings (e.g., considering only the 
high-scoring segment pairs (HSPs) from the best 
250 hits) with the most recent release of the 
Greengenes database [3] and the relative frequen-
cies, weighted by BLAST scores, of taxa and key-
words (reduced to their stem [4]) were deter-
mined. The four most frequent genera were Nitrati-
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ruptor (48.5%), Nitratifractor (20.7%), Hydrogeni-
monas (15.7%) and Alvinella (15.1%) (eleven hits 
in total). Regarding the single hit to sequences from 
members of the species, the average identity within 
HSPs was 100.0%, whereas the average coverage 
by HSPs was 95.6%. Among all other species, the 
one yielding the highest score was Hydrogenimonas 
thermophila, which corresponded to an identity of 
88.5% and an HSP coverage of 67.2%. (Note that 
the Greengenes database uses the INSDC (= 
EMBL/NCBI/DDBJ) annotation, which is not an au-
thoritative source for nomenclature or classifica-
tion.) The highest-scoring environmental sequence 
was AF420348 ('hydrothermal sediment clone 
AF420348') [5], which showed an identity of 96.7% 
and an HSP coverage of 97.8%. The five most fre-
quent keywords within the labels of environmental 
samples which yielded hits were 'cave' (7.2%), 

'biofilm' (5.7%), 'sulfid' (5.3%), 'spring' (4.8%) and 
'structur' (3.1%) (239 hits in total). The five most 
frequent keywords within the labels of environ-
mental samples which yielded hits of a higher score 
than the highest scoring species were 'hydrotherm' 
(8.6%), 'vent' (7.5%), 'pacif' (4.0%), 'microbi' 
(3.7%) and 'mat' (3.0%) (37 hits in total). These 
keywords are in accordance with the origin of the 
strain N. salsuginis E9I37-1T from a deep-sea hy-
drothermal vent chimney at the summits of the sul-
fide mounds in the sediment-hosted back-arc hy-
drothermal system Iheya North [1,2]. 
The 16S rRNA based tree in Figure 1 shows the 
phylogenetic neighborhood of N. salsuginis E9I37-
1T. The sequences of the two identical 16S rRNA 
gene copies in the genome do not differ from the 
previously published 16S rRNA sequence 
(AB175500). 

 

 
Figure 1. Phylogenetic tree highlighting the position of N. salsuginis strain E9I37-1T relative to the 
other type strains within the family Nautiliaceae. The tree was inferred from 1,356 aligned charac-
ters [6,7] of the 16S rRNA gene sequence under the maximum likelihood criterion [8] and rooted 
in accordance with the current taxonomy. The branches are scaled in terms of the expected num-
ber of substitutions per site. Numbers to the right of bifurcations are support values from 200 
bootstrap replicates [9] if larger than 60%. Lineages with type strain genome sequencing projects 
registered in GOLD [10] are labeled with an asterisk when unpublished, and with two asterisks 
when published [11]. The closest BLAST hit to N. salsuginis (see above) does not belong to Nauti-
liaceae, and this family does not appear as monophyletic in the last version of the 16S rRNA phy-
logeny from the All-Species-Living-Tree Project [12]. The species selection for Figure 1 was based 
on the current taxonomic classification (Table 1). However, an analysis including the type strains 
of Nautiliaceae and its neighboring families Campylobacteraceae, Helicobacteraceae and Hydro-
genimonaceae (data not shown) did not provide evidence for the non-monophyly for any of these 
families. 
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The cells of strain E9I37-1T are generally rod-
shaped of 2.5 µm in length and 0.6 µm in width 
(Figure 2) and usually occur singly or in pairs 
(Figure 2) [1]. Strain E9I37-1T is a Gram-negative, 
non-motile and non spore-forming bacterium 
(Table 1). The organism is anaerobic to microae-
rophilic (0.09-0.55% O2 (v/v)) and chemolithoau-
totrophic, growing by respiratory nitrate reduc-
tion with H2 as the electron donor, forming N2 as a 
metabolic end product [1]. The main electron ac-
ceptors are NO3- or O2 [1]. Strain E9I37-1T uses S0 
as a source of sulfur [1]. The doubling time of 
strain E9I37-1T was about 2.5 h [1]. The NaCl 
range for growth is between 1.5% and 3.5%, with 
an optimum at 3%; no growth was observed be-
low 1.0% NaCl or above 4.0% NaCl [1]. The tem-
perature range for growth is between 28ºC and 
40ºC, with an optimum at 37ºC [1]. The pH range 
for growth is between 5.6 and 7.6, with an opti-
mum at pH 7; no growth could be detected below 
pH 5.2 or above pH 8.1 [1]. Strain E9I37-1T was 
unable to use any organic compounds as energy or 
carbon sources [1]. The organism was sensitive to 
ampicillin, rifampicin, streptomycin, chloramphe-
nicol (each at 50 µg ml-l) and kanamycin (200 µg 
ml-1), and insensitive to approximately 150 µg ml-1 
kanamycin [1]. Enzymatic and genetic analyses 
demonstrated that strain E9I37-1T uses the reduc-
tive TCA (rTCA) cycle for carbon assimilation [21]. 
This was confirmed by the presence of all genes 
encoding the three key rTCA cycle enzymatic ac-

tivities, namely ATP-dependent citrate lyase, py-
ruvate:ferredoxin oxidoreductase, and 2-
oxoglutarate:ferredoxin oxidoreductase [21], but 
it was found to lack the gene for ribulose 1,5-
bisphosphate carboxylase (RubisCO) activity, the 
key enzyme in the Calvin-Benson cycle [21]. 

Chemotaxonomy 
The major cellular fatty acids of strain E9I37-
1Tare C18:1 (42.3% of the total fatty acid), C16:1 
(30.7%) and C16:0 (24.3%), C14:0 3-OH (1.1%), C14:0 
(0.9%) and C18:0 (0.7%) [1]. It should be noted that 
no information is given on the position of double 
bonds in the unsaturated fatty acids. No attempt 
has been made to examine the type strain for the 
presence of respiratory lipoquinones or to deter-
mine the polar lipid composition. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [22], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [23]. The genome project is depo-
sited in the Genome On Line Database [10] and the 
complete genome sequence is deposited in Gen-
Bank. Sequencing, finishing and annotation were 
performed by the DOE Joint Genome Institute 
(JGI). A summary of the project information is 
shown in Table 2. 

 

 
Figure 2. Scanning electron micrograph of N. salsuginis E9I37-1T 
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Table 1. Classification and general features of N. salsuginis E9I37-1T according to the MIGS recommendations [13]. 
MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [14] 
Phylum Proteobacteria TAS [15] 
Class Epsilonproteobacteria TAS [16,17] 
Order Nautiliales TAS [18] 
Family Nautiliaceae TAS [18] 
Genus Nitratifractor TAS [1] 
Species Nitratifractor salsuginis TAS [1] 
Type strain E9I37-1 TAS [1] 

 Gram stain negative TAS [1] 
 Cell shape rod shaped, occurring singly or in pairs TAS [1] 
 Motility non-motile TAS [1] 
 Sporulation none TAS [1] 
 Temperature range 28-40ºC TAS [1] 
 Optimum temperature 37°C TAS [1] 
 Salinity 1.5-3.5% NaCl TAS [1] 
MIGS-22 Oxygen requirement anaerobic and microaerobic TAS [1] 
 Carbon source probably CO2 NAS 
 Energy metabolism strictly chemolithoautotrophic TAS [1] 
MIGS-6 Habitat deep-sea hydrothermal vent chimneys TAS [1] 
MIGS-15 Biotic relationship not reported NAS 
MIGS-14 Pathogenicity not reported NAS 
 Biosafety level 1 TAS [19] 

 Isolation deep-sea hydrothermal vent water of ‘E9’ chimney 
(inside part) TAS [1,2] 

MIGS-4 Geographic location Iheya North hydrothermal field in the Mid-Okinawa 
Trough in Japan TAS [1,2] 

MIGS-5 Sample collection time 2002 or before TAS [1,2] 
MIGS-4.1 Latitude 27.78 TAS [1,2] 
MIGS-4.2 Longitude 126.88 TAS [1,2] 
MIGS-4.3 Depth 984 m TAS [1,2] 
MIGS-4.4 Altitude not reported NAS 

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a 
direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, 
isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence 
codes are from of the Gene Ontology project [20]. If the evidence code is IDA, the property was directly observed 
by one of the authors or an expert mentioned in the acknowledgements. 

 
Growth conditions and DNA isolation 
N. salsuginis E9I37-1T, DSM 16511, was grown 
anaerobically in DSMZ medium 1024 (Nitratirup-
tor and Nitratifractor medium) [24] at 37°C. DNA 
was isolated from 0.5-1 g of cell paste using Jetflex 
Genomic DNA Purification Kit (GENOMED 
600100) following the standard protocol as rec-
ommended by the manufacturer. Cell lysis was 
enhanced by adding 20 µl proteinase K for two 
hours at 58°C. DNA is available through the DNA 
Bank Network [25]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [26]. 
Pyrosequencing reads were assembled using the 
Newbler assembler (Roche). The initial Newbler 
assembly consisting of 42 contigs in five scaffolds 
was converted into a phrap [27] assembly by 
making fake reads from the consensus, to collect 
the read pairs in the 454 paired end library. 
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Illumina GAii sequencing data (158.03 Mb) was 
assembled with Velvet [28] and the consensus 
sequences were shredded into 1.5 kb overlapped 
fake reads and assembled together with the 454 
data. The 454 draft assembly was based on 60.3 
Mb 454 draft data and all of the 454 paired end 
data. Newbler parameters are -consed -a 50 -l 
350 -g -m -ml 20. The Phred/Phrap/Consed 
software package [27] was used for sequence as-
sembly and quality assessment in the subsequent 
finishing process. After the shotgun stage, reads 
were assembled with parallel phrap (High Per-
formance Software, LLC). Possible mis-
assemblies were corrected with gapResolution 
[26], Dupfinisher [29], or sequencing clones 

bridging PCR fragments with subcloning. Gaps 
between contigs were closed by editing in Con-
sed, by PCR and by Bubble PCR primer walks (J.-
F. Chang, unpublished). A total of 135 additional 
reactions were necessary to close gaps and to 
raise the quality of the finished sequence. Illumi-
na reads were also used to correct potential base 
errors and increase consensus quality using a 
software Polisher developed at JGI [30]. The er-
ror rate of the completed genome sequence is 
less than 1 in 100,000. Together, the combination 
of the Illumina and 454 sequencing platforms 
provided 106.7 × coverage of the genome. The 
final assembly contained 274,574 pyrosequence 
and 2,079,398 Illumina reads. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three genomic libraries: one 454 pyrosequence standard library, 
one 454 PE library (12 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 

MIGS-31.2 Sequencing coverage 75.2 × Illumina; 31.5 × pyrosequence 

MIGS-30 Assemblers Newbler version 2.4, Velvet, phrap 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 INSDC ID CP002452 

 Genbank Date of Release January 24, 2011 

 GOLD ID Gc01594 

 NCBI project ID 46883 

 Database: IMG-GEBA 2503538035 

MIGS-13 Source material identifier DSM 16511 

 Project relevance Tree of Life, GEBA 

 
Genome annotation 
Genes were identified using Prodigal [31] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [32]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) non-redundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [33]. 

Genome properties 
The genome consists of a 2,101,285 bp long chro-
mosome with a G+C content of 53.9% (Table 3 and 
Figure 3). Of the 2,175 genes predicted, 2,121 
were protein-coding genes, and 54 RNAs; 33 
pseudogenes were also identified. The majority of 
the protein-coding genes (66.9%) were assigned 
with a putative function while the remaining ones 
were annotated as hypothetical proteins. The dis-
tribution of genes into COGs functional categories 
is presented in Table 4. 
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Figure 3. Graphical circular map of the chromosome; From outside to the center: Genes on forward strand 
(color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, 
rRNAs red, other RNAs black), GC content, GC skew. 
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 2,101,285 100.00% 
DNA coding region (bp) 1,916,093 91.19% 
DNA G+C content (bp) 1,132,843 53.91% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 2,175 100.00% 
RNA genes 54 2.48% 
rRNA operons 2  
Protein-coding genes 2,121 97.52% 
Pseudo genes 33 1.52% 
Genes with function prediction 1,456 66.94% 
Genes in paralog clusters 144 6.62% 
Genes assigned to COGs 1,525 70.11% 
Genes assigned Pfam domains 1,616 74.30% 
Genes with signal peptides 411 18.90% 
Genes with transmembrane helices 501 23.03% 
CRISPR repeats 2  

Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 
J 149 9.0 Translation, ribosomal structure and biogenesis 
A 0 0.0 RNA processing and modification 
K 64 3.9 Transcription 
L 114 6.9 Replication, recombination and repair 
B 0 0.0 Chromatin structure and dynamics 
D 20 1.2 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 25 1.5 Defense mechanisms 
T 69 4.2 Signal transduction mechanisms 
M 133 8.1 Cell wall/membrane/envelope biogenesis 
N 15 0.9 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 43 2.6 Intracellular trafficking, secretion, and vesicular transport 
O 89 5.4 Posttranslational modification, protein turnover, chaperones 
C 131 8.0 Energy production and conversion 
G 58 3.5 Carbohydrate transport and metabolism 
E 136 8.3 Amino acid transport and metabolism 
F 50 3.0 Nucleotide transport and metabolism 
H 97 5.9 Coenzyme transport and metabolism 
I 37 2.3 Lipid transport and metabolism 
P 81 4.9 Inorganic ion transport and metabolism 
Q 18 1.1 Secondary metabolites biosynthesis, transport and catabolism 
R 183 11.1 General function prediction only 
S 136 8.3 Function unknown 
- 650 29.9 Not in COGs 
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