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Abstract

Background: Network inference deals with the reconstruction of molecular networks from experimental data. Given
N molecular species, the challenge is to find the underlying network. Due to data limitations, this typically is an ill-
posed problem, and requires the integration of prior biological knowledge or strong regularization. We here focus on
the situation when time-resolved measurements of a system’s response after systematic perturbations are available.

Results: We present a novel method to infer signaling networks from time-course perturbation data. We utilize
dynamic Bayesian networks with probabilistic Boolean threshold functions to describe protein activation. The model
posterior distribution is analyzed using evolutionary MCMC sampling and subsequent clustering, resulting in
probability distributions over alternative networks. We evaluate our method on simulated data, and study its
performance with respect to data set size and levels of noise. We then use our method to study EGF-mediated
signaling in the ERBB pathway.

Conclusions: Dynamic Probabilistic Threshold Networks is a new method to infer signaling networks from
time-series perturbation data. It exploits the dynamic response of a system after external perturbation for network
reconstruction. On simulated data, we show that the approach outperforms current state of the art methods. On the
ERBB data, our approach recovers a significant fraction of the known interactions, and predicts novel mechanisms in
the ERBB pathway.

Background
The availability of high throughput experimental plat-
forms has transformed molecular biology into a data-rich
science. However, the development of computational and
mathematical tools to extract and interpret the wealth
of information hidden in these data is lagging behind.
For example, genome wide RNA interference screens
have enabled the phenotypic characterization of genes
at an unprecedented scale in living cells [1]. However,
the interpretation of such data and the placement of
hits in their functional and temporal context in cellu-
lar pathways remains a major challenge [2,3]. Machine
learning can address many of the questions arising from
the interpretation of large scale molecular biological data,
and has become an important tool of bioinformatics
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and systems biology. Automatic network inference deals
with the reconstruction of regulatory or signaling net-
works directly from experimental data using statistical or
machine learning approaches, a field that has received
significant attention in the last decade. There is a wide
variety of different approaches available that can be used
to infer genetic regulatory or signal transduction networks
from experimental data. Approaches employed include
Bayesian networks [4-13] and dynamic Bayesian networks
[14-18], Boolean models [19-21], auto-regressive models,
correlation-based and mutual-information based models,
clustering techniques, differential equation models, and
others [22-27]. These methods differ in the level of detail
at which they reconstruct networks, and in their under-
lying assumptions and data requirements. Some produce
an undirected graph, where edges do not indicate which
gene or protein in a connected pair is the activator, and
which is the activated gene or protein [23]. Others specify
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the regulator with directed edges [14], and a few label the
edges with kinetic parameters [28].

There are a number of successful applications of net-
work inference approaches to elucidate cellular signaling
pathways, including meta-approaches integrating differ-
ent methods [29]. Among the successful applications, for
example, Sachs et al. used Bayesian networks to recon-
struct cellular protein signaling networks from protein
phosphorylation measurements [5]. Nelander et al. used
a model based on nonlinear differential equations to
infer signaling networks in cancer from combinatorial
drug perturbation data [30]. Eduati et al. demonstrate
the integration of literature-knowledge into data driven
approaches, and show a successful application to a sig-
naling network related to growth-signaling and inflam-
mation [31]. Ciaccio et al. used Bayesian networks and
two different mutual-information based approaches to
infer signaling networks downstream of the EGF recep-
tor [32]. Hill et al. use dynamic Bayesian networks to
study signaling in a cancer cell line [18]. Other approaches
include nested effects models (NEM) [33], deterministic
effects propagation networks (DEPN) [34] or probabilistic
Boolean threshold networks (PBTN) [35], and have been
applied, for example, to reconstruct signaling networks in
the ERBB pathway, or in the innate immune response to
infection.

Network reconstruction can be performed from obser-
vational data alone. However, the quality of the recon-
struction increases substantially if experimental pertur-
bations followed by observations of the system’s dynamic
response are available [36]. Surprisingly, while there are
many approaches available for time course data, and sev-
eral approaches for perturbation data, there are only few
methods available that can handle both time course data
and perturbations at the same time. Exceptions are, for
example, the differential equation approach presented by
Nelander et al. [30], Dynamic Nested Effects Models
(DNEM) [37,38] or Dynamic Deterministic Effects Prop-
agation Models (D-DEPN) [39]. Among the stochastic
approaches, DNEMs rely on high-dimensional, indirect
readouts of rather qualitative knockdown “effects”, such
as microarrays performed at different time points after
every knockdown, or multidimensional features derived
from live cell imaging. Such data are often not avail-
able, and also provide only indirect information about
the underlying signaling pathway. Fröhlich et al. proposed
Deterministic Effects Propagation Networks (DEPN) to
reconstruct networks from perturbation data with direct
observation of involved proteins, measured e.g. using
reverse phase protein arrays [34]. However, DEPNs treat
each time point as an independent measurement and
do not model the time dependent behavior of the sys-
tem explicitly. Bender et al. proposed Dynamic DEPNs
(D-DEPNs), to take the availability of longitudinal data as

well as inhibitory interactions in a network into account
[39]. D-DEPNs use the Viterbi algorithm to identify the
state transitions of a hidden Markov model from the time
course data, with states corresponding to combinations of
activities of nodes in the network. A likelihood function
is defined to score network models given the estimated
state transitions, and the network space is then searched
using a genetic algorithm. Due to this underlying pro-
cedure, D-DEPNs require relatively long time series (10
time points in the original publication of the method), and
have substantial running time requirements if large num-
bers of different perturbations involving most or all of the
proteins in a network are performed.

We here focus on the problem of reconstructing sig-
naling networks from short time series with only two
or three time points, after a large number of different,
possibly combinatorial perturbations, targeting most or
all of the genes in the network. Such data arise, for
example, if RNAi experiments are combined with protein
array measurements at few time points after the per-
turbation, or in time-resolved mass spectrometric assays
under different conditions. We propose a new method
for the identification of kinetic models of signaling net-
works from such data, dynamic probabilistic Boolean
threshold networks (D-PBTN), which can treat multi-
ple, combinatorial interventions as well as incomplete
observations. Through the use of a fairly simple, discrete-
state model where proteins are either active or inactive,
our method is applicable to qualitative data and does
not require detailed quantitative measurements. Further-
more, through the Bayesian framework employed, we can
easily handle noisy or missing data, and using MCMC
sampling, can analyze full posterior distributions over
model parameters, yielding information about different,
alternative network topologies that are consistent with
the experimental data. Our work builds upon probabilis-
tic Boolean threshold networks (PBTN) regarding the
underlying dynamic network model [35], but extends the
method in the following aspects: (1) We fully exploit the
information from time course data, by explicitely integrat-
ing time into the model likelihood. In contrast, PBTNs
in their original implementation only exploit observa-
tional data taken at a single time point, usually at steady
state. (2) PBTNs are limited to relatively small networks
of around 7 nodes. Through a more efficient sampling
method, the approach presented here can be used for
larger networks, effectively more than doubling the fea-
sible network size. (3) PBTNs were implemented with a
focus on data with only single downstream observations at
a single time point, and therefore similarly to other (non-
dynamic) Bayesian network based approaches, do not
allow feedback loops in the network. The approach pre-
sented here can handle feedback loops in the network. (4)
D-PBTNs can handle overexpression and knockdown
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data, in contrast to PBTNs, which are limited to knock-
down data.

Our approach uses discrete states of the proteins in the
network, which can be either “on” or “off”. In terms of the
biological interpretation, this could be phosphorylation
networks, in which case edges would correspond to phos-
phorylation or dephosphorylation events. Alternatively,
assuming that proteins are “present” or “absent”, edges in
the model could also be interpreted as transcriptional reg-
ulation. Correspondingly, nodes can represent “activated”
protein levels or total protein abundance depending on
context.

We evaluate the performance of our method on simu-
lated data, and study its behavior on networks of different
sizes, with different amounts of available data and dif-
ferent levels of noise, and compare results against PBTN
[35], DEPN [34] and BDAGL, a dynamic Bayesian net-
work based approach [40,41]. Dynamic DEPNs could not
be used for the comparison, as they were unable to handle
the short time courses and large number of perturba-
tions. We show inference results for ERBB signaling in
breast cancer using DEPN, PBTN and D-PBTN, demon-
strating superior performance of D-PBTN, and show-
ing cross-talk between different branches of the ERBB
pathway.

Methods
Mathematical model
We model a signaling network by a weighted, directed
graph G = (V , E). Cycles are permitted. The node set
V = {vi}N

i=1 corresponds to proteins; an edge ei,j ∈ E
from node vi to vj represents a regulation of vj by vi, such
as activation or deactivation via (de)phosphorylation. The
strength and type of an interaction is specified by wi,j ∈ R,
with wi,j > 0 for activations, wi,j < 0 for inactivations
and wi,j := 0 if ei,j /∈ E . Given N, the number of nodes
in the network, we can thus describe the network topol-
ogy by its N × N weighted adjacency matrix W = (wi,j).
We furthermore consider each node vi a Boolean vari-
able. Model time is assumed discrete, and all nodes are
updated simultaneously between two time steps. The state
of node vi(t + 1) at model time t + 1 is described by a
stochastic function of the states of all nodes V at model
time t:

p(vi(t + 1) = 1|V (t))

= 1

1 + exp
(
−γ

(
w0,i + ∑n

j=1 wj,ivj(t)
)) . (1)

The relationship between a target protein and its reg-
ulators is hence modeled by a sigmoid function, an
ansatz for nonlinear systems with saturation phenom-
ena. Equation (1) activates or deactivates a target protein

depending on the weighted sum of incoming regulations.
The level of stochasticity in this process is defined by the
positive parameter γ , whereas w0,i defines a basal acti-
vation probability of vi in the absence of any regulatory
effects.

In case of interventions, the state of a node v targeted by
perturbation is no longer subject to the stochastic dynam-
ics of the system, instead, its value is fixed through the
intervention. We write Kk , k ∈ {1, . . . , K}, for the set
of nodes targeted simultaneously in perturbation experi-
ment k, and assume that a knockdown of Kk amounts to
fixing all nodes vi ∈ Kk to the “off” state at all model
time points after the knockdown. Similarly, overexpres-
sion experiments can be simulated by fixing the affected
nodes vi to “on”.

Let us now assume that we have observed experimen-
tally the states of the nodes vi at T different (real) time
points Tt̂ , t̂ ∈ {0, . . . , T}. We note in passing that this
normally requires a discretization step, as experimental
data are typically measured continuously – see the section
on the ERBB data set below. Let us for now assume that
the set of experimental observations D consists of mea-
surements of N discrete protein states at T time points
after K different perturbations. We write dk

i (t̂) ∈ {0, 1}
for the observed activity of node vi at the real time point
Tt̂ after knockdown of node set Kk . To map real time
Tt̂ to model time t, we introduce a parameter vector
τ ∈ N

T to denote the number of model time steps that
correspond to the real time elapsed between the differ-
ent experimental time points Tt̂ , that is, τt̂ denotes the
number of model time steps according to equation (1)
required to transition from real time point Tt̂−1 to time
point Tt̂ .

Assuming a one-to-one correspondence between model
time and real time, that is, assuming that τt̂ = 1 for all
t̂, we can define a likelihood by calculating the product of
p(vi(t + 1) = dk

i (t + 1)|dk· (t)) according to equation (1)
over all nodes v, time points t and perturbations k:

p(D|�) =
K∏

k=1

T−1∏
t=0

∏
i=1...Ni/∈Kk

p
(

vi(t + 1) = dk
i (t + 1)|v(t) = dk· (t)

)
.

(2)

If τt > 1, one or more intermediate model time steps
must be made to transition from experimental time
point Tt̂−1 to experimental time point Tt̂ . As no exper-
imental observations are available for the intermediate
time steps, we must marginalize over unobserved time
steps in the evaluation of the likelihood (2). Writing
v(t̂ − 1), v1(t̂), v2(t̂), . . . , vτt̂ (t̂), v(t̂) for the full sequence
of model steps, where the sequence of intermediate steps
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v = v1(t̂), v2(t̂), . . . , vτt̂ (t̂) are unobserved, equation (2)
becomes

p(D|�) =
K∏

k=1

T∏
t̂=1

[∑
v

p
(

v1(t̂)
∣∣∣dk· ( ˆt − 1)

)

× p
(
v2(t̂)

∣∣v1(t̂)
) · · · p(v(t̂))

∣∣ vτt̂ (t̂)
) ]

,

(3)

where p(vb|va) = ∏N
i=1 p(vb

i |va) comprises the product
over all individual nodes as in equation (1), and where
the sum is over all possible combinations of values for the
intermediate model steps. Missing values in the experi-
mental data can be treated similarly – the likelihood can
then be computed by integrating equation (3) over all
possible combinations of values for unobserved dk

i (t̂).
We note that PBTNs are based on a closely related likeli-

hood function, and employ the same underlying model for
the relation between nodes, given in equation (1). How-
ever, PBTNs differ in a key aspect from the framework
presented here: PBTNs do not allow multiple time points
in their likelihood, but rather assume that measurements
are made at a single time point after knockdown, usually
taken at steady state.

Inclusion of prior knowledge
In many biological settings, available data are insufficient
to unambiguously reconstruct the underlying network. In
such situations, strict regularization of the objective func-
tion using for example maximum parsimony [28], or the
inclusion of additional prior biological knowledge [42]
can help. Both can be done via Bayes’ theorem using
prior distributions on the model parameters �. The model
posterior is

p(�|D) = p(D|�)p(�)/p(D), (4)

where p(D|�) is the likelihood function as defined above,
p(�) is an adequately defined prior distribution, and p(D)

is a constant normalizing factor that does not depend on
� and can be neglected in maximization or sampling.
The prior can be written as p(�) = p(w0,·)p(W)p(τ ),
assuming that the different types of model parameters
are independent. Then, p(W) describes our belief about
the correct topology, prior to seeing any data, and p(τ )

describes our belief about the speed of signal transduction
in the network. Assuming independence of parameters,
the full prior can be written as:

p(�) =
∏

i
p

(
w0,i

) ∏
i,j

p
(
wi,j

) ∏
t

p (τt) . (5)

In the network inference setting, it is unlikely that the true
underlying biological network is densely connected. We

rather expect a sparse network, where most of the nodes
have only few other nodes acting on them [43-47]. This
can be mathematically encoded in a prior on wi,j

p(wi,j|q, s) = exp
(

− 1
qsq |wi,j − μi,j|q

)
, (6)

with positive shape and rate parameters q and s [48,49].
Note that, after taking the negative logarithm and drop-
ping the normalizing factor 1/(qsq), this is equivalent to
regularization using the Lq-norm, and corresponds to a
Laplacian prior if q = 1 or a normal prior if q = 2,
and the parameter s determines the width of the distribu-
tion. The parameters μi,j can be used to encode additional
knowledge on specific edges, by setting individual μi,j to
nonzero values. If no prior knowledge is available, μi,j
defaults to 0. We note that the μi,j can be chosen continu-
ously depending on the expected strength of the effect and
certainty in its presence. We expect signaling molecules
to be “off” in the absence of any signal, and therefore use
independent negative gamma priors for p(w0,i),

p(w0,i) = rs0
0 (−w0)s0−1er0w0

�(s0)
, (7)

with rate and shape parameters r0 and s0, respectively. We
hence assume w0,i to be non-positive. This assumption
can easily be replaced if signaling molecules should also
be allowed to be “on” in the absence of signal, for example
by using a gamma prior on the absolute value |w0,i|, or a
normal prior on w0,i. Lastly, as model time is discrete and
necessarily positive, we use a binomial prior p(τi) on τi,

p(τi) =
(

n
τi

)
pτi(1 − p)n−τi (8)

with parameters n and p.

Network inference
We could now maximize p(�|D) to find the most prob-
able network � underlying the data D. This is rea-
sonable if the posterior is unimodal and has a sharp,
narrow optimum. However, since the optimization prob-
lem encountered for real data is typically underdeter-
mined, several alternative models � often explain the
data equally well, and marginal distributions for param-
eters show wide peaks and large confidence intervals.
We therefore use Markov chain Monte Carlo (MCMC)
sampling to fully characterize the posterior. The main dif-
ficulty in doing this lies in the calculation of the likelihood
p(D|�), which due to the required marginalization over
unobserved nodes and time points quickly becomes very
involved and time-consuming, compare equation (3). We
therefore approximate p(D|�) by simulating the dynam-
ics of the model with parameters � for each knockdown
Kk , and then compare the simulation results Mk(t) at each
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time point t with the experimental data dk(t). If this is
repeated a large number of times, we can approximate
p(D|�) by the number of times we get D back in the sim-
ulation runs. By combining this with MCMC sampling,
a very efficient approach for evaluation of the poste-
rior distribution arises, that does not require an explicit
computation of the likelihood [50]. In contrast to PBTN,
which employed a Metropolis-Hastings based sampler,
we have now implemented a far more efficient sampler
in D-PBTN. We employ distributed evolutionary Monte
Carlo (DEMC) [51], a sampler that combines features of
a distributed genetic algorithm with MCMC sampling. In
brief, DEMC starts with a population of m Markov chains,
which are grouped into g subpopulations. Each individ-
ual chain describes a specific network �. Updates within
each subpopulation are done using the genetic operators
mutation and cross-over, and migration allows individual
solutions to move between subpopulations. Thereafter,
each chain is scored by initializing each node in the net-
work with the values experimentally observed at time 0,
and then simulating using equation (1). This is followed
by a Metropolis-Hastings step to accept or reject the
new state, to ensure ergodicity of the chains. A detailed
description of the procedure is given in Additional file 1.

Data simulation
Since for real experimental data typically no “gold stan-
dard” network is available to assess results, we used
simulated data to evaluate D-PBTN. This allows it to
systematically alter properties of the data, such as the
inherent level of noise or amount of missing values, and
to directly assess the performance impact this has. We
simulated data in three different ways:

Simulated Network 1 (SN1) is a 7-node feedforward net-
work, shown in Figure 1A (left). Weights wi,j were set to
1 for edges shown in the figure, and 0 otherwise. Baseline
weights were set to w0,i = −0.25 to have a high prob-
ability for an unregulated protein to be in the off state.
Data simulation for this network was performed assum-
ing that all proteins are in the off state initially, except for
the receptor 1. Stochastic signaling is then simulated using
equation (1), updating all nodes simultaneously, and using
γ = 10. Knockdowns were simulated by fixing targeted
proteins in the off state. We simulated knockdowns of all
individual proteins, and two combinatorial knockdowns
of proteins (3, 4) and (4, 6). Two time points were used for
network inference, the first one immediately after knock-
down and activation of the receptor; the second time point
after 6 simulation steps, allowing for sufficient time for the
signal to propagate through the whole network.

Using the same network topology and parameters,
we furthermore simulated overexpression experiments
(Simulated Network 1a, SN1a). Overexpressed nodes were
fixed to the on state, while we assumed all other nodes to

be inactive initially. We simulated overexpression exper-
iments of all individual nodes, as well as combinatorial
overexpression of nodes (3, 4) and nodes (4, 6), again by
running the simulation over 6 time steps as above.

Simulated Network 2 (SN2) extends SN1 by a feedback
loop, see Figure 1A (right). Data for SN2 was simulated
using the model proposed by Fröhlich et al. [34]. In con-
trast to SN1, signaling is deterministic, and noise arises
only at the measurement stage. We initialized all nodes as
above and assumed that a node deterministically becomes
active if there are more activating than inhibiting pro-
teins among its parents. Measurements were simulated by
sampling from a normal distribution with N (0.95, 0.01)-
distributed mean for active nodes, and N (0.6, 0.01)-
distributed mean if the node was inactive. The variances
of the normal distributions were drawn from an inverse
scaled chi-squared distribution Invχ2(4.4, 0.023), as sug-
gested by Fröhlich et al. [34] based on their experimental
observations. Measurements were simulated immediately
after the knockdown and activation, and after four and six
simulation steps.

Simulated Network 3 (SN3) comprises a set of ten
different networks randomly extracted from the KEGG
database, each containing seven connected proteins, tak-
ing only protein-protein interactions into account. We
simulated time-course data for 10 time points as described
for SN2 for each of the ten subnetworks. For each sub-
network, in addition to the starting point, two further
randomly selected time points were included into the final
data set used for network reconstruction. Reported per-
formance results are average performances over all ten
subnetworks, avoiding biasing of results towards a single
topology or time interval.

Implementation and performance evaluation
We implemented D-PBTN in C�, and evaluated the app-
roach on both simulated and real experimental data.
Source code (tested on the Windows platform) and addi-
tional information is available from our website at http://
www.kaderali.org/software.html.

Convergence of the Markov chains was assessed using
the methods proposed by Brooks and Gelman [52], results
are given in Additional file 1. Sampled networks were
aggregated using halite clustering [53]. Halite is a density-
based clustering method, that we use to identify clusters
of similar networks from the Markov chains. Cluster rep-
resentative networks were computed using the within-
cluster median of wi,j.

To quantify network reconstruction performance, we
performed receiver operator characteristic (ROC) and
precision recall (PR) analysis. In brief, a threshold δ is used
for discretization of edge values, where the median w̄i,j
of sampled values for a particular edge wi,j is compared
with δ. If |w̄i,j| ≥ δ, the edge ei,j is assumed present in

http://www.kaderali.org/software.html
http://www.kaderali.org/software.html
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Figure 1 Evaluation on simulated data. A: The panel shows network topologies used to simulate data. Simulated Network 1 (SN1) is a simple
feedforward network, whereas Simulated Network 2 (SN2) contains a negative feedback loop. B: Network reconstruction was performed for SN1,
changing the number of unobserved proteins. Shown is the distribution of the area under the ROC curve (AUCROC ) of 100 replicates of simulated
data sets, over the fraction of unobserved proteins. From left to right: D-PBTN, DEPN, BDAGL, PBTN. The dashed line at AUCROC = 0.5 shows
expected results for random guessing. C: The panel shows the distribution of AUCROC values obtained for different levels of noise on SN1. Noise is
introduced by switching the state of the indicated fraction of proteins in the “measured” data, thus introducing errors in the data. D: This panel
shows performance of D-PBTN, DEPN, BDAGL AND PBTN on networks sampled from KEGG, with data simulated as described in methods. Shown are
AUCROC values of100 simulated data sets, generated from ten different KEGG subnetworks.

the network, ei,j ∈ E , and absent otherwise, ei,j /∈ E .
The resulting network with edge set E is then compared
against the gold standard network, and sensitivity, speci-
ficity and precision are computed for given δ. This is
then repeated by varying δ, and sensitivity is plotted over
specificity for different δ in a ROC plot, and precision
over sensitivity in a PR plot. Finally, both ROC and PR
curves can be summarized by computing the area under
the curve (AUCROC and AUCPR, respectively) as single
numbers summarizing performance over a wide range of

threshold values δ. The advantage of this approach is that
it is not necessary to pick a specific threshold δ for the dis-
cretization, which may be difficult to do as this depends
on (unknown) user preferences regarding the tradeoff
between false positive and false negative edges, but the
analysis summarizes performance over the full range of
feasible thresholds δ.

We first assessed performance of D-PBTN on sim-
ulated data, varying the amount of noise in the data,
using different amounts of simulated data and different
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models for data simulation, and evaluated stability of
results for changing model hyperparameters. We then
assessed performance on publicly available data regard-
ing signaling in the ERBB network. Inferred networks on
real data were assessed using STRING 9.0 as reference
[54], using only edges with at least 70% confidence in
STRING. Since interactions given in STRING are undi-
rected and unsigned, we disregarded directional infor-
mation and edge sign. We compare performance of our
approach with DEPN [34], the non-time-series version of
our approach (PBTN) [35], the Bayesian Directed Acyclic
Graph Learning tool (BDAGL) developed by Eaton and
Murphy [40,41], and with random guessing. Notably, D-
DEPN could not be used on the simulated data due to
the nature of the short time courses used. Results for
PBTN were obtained using a modified version of the
original PBTN implementation [35] that optimizes the
posterior distribution instead of sampling, thus allowing
for a more efficient computation on networks with a uni-
modal posterior. This compromise is necessary, as the
original sampling-version of PBTN is too slow to allow
a rigorous evaluation on networks of the size used here.
Time points were used as independent measurements in
PBTN. To obtain results for the DEPNs, we used greedy
hill-climbing and bootstrapping with 100 bootstrap sam-
ples, as proposed by the authors of the method. The
bootstrap samples were used to obtain weights on the
edges, which were subjected to ROC and PR analysis. We
note that DEPNs operate on equivalence classes of graphs,
and can not distinguish between graphs within an equiv-
alence class. We therefore used the transitively closed
network as a representative of the full equivalence class
to evaluate the DEPN results. This is in contrast to the
other methods, which in principle are able to determine
a unique network, provided sufficient data is given, and
which we compared directly to the gold standard network.
Lastly, results for BDAGL were obtained using the modi-
fied marginal likelihood method for perfect interventional
data, with uniform prior.

Results
As a first test of our method, we assessed the performance
of D-PBTN on simulated data, without noise and with
full observations of all nodes, using the network topol-
ogy SN1. To compare performance of D-PBTN with other
approaches, we used the non-time series version PBTN,
DEPN and BDAGL. For D-PBTN, shape and rate param-
eters of the prior distribution (6) on w were set to q, s =
1, respectively, corresponding to a standard L1 regular-
ization of the edge weights as the simplest conceivable
setting. Rate and shape parameters of the negative gamma
prior on w0,i were set to r0 = 8, s0 = 16, resulting in
a moderate deactivation of unregulated proteins, and a
binomial prior with n = 20, p = 0.3 was used for τ , giving

an expected value of τ of 6 time steps. The stochasticity
parameter γ was set to 1.8, corresponding to an average
level of noise in the data. Three sub-populations with four
Markov chains were used with 108 steps each and a burn-
in of 5,000 steps. Parameters for PBTN were set accord-
ingly, using the two time points as independent replicate
measurements. Results for all four approaches are shown
in Table 1, values shown are median values of the AUCROC
and AUCPR measures over 100 replicate simulations. With
no noise and no missing values, D-PBTN shows superior
performance over the other three approaches on the simu-
lated data. Notably, the comparison between D-PBTN and
PBTN shows the added value of the temporal information,
indicating that while a significant part of the information
in the data comes from the knockdowns, even short time
courses with just 2 time points are of added value. BDAGL
shows weaker results than the other three approaches,
both in terms of the AUCROC and AUCPR, possibly
due to a significantly different underlying mathematical
model.

Effect of missing data
We next assessed the effect of missing observations on
network inference, using the SN1 data. Results are shown
in Figure 1B for AUCROC and Additional file 2: Figure S1
for AUCPR, and are summarized in Table 1. Note that
BDAGL could not be used in this comparison, as the
method cannot handle missing values. We randomly
selected 16%, 33% and 50% of the nodes, and completely
removed the corresponding simulated observations for
these nodes before carrying out the network inference.
Model parameters were set as described above. Computa-
tion took approximately 7.4 hours for D-PBTN on a 3 GHz
Intel 64-bit processor (single-threaded). For comparison,
runtime for DEPN was only around 30 minutes. Regarding
quality of the inferred networks, D-PBTN shows superior
performance over DEPN, both with respect to AUCROC
and AUCPR. PBTN did not perform better than random
guessing on all runs with missing values (AUCROC ≈ 0.5).
Both D-PBTN and DEPN show a decrease in the qual-
ity of the inferred network with increasing amounts of
missing observations. In spite of this, even with 50% of
missing data, both approaches still perform significantly
better than guessing (both p < 0.0001, Welch’s t-test
on AUCROC values). Median AUCROC decreased from
0.85 to 0.58 (D-PBTN), 0.77 to 0.53 (DEPN) and 0.75 to
0.52 (PBTN) when comparing the 0% to the 50% miss-
ing value performance. For each considered amount of
missing data, D-PBTN outperformed DEPN (0% miss-
ing: AUCROC 0.85 vs. 0.77, p < 0.0001; 16% missing:
AUCROC 0.72 vs. 0.68, p < 0.0001; 33% missing: AUCROC
0.63 vs. 0.58, p < 0.0001; 50% missing: AUCROC 0.58 vs.
0.53, p = 0.0029); results are comparable for AUCPR, see
Table 1.
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Table 1 Performance comparison of D-PBTN, PBTN, DEPN and BDAGL on simulated data

AUCROC

Network SN1 SN2 SN3

Noise 0% 16 % 33% 50% 0% 0% 0% 0% 0%

Missing 0% 0% 0% 0 % 16 % 33% 50% 0% 0%

D-PBTN 0.85 0.68 0.64 0.56 0.72 0.63 0.58 0.78 0.66

PBTN 0.75 0.51 0.51 0.51 0.46 0.51 0.52 0.75 0.65

DEPN 0.77 0.63 0.58 0.54 0.68 0.58 0.53 0.60 0.53

BDAGL 0.66 0.66 0.65 0.65 - - - 0.75 0.47

AUCPR

Network SN1 SN2 SN3

Noise 0% 16 % 33% 50% 0% 0% 0% 0% 0%

Missing 0% 0% 0% 0 % 16 % 33% 50% 0% 0%

D-PBTN 0.80 0.48 0.43 0.33 0.52 0.41 0.36 0.58 0.45

PBTN 0.79 0.58 0.58 0.58 0.18 0.20 0.23 0.75 0.58

DEPN 0.69 0.41 0.33 0.29 0.39 0.35 0.31 0.41 0.18

BDAGL 0.19 0.19 0.19 0.20 - - - 0.53 0.28

Shown are achieved values of the area under the ROC curve (AUCROC ) and the area under the PR curve (AUCPR). Values shown are median values over 100 iterations.
Inference was performed on the SN1 data, with data with different levels of noise and missing values, on the SN2 data including a negative feedback loop, and on the
SN3 (KEGG) data set. Note that BDAGL cannot handle missing values. The upper part of the table shows the area under the ROC curve, while the lower part of the table
shows the area under the PR curve.

Effect of noise
We next tested the effect of noise on inference perfor-
mance, see Figure 1C for AUCROC , Additional file 3:
Figure S2 for AUCPR, and the summary in Table 1. To
simulate noise, we randomly changed individual measure-
ments in SN1 from 0 to 1 and vice versa. Network infer-
ence was performed on the resulting data (with no missing
values), with parameters as described above, and resulting
in comparable running times. All four approaches showed
decreasing performance for increasing levels of noise,
with median AUCROC decreasing from 0.85 (0% noise) to
0.56 (50% noise) for D-PBTN, from 0.77 to 0.54 for DEPN,
from 0.75 to 0.51 for PBTN, and from 0.66 to 0.65 for
BDAGL. D-PBTN was the best performing method using
AUCROC as performance measure, whereas PBTN was
not better than guessing, with median AUCROC = 0.51
already at 16% noise. In contrast to this, we observed
good AUCPR performance of PBTN, with AUCPR = 0.58
at all noise levels. Directly comparing D-PBTN with the
non-time-series version PBTN, we observed that AUCROC
results for PBTN were inferior to D-PBTN at all noise lev-
els, whereas PBTN showed better AUCPR on data with
higher levels of noise. This is a very intersting observation,
which we discuss further in the Discussion section below.
BDAGL showed very robust performance for increas-
ing noise levels, consistently yielding low, but stable
AUCROC ≈ 0.65, but with very low AUCPR ≈ 0.19. We
observed a further performance breakdown for BDAGL
when noise levels increased beyond 50% (data not shown).

Finally, comparing D-PBTN with DEPN, even with 50% of
the data wrong, both approaches are significantly better
than random guessing (both p < 0.0001), and D-PBTN
outperforms DEPN for all noise levels (0% noise: AUCROC
0.85 vs. 0.77, p < 0.0001; 16% noise: AUCROC 0.68 vs. 0.63,
p < 0.0001; 33% noise: AUCROC 0.64 vs. 0.58, p = 0.0014,
50% noise: AUCROC 0.56 vs. 0.54, p = 0.0052); results for
AUCPR were qualitatively equivalent, see Additional file 3:
Figure S2 and Table 1.

Overexpression experiments
As a further test of the method, we assessed the use of
overexpression data with D-PBTN, using the SN1a data
set. Model parameters were chosen as for the knockdown
experiments above.

Results were comparable to results obtained using
the knockdown data, with AUCROC = 0.88 (Knockdown:
0.85) and a AUCPR = 0.79 (Knockdown: 0.80) for D-
PBTN. For comparison, we also used DEPN with the
overexpression data. This resulted in an AUCROC = 0.63
and AUCPR = 0.62, both inferior to the D-PBTN results.
We note that neither BDAGL nor PBTN in its original
implementation are able to handle overexpression data,
and could therefore not be included in the comparison.

Effect of network topology and model assumptions
Data SN1 were simulated using the model underlying our
approach. Results may thus favor D-PBTN and PBTN.
Furthermore, artificial topologies may not be represen-
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tative of real biological networks. We therefore sampled
“real” subgraphs from the KEGG database, and simulated
data using a different model (section “Data simulation”).
The obtained data set SN3 was used to assess performance
of D-PBTN, PBTN, BDAGL and DEPN. D-PBTN prior
and MCMC and PBTN parameters were chosen as above,
except for the parameter p of the binomial prior on τ ,
which was set to p = 0.2, resulting in a slightly smaller
expected value for τ . Results for BDAGL and DEPN were
obtained as described above.

Figure 1D and Additional file 4: Figure S3 show AUCROC
and AUCPR results obtained, respectively, and all results
are summarized in Table 1. Median AUCROC values
achieved were 0.66 (D-PBTN), 0.65 (PBTN), 0.53 (DEPN)
and 0.47 (BDAGL); Median AUCPR values were 0.45 (D-
PBTN), 0.58 (PBTN), 0.18 (DEPN) and 0.28 (BDAGL).
AUCROC results for D-PBTN, PBTN and DEPN are statis-
tically significantly better than guessing ( p < 0.0001). D-
PBTN outperformed DEPN both with respect to AUCROC
and AUCPR (Welch two sample t-test, both p < 0.0001).
We observed that DEPN had particular difficulties when
measured time points were far apart in time, with sev-
eral unobserved intermediate steps between them. D-
PBTN, which in contrast to DEPN were specifically
designed for time course data, did not exhibit this prob-
lem. Notably, the non time-series method PBTN showed
only marginally inferior AUCROC than D-PBTN (median
AUCROC = 0.66 D-PBTN vs. 0.65 PBTN, p = 0.051),
but superior performance in terms of median AUCPR
(0.45 D-PBTN vs. 0.58 PBTN). However, in contrast to
D-PBTN, PBTN results are characterized by high variabil-
ity (see Additional file 4: Figure S3, inter quartile range
(IQR) AUCD−PBTN

PR = 0.155, IQR AUCPBTN
PR = 0.431),

and mean AUCPR values are very similar between the two
approaches (0.457 D-PBTN vs. 0.46 PBTN). A statistical
test comparing the AUCPR values from the 100 replicate
runs of the two approaches shows no significant difference
in performance measured by AUCPR ( p = 0.9156, Welch
two sample t-test).

We next evaluated the effect of negative feedback loops
on network inference, using data set SN2. This is a diffi-
cult problem, as the feedback can only be inferred from
the temporal evolution of the network. Parameters for
Markov chains and prior were set as above, using 5 sub-
populations with 3 chains each in sampling. This resulted
in a running time of 16 hours (D-PBTN). Using the full
data set, D-PBTN achieved a median AUCROC of 0.78
and median AUCPR of 0.58; DEPNs achieved a median
AUCROC of 0.60 and median AUCPR of 0.41. Median
AUCROC performance values of PBTN and BDAGL were
both 0.75, and were superior to DEPN, but inferior to D-
PBTN. In line with results on data set SN3, we observed
good AUCPR performance of the non time-series method
PBTN (median AUCPR 0.75 PBTN vs. 0.58 D-PBTN),

however, in contrast to D-PBTN, PBTN could not infer
the feedback loop between nodes 7 and 4.

Additional file 5: Figure S4A shows the distribution of
edge weights obtained with D-PBTN, indicating that the
posterior distribution (4) is unimodal. Using only obser-
vations of proteins 6 and 7, unique networks can no longer
be recovered (Additional file 5: Figure S4B). Probabili-
ties for individual network topologies or even edges can
be computed based on the sampled points, and can then
be used e.g. to design experiments to resolve the true
underlying network (Figure 2).

Robustness with respect to model hyperparameters
Since our model contains parameters to be set by the user,
we next analyzed how robustly networks were inferred for
varying model hyperparameters, using data set SN1. We
varied γ in equation (1) by up to ±50%. For changes of
γ by the maximum change of ±50% tested, the change
observed in inference performance was a decrease of
23.8% for AUCROC , and 26.5% for AUCPR (Additional
file 6: Figure S5). Of note, even for a change by 50%, D-
PBTN still performed significantly better than random
guessing (AUCROC 0.643, AUCPR 0.593). We furthermore
studied the influence of changing the prior hyperparam-
eters q and s of the prior p(wi,j) (equation (6)), changing
them simultaneously by up to ±20% (Additional file 7:
Figure S6, panel A and B), or individually by up to 50%
(supplementary Figure S6, panel C and D). This resulted
in a maximum change of 24.7% in AUCROC and 22.3%
in AUCPR for individual changes of q by 50%, decreas-
ing AUCROC to 0.64 and AUCPR to 0.59, and changes by
11.7% and 12.6% for AUCROC and AUCPR, respectively,
for changes of s by 50%. We then tested the influence of
changing the parameters n and p of the binomial prior on
τ by 50%, observing only a relatively minor impact of these
parameters on performance (changes in AUCROC between
0.797 and 0.856, changes in AUCPR between 0.719 and
0.824). A more significant influence was observed for the
parameters r0 and s0 of the negative gamma prior on w0,
which influences the baseline activity level of unregulated
nodes, see Additional file 8: Figure S7. Overall, robust-
ness analysis indicates that inference is reasonably stable
for varying hyperparameters; still, some care should be
exercised in choosing values.

Inferring ERBB-mediated signal transduction
To test D-PBTN on real data, we used publicly avail-
able data from Fröhlich et al. [34], regarding 16 proteins
involved in ERBB signaling. The data comprises 3 repli-
cate measurements for 10 of the 16 proteins, measured
after 16 different knock-downs using RNA interference,
including 3 combinatorial knockdowns. Measurements
were taken at two different time points, directly before
stimulation with EGF, and after 12 hours of stimulation,
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Figure 2 Inference of negative feedback cycles. The Figure shows reconstructed network topologies on simulated data SN2, using the full data
set (panel A) and partial data with observations only for proteins 6 and 7 (panel B). In the latter case, no unique network can be identified anymore.
Clustering of sampled w groups topologies according to structural similarity. Only one cluster arises for the complete data (panel A), whereas four
major different clusters arise on partial data (panel B). Shown are median networks from the four clusters, together with cluster probabilities
computed as the fraction of networks in the cluster to the total number of sampled networks. Edge thickness indicates strength of support for the
edge within the cluster (thick solid: > 80% of samples within cluster, thin solid: > 60%, dashed: > 40% support), black lines indicate activations, red
lines inhibitions.

using reverse phase protein arrays. We discretized the
normalized data using the midpoint of the negative and
positive control medians as discretization threshold. Net-
work inference was performed in 10 subpopulations with
5 chains each, sampling over 106 steps with a burn-in
of 8,500 steps. Parameters q and s were set to 0.35 and
14, respectively, corresponding to a fairly strict regular-
ization. We set the stochasticity parameter γ to γ = 8,
to obtain a slightly more deterministic behavior of the
model than in case of the simulation study. Rate and
shape parameters of the gamma prior p(w0,i) were set to
r0 = 10, s0 = 17, keeping unregulated nodes in the “off”
state, and parameters of the binomial prior p(τ ) were set
to n = 20 and p = 0.4, allowing for a relatively large
number of model steps between the experimental mea-
surements. Computation time took approximately 1590
minutes, or roughly 26.5 hours. Clustering of the 106 sam-
pled weight vectors w shows only a single cluster with high
probability, indicating a unimodal posterior. To obtain a
single network for visualization purposes and further bio-
logical discussion of inferred edges, we used a threshold
δ = 0.65 × max |wi,j| for network discretization, includ-
ing only edges with sample median w̄i,j ≥ δ in the further
evaluation - in words, edges were only included if the
median of all points sampled for the corresponding edge
was at least 65% of the maximum edge value sampled.
This results in a network with comparable number of
edges as the gold standard network shown in Additional
file 9: Figure S8, constituting a tradeoff between false
positive and false negative edges. We compared results
obtained using D-PBTN with the non-time series ver-
sion PBTN [35], as well as DEPN. Results for DEPN were
taken from the original publication [34], the authors do
not report AUC ROC and PR values for their method.
Figure 3A shows the resulting network using D-PBTN,

and Table 2 summarizes the results obtained using D-
PBTN, PBTN and DEPN. Notably, without inclusion of
any additional prior knowledge, both D-PBTN and DEPN
show similar specificity and accuracy, but D-PBTN is both
more sensitive and has higher precision than DEPN. The
dynamic version D-PBTN outperform PBTN in all perfor-
mance measures used, showing the additional value of the
temporal information in the data when using this method.

The inferred network (without using a network prior)
is shown in Figure 3A, and displays significant cross-talk
in ERBB-signaling. At the surface receptor level, D-PBTN
predicts cross-talk between EGFR, ESR and IGFR, as
recently confirmed experimentally [55]. We furthermore
predict a direct interaction between AKT and MAPK,
linking the corresponding pathways. In fact, involve-
ment of MAPK signaling in AKT activation was recently
reported [56]. At the transcription factor level, D-PBTN
predicts an interaction between CDK4 and MYC, in line
with observed expression changes of CDK4 and CDK6
following MYC degradation [57].

Inference quality improves dramatically when prior
knowledge is provided. We used the literature network
presented in Fröhlich et al. [34] as prior knowledge, with
q = 2 and s = 1, and μi,j = +3 in case of an activation, −3
in case of an inhibition, or 0 in case of no regulation in
the prior network. We note that this prior network alone
yields superior results than D-PBTN without any prior
knowledge (compare Table 2), emphasising the impor-
tance of using a network prior on this data set. Network
inference was performed as above, resulting in the net-
work depicted in Figure 3B. Obtained results are superior
to both, using prior knowledge alone, as well as using
only the experimental data (Table 2). To assess robustnes
of these inference results with respect to model hyperpa-
rameters, we furthermore performed a sensitivity analysis
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Figure 3 Reconstructed ERBB-mediated signaling network. The plots show inferred network topologies for reverse phase protein array data
acquired after stimulation of ERBB signaling and knockdowns of proteins involved in ERBB signaling. True positive edges, using high-confidence
interactions in the STRING database as reference, are shown as solid black lines, newly predicted edges are shown as orange lines. True and false
negatives are not depicted for the sake of readability of the plot. Edge thickness indicates strength of support for the edge (thick solid: > 80% of
samples, thin solid: > 60%, dashed: > 40% support). A: Network inferred without using any prior knowledge, B: Network inferred using the literature
interactions reported by [34] as prior knowledge for network inference.

by modifying model hyperparameters individually by up
to ±50%, and evaluated changes in resulting AUC ROC
and AUC PR, compare Figure 4A and B. This analysis
indicated that results are relatively stable, with the most
influential parameter being the stochasticity parameter γ .

We evaluated predictions using IPA (Ingenuity), and
could find additional evidence for most of the predicted
edges: D-PBTN predicts regulations of IGFR, MAPK
and CDK6 by ERBB3. Indeed, binding of ERBB3 and
IGFR has been shown in lysate from SkBr3 cells resistant
to trastuzumab by immunoprecipitation [58]. Similarly,
there is experimental evidence for an activation of MAPK
by ERBB3, as we predicted [59,60]. The inferred acti-
vation of CDK6 by ERBB3 to our knowledge has not
been reported before, and may warrant further exper-
iments to confirm or falsify this prediction. Some evi-
dence also exists for the predicted strong activation of
MYC by ESR. Both proteins have been shown by affinity

chromatography to bind to one another [61], and blocking
of ESR1 was recently shown to decrease MYC expression
[62]. Similarly, activation of AKT increases CCND and
MYC expression [63,64], and a regulation of CCNE by
MYC [65,66] and the activation of CCND by MAPK [67]
have been demonstrated experimentally. Interestingly, D-
PBTN predicts an activation of MYC and CCNE by IGFR.
Both interactions to our knowledge have not been pre-
viously reported, and may be interesting candidates for
experimental validation.

Discussion
In this manuscript, we present D-PBTN, a novel method
to infer signal-transduction networks from time course
perturbation data. We evaluate D-PBTN in an exten-
sive simulation study, and demonstrate its application on
experimental data regarding ERBB signaling. The simula-
tion study shows stable inference results in light of missing

Table 2 Performance comparison ERBB signaling network

Sensitivity Specificity Accuracy Precision AUCROC AUCPR

D-PBTN 0.44 0.83 0.75 0.41 0.72 0.64

PBTN 0.20 0.77 0.66 0.20 0.52 0.31

DEPN 0.26 0.86 0.73 0.33 not avl. not avl.

D-PBTN (+Prior) 0.59 0.90 0.84 0.62 0.78 0.70

DEPN (+Prior) 0.59 0.87 0.81 0.55 not avl. not avl.

Prior network 0.48 0.87 0.79 0.5 - -

Achieved sensitivity, specificity, accuracy and precision for the inference of ERBB signaling [34]. Shown are results of D-PBTN, PBTN and DEPN, with and without prior
information (+Prior). The last row shows results of the prior network alone. Network inference was assessed using STRING as gold standard. Results for DEPN were
taken from Froehlich et al. [34], authors do not report AUCROC or AUCPR values.
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Figure 4 Hyperparameter sensitivity analysis ERBB network. The Figure shows sensitivity of the AUCROC (panel A) and AUCPR (panel B) of the
ERBB network (with literature prior) with respect to changes in model hyperparameters. Model parameters μ, s, q, γ , r0 and s0 where changed by up
to ±50%, and inference was repeated for each parameter choice. Shown are resulting values for the area under the receiver operator characteristic
(AUCROC ) and the area under the precision-recall (AUCPR) curves. The analysis indicates that inference results are reasonably robust to changes in
model hyperparameters, with the stochasticity parameter γ being the most critical parameter for inference performance.

data and noise, and reasonable robustness with respect
to model hyperparameters. On the ERBB application, we
have run the inference with and without a network prior,
and provide both results for comparison in Figure 3. While
the overall topology is similar whether or not a prior net-
work is used, there are significant differences in individual
edges. The quality of network inference with a network
prior clearly depends on the quality of the prior used as
well as on the amount and quality of experimental data
available, we therefore recommend to carefully evaluate
the effect a given network prior has. In our example, there
is experimental evidence for many of the predicted inter-
actions, both from the run with and without network
prior, directly confirming the quality of the inference.
Furthermore, in addition to confirming known interac-
tions, D-PBTN predicts several novel edges, which may be
interesting candidates for experimental validation.

Running time remains a major concern with D-PBTN,
mainly due to the time required for sampling from the
posterior distribution. Each single sampling step requires
running time O(KTN2), where K is the number of per-
turbations, T is the number of (equidistant) time steps,
and N is the number of nodes in the network. This can be
easily seen from the likelihood function (2), which essen-
tially iterates over all time points, perturbations and nodes
in the network, and computes equation (1) in each step,
which again iterates over all nodes. Running time for the
likelihood dominates the time required for the prior dis-
tribution, hence the total running time for the posterior
is O(KTN2). Unfortunately, the shape and complexity of
the likelihood function, and thus the number of sampling

steps required to sample from the posterior p(D|�) (both
to reach the stationary distribution of the chain, and num-
ber of steps required to sufficiently traverse the support
of the posterior to get a good representation of the dis-
tribution in the sample), also depends on K, T and N
in a nontrivial way, and the choice of required sampling
steps (with associated impact on total running time of
the algorithm) is a nontrivial problem. Clearly running
time increases linearly with the number of sampling steps,
but how exactly the minimum number of sampling steps
required depends on K, T and N is unclear.

While the present implementation of D-PBTN is a
non-parallel implementation, evolutionary MCMC is
straightforward to parallelize, allowing for a very efficient
parallel implementation of the sampler. In practical terms,
running time on the SN1 example (7 nodes) was approx-
imately 7.4 hours with the present, non-parallelized ver-
sion of the algorithm, and computations much beyond the
size of the ERBB network with its 16 nodes appear com-
putationally prohibitive without further parallelization.
An efficient parallel implementation on a larger compute
cluster in principle should make D-PBTN suitable also for
“larger” network inference problems with several dozen,
possibly up to a few hundred nodes, but this is clearly not
an approach that is suitable for networks with thousands
of proteins, let alone proteome-wide models.

As with all Bayesian approaches, prior distributions
and prior hyperparameters impact results, and need to
be carefully chosen. Reasonable values for some of the
parameters can be estimated from biological expectations,
for example the expected level of “connectedness” in a
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network can be used to estimate parameters q and s of the
prior on w, or information about the speed of signal trans-
duction in a network could be used to estimate hyperpa-
rameters for the prior on τ . However, still a significant
amount of “gut feeling” and experience are required to
get good estimates. While our simulation study indicates
reasonable stability with respect to parameter changes,
a possible extension of our work is to employ empirical
Bayes’ approaches to set model hyperparameters [17,18],
or, granted enough experimental data and compute time
are available, crossvalidation-schemes could be used for
hyperparameter estimation.

The comparison between D-PBTN and the non time-
series version PBTN on the different simulated data sets
gave some very interesting results. While D-PBTN out-
performed PBTN on all data sets when AUCROC was used
as performance measure, PBTN yielded higher median
AUCPR than D-PBTN on datasets with high levels of
noise, or data simulated using a different underlying math-
ematical model. AUCPR in contrast to AUCROC is less
influenced by an unequal distribution of class labels (as
occurs in sparse networks), the superior results of PBTN
over D-PBTN under certain conditions are therefore of
relevance for the choice of inference method. It can be
shown that if a ROC curve for method A dominates a
ROC curve for method B, then also the corresponding PR
curve for method A dominates the PR curve for method
B, and vice versa [68]. The inverted ranking of D-PBTN
and PBTN in AUCROC and AUCPR implies that the ROC
curves (and by the same argument the PR curves) of D-
PBTN and PBTN do not dominate one another. Rather,
there are certain domains in the ROC and PR plots where
one or the other method becomes better, and correspond-
ingly the curves for D-PBTN and PBTN intersect. This
in particular occured in our simulation study for the data
with high levels of noise. It is tempting to speculate that
under conditions with many “wrong” data points, focus-
ing on a stable steady state (as done with PBTN) may
have advantages over trying to capture the full dynamics
of the system, as D-PBTN does. This point will require
further research in the future, to determine what exactly
determines which of the two approaches is superior under
given conditions, and to provide guidelines for method
selection. On the other hand, if the interest is in feed-
back loops and cycles in the networks, PBTN should not
be used, as this approach cannot infer cyclic networks.
Interestingly, on the ERBB application example, D-PBTN
clearly outperformed PBTN both with respect to AUCROC
and AUCPR.

Conclusion
In this manuscript, we have developed a new method to
infer signal transduction networks from time course per-
turbation data. Based on relatively few time points after

a large number of different perturbations, our method is
able to reconstruct the underlying signaling network with
high accuracy. The mathematical approach we employ is
based on dynamical Bayesian networks, and assumes dis-
crete states and time steps, at which signaling molecules
are either “on” or “off”. The approach is therefore suit-
able to experiments where protein activation or protein
expression is completely or almost completely switched
off, such as with RNAi knockdowns.

Several related approaches exist. Our work extends
PBTN by explicitly taking time into account. In con-
trast to PBTN, the method can thereby infer feedback
and feedforward loops. Provided sufficient time-resolved
measurements after (possibly combinatorial) knockdowns
are available, a unique network can be inferred using D-
PBTN. This is in contrast to methods such as PBTN,
DEPN and Nested Effects Models (NEMs), which only
return equivalence classes or single networks out of an
equivalence class. In this regard, our method is com-
parable to dynamic DEPNs and dynamic NEMs, which
also explicitly take time course data into account. How-
ever, D-NEMs have been developed for “effect” observa-
tions after knockdowns, which only provide very indirect
information about the underlying network. D-DEPNs,
on the other hand, require long time series and work
most efficiently if a relatively small number of perturba-
tions are carried out. The typical experimental scenario
encountered in practice is different, comprising short time
courses after a large number of perturbations. D-PBTN
have explicitly been developed for this situation. Due to
the Bayesian approach pursued, prior biological knowl-
edge can easily be integrated into D-PBTN inference, and
marginalization over unobserved proteins or time points
is straightforward and very efficient due to the likelihood
simulation.

We employ an MCMC approach to sample from the
posterior distribution of models given the experimental
data, which allows it to compute probability distributions
over alternative network topologies. This is particularly
useful if multiple models explain the data equally well, and
can be used to design additional experiments to then dis-
tinguish further between high-scoring topologies. Using
halite clustering, similar models can be grouped together
and probabilities estimated from the MCMC samples.

Overall, D-PBTN is a powerful approach for net-
work inference when time-resolved measurements of the
response of a dynamical system after perturbation are
available. Under these conditions, the approach outper-
forms other state-of-the-art methods. Most approaches
available in the literature consider either changes in steady
state levels after perturbation, or the temporal dynamics
of an unperturbed system for network inference. D-PBTN
makes use of both the dynamical aspects and the per-
turbation effects in network reconstruction. We present
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an extensive simulation study to evaluate the approach,
showing stable performance under varying conditions of
noise and missing values in the data, and we demonstrate
the application of D-PBTN to infer signaling networks
in the ERBB system. Here, our approach both recon-
firms known interactions, as well as suggesting some novel
edges as candidates for further experimental study.

Availability and requirements
Project name: Dynamic Probabilistic Threshold
Networks
Project home page: http://www.kaderali.org/software/
dpbtn.html.
Operating system(s): Tested on Microsoft Windows
Programming language: C#
Other requirements: None
License: GNU GPL
Any restrictions to use by non-academics: None

Additional files

Additional file 1: Supplementary material. Additional file one contains
supplementary text with additional information.

Additional file 2: Supplementary Figure S1. Effect of the amount of
unobserved proteins on inference performance (SN1 reconstruction).
Shown is the distribution of the area under the precision recall curve
(AUCPR) for 100 replicates of simulated data sets, over the fraction of
unobserved proteins, for D-PBTN, DEPN, BDAGL and PBTN on dataset SN1.
The dashed line shows expected AUCPR results for random guessing.

Additional file 3: Supplementary Figure S2. Effect of noise on inference
performance (SN1 reconstruction). The Figure shows the distribution of
AUCPR values obtained for different levels of noise on SN1, for D-PBTN,
DEPN, BDAGL and PBTN. The dashed line shows expected AUCPR results for
random guessing.

Additional file 4: Supplementary Figure S3. Inference performance on
the reconstruction the KEGG networks. This Figure shows performance of
the D-PBTN, DEPN BDAGL and PBTNapproaches on subnetworks taken
from the KEGG database, with data simulated as described in methods.
Shown are AUCPR values of 100 simulated data sets, generated from ten
different KEGG subnetworks. The dashed line shows expected AUCPR
results for random guessing.

Additional file 5: Supplementary Figure S4. Inference of negative
feedback cycles: Bean-plot showing the distributions of inferred edge
weights. A unimodal distribution is observed with the full data (panel A),
whereas no unique network can be identified when only observations of
two downstream proteins are given.

Additional file 6: Supplementary Figure S5. Effect of model parameters
on performance: The Figure shows the effect of varying the stochasticity
parameter on the AUC values (AUCROC and AUCPR). Network inference has
been done using data simulated from Simulated Network 1. AUCROC values
are shown as red squares, AUCPR values are shown as blue circles.

Additional file 7: Supplementary Figure S6. Effect of model parameters
on performance: The Figure shows the effect of varying the rate and shape
parameter q and s of the prior p(w) on the AUC values. Network inference
has been done using data simulated from Simulated Network 1. Panels A
and B: Effect of simultaneous changes of q and s by up to 20% on AUCROC
and AUCPR . Panels B and C: Effect of changing parameters q and s
individually by up to 50%.

Additional file 8: Supplementary Figure S7. Effect of model parameters
on performance: The Figure shows the effect of varying the rate and shape

parameters r0 (Panel A) and s0 (Panel B) of the prior on the bias weight w0
by up to 50%. Network inference has been done using data simulated from
Simulated Network 1. AUCROC values are shown as red squares, AUCPR values
are shown as blue circles.

Additional file 9: Supplementary Figure S8. Experimental reference
network extracted from STRING for ERBB network inference.
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