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Abstract: The Notch signaling pathway is a critical player in embryogenesis but also plays various
roles in tumorigenesis, with both tumor suppressor and oncogenic activities. Mutations, deletions,
amplifications, or over-expression of Notch receptors, ligands, and a growing list of downstream
Notch-activated genes have by now been described for most human cancer types. Yet, it often
remains unclear what may be the functional impact of these changes for tumor biology, initiation, and
progression, for cancer therapy, and for personalized medicine. Emerging data indicate that Notch
signaling can also contribute to increased aggressive properties such as invasion, tumor heterogeneity,
angiogenesis, or tumor cell dormancy within solid cancer tissues; especially in epithelial cancers,
which are in the center of this review. Notch further supports the “stemness” of cancer cells and
helps define the stem cell niche for their long-term survival, by integrating the interaction between
cancer cells and the cells of the tumor microenvironment (TME). The complexity of Notch crosstalk
with other signaling pathways and its roles in cell fate and trans-differentiation processes such as
epithelial-to-mesenchymal transition (EMT) point to this pathway as a decisive player that may
tip the balance between tumor suppression and promotion, differentiation and invasion. Here we
not only review the literature, but also explore genomic databases with a specific focus on Notch
signatures, and how they relate to different stages in tumor development. Altered Notch signaling
hereby plays a key role for tumor cell survival and coping with a broad spectrum of vital issues,
contributing to failed therapies, poor patient outcome, and loss of lives.

Keywords: Notch signaling pathway; tumor progression; oncogenic mutations; tumor suppressor
gene; gain and loss of function mutations (GOF and LOF); epithelial-mesenchymal transition (EMT);
angiogenesis; metastasis; tumor microenvironment (TME); personalized cancer medicine

1. Introduction

As tumors grow, they often invade and damage surrounding healthy tissues. As both
the result and driver of increasing tumor heterogeneity, altered environmental signaling
from the tumor microenvironment (TME), such as stromal cancer-associated fibroblasts
(CAFs) and the extracellular matrix (ECM), some tumor cells may acquire an increasingly
motile phenotype. Such cells may leave the primary tumor site, penetrate the TME,
ECM, and blood and lymph vessels, persist in the blood circulation, and eventually gain
the potential to disseminate throughout the entire body. Tumor progression represents
a stochastic genetic process, followed by the selection of cells with the most beneficial
phenotypic growth advantages. This requires integrating various growth advantages
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at multiple mechanistic levels that, when combined, support tumor cell survival, neo-
angiogenesis, or evasion of the immune system in both the blood stream and the metastatic
sites. Successful metastasis must be followed by adaptation to the new and selective
conditions found in the host environment, including re-connection to blood vessels for
the metastatic lesions to grow. Additional aspects include tumor dormancy (survival
of small numbers of tumor cells or cancer stem cells (CSCs) during and after therapy)
and increasing “stemness” of tumor cells, thus supporting the self-renewal potential and
positively selective advantage of advanced cancer cell populations. This ability to form
colonies at new sites represents the primary cause of death in cancer patients and is very
prominent in carcinomas, which represent 90% of all solid tumors, and are derived from
epithelial cell types. Advanced epithelial cancer cells often show a high level of “cellular
plasticity” and can actively alter phenotypic features such as their cytoskeleton, the mode
and type of cell motility, or adjust and even hijack normal, developmental differentiation
patterns to address their needs in the new environment. For example, epithelial tumor
cells may gain mesenchymal properties, acquiring more motile and dynamic traits, which
are characteristic for cell types like smooth muscle cells or fibroblasts, or many blood
cells. One such mechanism is now well characterized, but far from completely understood:
EMT, or epithelial-to-mesenchymal transition. EMT provides strong dynamic, motile, or
invasive properties to epithelial cells that tend to depend and thrive on strong cell–cell
contacts and adhere strictly to epithelial differentiation programs, until this balance is
tipped. Additionally, the type of invasion and motility observed can differ vastly with
the environment and conditions. This does not always correspond to our understanding
of EMT, and likely represents a highly dynamic and reversible adaptation to growth-
supporting niches within the TME. Thus, it is of special interest to understand the complex
and interconnected mechanisms behind shape-shifting tumor phenotypes and the many
mechanisms of mimicry, engaged by cancer cells. This includes pathways that support
tumor cell survival and motility, protect from cell death (AAA or anoikis, apoptosis, and
autophagy), and promote overt cancer metastasis.

A central cell communication pathway that steers the type and outcome of cell–cell
interactions is Notch signaling. Thus, the aim of this review is to present the most recently
gained understanding, related to Notch signaling in the context of these fundamental and
extremely dynamic oncogenic processes. To further complicate things, Notch rarely acts
alone, and is intricately intertwined with many other signaling pathways and mechanisms.

2. Notch Signaling: Principles and Involvement in Physiological and Pathological
Processes

The principle of signal transduction in Notch signaling pathway is deceptively simple
and requires the entourage of two components: (a) one of the four Notch receptors (Notch1-
4) and (b) any one of its five ligands (Jag1-2 or Dll1, -3, and -4). Activation of the canonical
Notch signaling then occurs when a Notch receptor-expressing cell (receiving cell) makes
physical contact with a Notch ligand-expressing cell (sending cell or also named signaling
cell). Conformational changes in Notch receptors, due to mechanical forces exerted by
the sending cell, lead to the unmasking of Notch cleavage sites. A series of proteolytic
events executed by ADAM metalloprotease and gamma-secretase (γ-secretase) then result
in the release of the Notch intracellular domain (NICD) from the membrane, which quickly
translocates to the nucleus where it complexes with CSL (suppressor of hairless, also
known as RBPJ: recombination signal binding protein for immunoglobulin Kappa J region)
and MAML1 (mastermind-like protein 1). This converts the repressing CSL activity into
an activator of expression of numerous Notch response genes, including HES1, HES2 and
HES5, MYC, CCND1, and VEGF [1].

Under physiological conditions, Notch signaling is essential for vasculature develop-
ment and angiogenesis during embryogenesis [2] and neo-angiogenesis in wound-healing,
tissue repair, or in cancers [3]. Both endothelial cells and smooth muscle cells require
sustained Notch signaling for proper vasculature development [4]. In fact, disrupting the
balance between DLL and JAG ligands in endothelial cells during vessel formation results



Cells 2021, 10, 94 3 of 32

in disorganized and poorly perfused vasculature [5]. Expression of key Notch signaling
players in adult tissues is more restricted than during development. Nevertheless, cells
and tissues forming the adult vasculature remain positive for Notch signaling and express
both receptors and ligands. In particular, endothelial and vascular smooth muscle cells
express high levels of Notch receptors. This enables them to respond to rapid changes
in blood pressure by thickening of the vasculature wall, and is regulated by JAG/Notch
signaling [6,7]. Expression of the DLL4 ligand is more restricted and confined to small
capillaries and arteries in the adult [8]. Additionally, Notch is involved in the development
of the mammary gland and intestinal epithelium, and expressed in stem cells in both adult
tissues [9,10]. Activation of Notch receptors in mammary gland stem/progenitor cells
can further result in the stimulation of stem cell renewal and subsequent proliferation
of progenitor cells [11]. Investigating the true functions of Notch receptors or ligands
in the context of living cells and tissues is not straightforward, as mRNA- and protein
expression are not directly proportional to the level of pathway activation. Cells with active
Notch signaling might even show reduced expression of Notch ligands and/or receptors,
depending on protein expression levels within the same cell or neighboring cells (reviewed
in [12]). The type and ratio of Notch receptors to ligands; the exact nature of physical
contact; the quality, duration, and precise topology of interactions: all of this matters. In
addition, different Notch ligands can trigger very different responses, probably due to
differential activation rates and variable strength of the corresponding receptors. What
matters even more, is whether the ligand(s) and receptors are expressed on the same cell
(cis-acting) or in different cells (trans-acting). Finally, each Notch receptor (NOTCH1-4)
is by itself able to be activated by any one of the ligands, but downstream signaling may
still work differently. NOTCH receptors may even oppose the activity of other sister
receptor(s), which may result in very different cellular responses and phenotypes. For
example, NOTCH1 is frequently elevated in malignant mesothelioma, while NOTCH2
is reduced. Re-expression of NOTCH2 actively induced cell death in the same cells [13],
maybe pointing to conflicting signaling from two different Notch receptors.

The analysis of 1000+ cancer cell lines reveals that genetic alterations (mutations, dele-
tions, amplifications, and over-expression) in one NOTCH receptor are usually mutually
exclusive to comparable changes in the other three receptors, a pattern likely to be retained
from the corresponding original tumors (Figure 1a,b).

Interestingly, gain-of- and loss-of-function (GOF and LOF) mutations are about equally
distributed across these cell lines and contribute to the puzzling nature of gain versus loss
of Notch functions. Similar mutual exclusivity is observed for some of the ligands. For
example, mutation events in JAG1 and JAG2 are almost completely exclusive. Just to add
another level of complexity, the Notch signaling pathway also engages in crosstalk with
multiple other signaling pathways, maybe most prominently with the WNT, Hedgehog,
and hypoxia signaling and the PI3K/AKT/mTOR pathways. Such interactions between
signaling molecules also have a plethora of downstream effects (see Section 3.4). The
answer for this puzzling ambivalence may relate to the central function of Notch signaling
in development. Notch receptors typically transduce signals in response to ligands on
neighboring cells, which is critical for lineage-specific differentiation in metazoan tissues,
and induction of developmental patterning or segmentation. Only recently, it was demon-
strated that conditional activation of Notch in squamous cells activates a context-specific
gene expression program through lineage-specific regulatory elements [14]. Any disruption
of this differentiation signaling may lead to altered microenvironmental communication
in tissues, which may be of benefit for early or later steps in cancer progression, and very
much depends on the exact tissue type in which Notch mutations occur. GOF mutations
are characteristic for hematopoietic cancers, in which single cells are affected, such as T-cell
acute lymphoblastic leukemia (T-ALL) and B-cell chronic lymphocytic leukemia (B-CLL). In
solid tissues and cancers, alterations in Notch signaling appear to be bi-directional, and it is
the context that matters to which outcome is positively selected for at which stage of cancer
initiation or progression, cancer entity, and lineage-specific differentiation switches may be
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affected. It appears, for example, that early targeted inhibition of the Notch pathway may
specifically induce squamous epithelial malignancies. Nevertheless, the high mutation
rate of all four NOTCH receptors in a broad spectrum of cancer cell lines across many
different tumor entities indicates that these genetic aberrations may preferentially act as
driver mutations that promote cell proliferation and survival. Such mutations may also
promote progression and survival of cancer cells at later stages of progression in patients.
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3. The Relevance of NOTCH Mutations, Amplification, Pathways, and Signatures

In 1991, the first human homologue of the Drosophila developmental regulator TAN-1
was identified in human T-lymphoblastic leukaemia [15], as the target of chromosomal
translocations. At the same time, the first of four human TAN-1 homologues was identified
as a critical factor in mammalian embryonal organ and tissue development [16], later
also in hematopoietic stem or precursor cells [17]. TAN-1 had soon been renamed into
NOTCH1, and two additional human homologues NOTCH2 and NOTCH3 were mapped
to their corresponding chromosomal locations [18]. For most of this early time, NOTCH1
and its “new” homologues were mainly considered important differentiation-promoting
factors [19] that are highly conserved across species, but strictly confined to developmental
processes. Starting from 2000, new data indicated that Notch signaling may also be

https://www.cbioportal.org/study?id=ccle_broad_2019
https://www.cbioportal.org/study?id=ccle_broad_2019
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relevant for the initiation or progression of human tumors, such as small cell lung cancers
(SCLCs) [20] and Hodgkin’s and anaplastic large cell lymphoma [21]. The true relevance of
oncogenic Notch functions in cancer progression, however, remained elusive (and to some
degree, still does today). Nevertheless, these initial findings were already hinting towards
the outstanding future relevance of Notch mutations across many neoplasias. Eventually,
in the year 2004, the massive impact of recurrent oncogenic point mutations in NOTCH1
were identified in human T-ALL [22], pointing to NOTCH1 as a major proto-oncogene.
This seminal finding initiated the mapping of Notch receptors and ligands, and down- and
upstream Notch regulatory genes across almost all human cancer entities and subtypes,
which continues to this day. Soon, NOTCH1 mutations were also identified in other types
of leukemia as well [23]. Despite such compelling evidence, altered NOTCH receptor
expression and prominent NOTCH-regulated genes showed mixed and often contradicting
effects across different tumor types. Thus, it took much longer to unravel the now classic
canonical Notch pathway and Notch-related “gene signatures” in solid human cancers.

Changes in Notch signaling, expression, point mutations, deletions, and amplification/
over-expression of Notch-related loci and alleles have since been identified in almost
all solid cancers [24–27]. The question of which exact role Notch signaling may play in
tumor initiation versus tumor progression (including drug resistance, dormancy, stemness,
relapse, and metastasis) remains unclear and is debated for some tumor entities, maybe
with the exception for leukaemia (T-ALL and B-CLL), in which Notch mutations were
clearly identified as initiating oncogenic events. This frequent functional uncertainty
supports the notion that other signaling pathways linked to Notch may be critical, possibly
tipping the balance towards beneficial, selective growth advantages for tumor cells that
have either activated or inactivated Notch signaling. This scenario is also supported
by mathematical simulations by Vujovic and collaborators [28]. Yet, once the balance is
effectively tilted towards the promotion and survival of cancer cells, Notch signaling might
increasingly fuel tumorigenesis, either by Notch ON or Notch OFF conditions. Here, we
translate this as GOF versus LOF genetic events.

3.1. Gain of Function NOTCH Mutations and Their Consequences

Point mutations that result in a gain of function (GOF) in terms of Notch signaling
have been most thoroughly investigated in leukemias like T-ALL [22]. Recurrent GOF or
oncogenic events in Notch receptors may be relevant also for other hematopoietic can-
cers. In many other tumor types, oncogenic vs. tumor suppressor functions of Notch
may strongly depend on the tissue of origin, the differentiation status, composition of the
TME, invasion of immune cells or immune cell evasion, and the genetic background: It
is clearly the context that matters most with Notch. For example, genetic GOF events of
Notch receptors (amplification or point mutations) that promote Notch activity appear to
support the initiation and progression of gliomas (neuronal differentiation, in [29]) and
other non-epithelial cancers, such as osteosarcoma (mesenchymal differentiation; in [30])
or SCLCs (neuro-endocrine differentiation, in [31]); although the evidence is controversial:
for example, recent articles report both oncogenic and tumor-suppressor functions for
NOTCH in glioma [29]. However, also in some carcinomas, or tumors of epithelial origin,
such as gastrointestinal (stomach, oesophagus) and colorectal cancers, GOF or oncogenic
Notch mutations appear predominant. Activating mutant Notch receptors may further
collaborate with frequent p53 mutations [32], thus promoting EMT and enhancing invasive
or aggressive phenotypes in various cancer types such as colorectal carcinomas and pancre-
atic cancer. This will be taken up further below. GOF Notch mutations have been described
as promoting EMT and invasive phenotypes in NSCLCs (non-small cell lung cancers) [33],
as well as promoting a drug-resistant phenotype, e.g., against gefitinib in lung cancer [34].
Cooperation with recurrent mutations that occur early in tumor progression, maybe most
prominently the p53 tumor suppressor, may further promote Notch-specific effects on
EMT and thus enhance aggressive properties [32], as well as promote drug resistance, as
demonstrated for cetuximab in HNSCC [35]. These findings in advanced lung cancers are
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in line with recent discoveries showing that EMT may be dispensable for metastasis, but
promotes cell survival and drug resistance [36], possibly with the help of Notch. These
findings also prompted us to focus on the role of Notch in EMT-related switches as a major
driver towards enhanced tumor aggressiveness and possibly metastasis (Section 4).

One of the well-established consequences of Notch signaling is maintenance of the
stem cell pool in various tissues, and the impact of Notch on lineage-specific differentiation
switches. Thus, it is not surprising to identify persistent Notch activation and GOF muta-
tions as a means to promote and maintain the stem-cell character or “stemness” of advanced
cancer cells, for example in oral cancers [37]. Although a subject of intense debate, these
and many other observations point to the possibility that NOTCH1 may act as a tumor
suppressor during the initiation of squamous carcinomas [38], but its tumor-promoting
functions may prevail in later stages of cancer progression. In breast cancers (BrCa), the
true functional impact of modulated NOTCH signaling remains particularly controversial
and complex. It now appears that most NOTCH mutations found in BrCa represent GOF
mutations, often linked to a simultaneous loss of hormone receptor functions [39]. This is
specifically the case in the aggressive and often treatment-resistant triple-negative (TNBC)
and basal-like carcinomas of the breast [40]. The aggressive behavior of these cancers may
be further promoted by concomitant BRCA1 or BRCA2 mutations, cooperating with Notch
signaling towards cancer progression. In BrCa, GOF Notch mutations and activation of
canonical Notch signaling appear generally linked to increased aggressiveness, promo-
tion of cell motility [41], EMT [42,43], and radiation [44] or chemotherapy resistance [45].
Tumor suppressors frequently mutated and lost in carcinomas, like PTEN (Phosphatase
and Tensin Homolog), are also often functionally linked to GOF Notch signaling activities,
as described for gastric cancers [46]. Their loss may result in a net activation of Notch
signaling. A growing body of evidence further hints to the key role of several microRNAs,
such as miR-182, as key mediators between altered Notch functions and cancer progres-
sion [47]. Similarly, loss of miR-449a was found to promote colon carcinogenesis, again
linked to NOTCH activity [48], and miR-195-5p regulates NOTCH2 expression in colorectal
cancer [49]. Blocking NOTCH signaling by a γ-secretase inhibitor (GSI) duly results in
enhanced radiosensitivity in two BrCa cell lines (MCF7 and T47D) [50]. Activating Notch
mutations are also prominent in inflammatory BrCa, which show particularly poor patient
outcome [51]. Generally, some of the most well characterized Notch-downstream genes
may also exert the most prominent GOF effects, such as SOX9, HES1 [47], or HES5 [52].

3.2. Loss-of-Function NOTCH Mutations in Cancers and Its Consequences

There is mounting evidence supporting that loss-of-function (LOF) Notch mutations
are strikingly predominant in epithelial cancer types or carcinomas, including squamous
skin carcinoma and basal-cell carcinomas [53], pancreatic [54], liver (via HES5, [52]), and
bladder cancers [26]. Functional inactivation or LOF of Notch-signaling can also reduce
expression of critical Notch-regulated genes like FBXW7, which acts itself as a potent
tumor suppressor [55]. The involvement of Notch mutations, and modulation of Notch
signaling, appears particularly significant in squamous cell carcinomas, e.g., of the lung
(LSCC), the head and neck (HNSCC, [56]), the oesophagus [57,58], and the skin (cutaneous
squamous cell carcinoma) [59]. NOTCH1 (and probably NOTCH3 and NOTCH4) may
be required for terminal or squamous differentiation of epithelial keratinocytes. Notch
activity in keratinocytes may thus be one of the outstanding hallmarks of “squamousness”,
the common features observed in these functionally similar epithelia, which are at least
partly retained in the epithelial cancer types or carcinomas that are derived from these [60].
In this context, it is not surprising that squamous cell carcinomas from different tissues
show striking histological similarities, indicating common differentiation patterns. This
may be in line with the observation that inactivating mutations in NOTCH1, or loss
of NOTCH1 due to deletions, occur early in the development of cutaneous squamous
cell carcinomas [61]. Corresponding genetic events also predispose the oro-pharyngeal
epithelium for tumorigenesis [62], and may therefore be outstanding early drivers of cancer
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initiation and progression. Specifically, NOTCH1 may play a dual role as either a tumor
suppressor or (more rarely) as a protooncogene, specifically in squamous carcinomas. The
true functional consequences for each Notch mutation found in a patients’ tumor cells
remain poorly understood and likely depend not only on the oncogenic nature, e.g., of a
certain NOTCH1 point mutation, but also on the mutational context of the tumor and its
remaining lineage-specific, in this case epithelial, differentiation potential, while not even
speaking of the interaction with the TME and the ECM.

Generally, there is also a strong link between altered Notch functions (typically, LOF)
and the TME [63]. This is again a prominent hallmark in epithelial cancers, even more
in squamous cell carcinomas. This characteristic feature likely indicates once again the
strong functional link observed between Notch functions (specifically NOTCH1 and 3)
and keratinocyte differentiation, a reminiscence of Notch signaling as a key pathway that
promotes epithelial tissue morphogenesis, differentiation, and maturation. The loss of
Notch’s differentiation-supporting functions has the potential to induce early stage skin
carcinogenesis [53]. It also strongly impacts on the integrity of the stromal microenvi-
ronment of the resulting squamous carcinomas. Similar associations between Notch and
alterations in the stromal TME are observed in adenocarcinomas, such as in colon cancer
progression [64]. This almost ubiquitous strong correlation between Notch and the integrity
of the stromal microenvironment may contribute to the frequently described induction of
EMT in several cancer types, such as lung cancer [65] (see chapter 4).

3.3. Ambivalence of NOTCH Signaling in Cancer Initiation and Progression

The question whether NOTCH receptor mutations result in gain or loss of Notch
functions is largely mediated by the activity of Notch downstream response genes, which
is often poorly understood. We will specifically address the modifying role of Notch
signaling on EMT via such downstream effectors in Section 4, which has also been reviewed
elsewhere [66]. The complex interactions between Notch and up- or downstream regulatory
mechanisms often make it difficult to understand the true functional impact of NOTCH
mutations and altered Notch signaling in the context of cancer cells and tissues. For
example, in glioma, NOTCH can act as both tumor suppressor and oncogene (reviewed
in detail in [29]). Oncogenic, activating Notch mutations recently identified in glioma
may specifically promote and maintain the stem-cell characteristics of glioma cells, the
most aggressive type of brain tumors in humans. However, Notch-inactivating LOF
mutations have also been found in glioma and other tumor types emerging from the
forebrain region [67]. In this case, Notch exerts tumor suppressor activities, especially
the NOTCH1 and NOTCH2 receptors, and functional Notch-mediators including RBPJ.
To add to this controversy, genetic activation of the Notch pathway has been found to
reduce glioma growth, and to increase patient survival, which may correlate to tumor
subtypes and lower-grade tumors. This bi-directional role is also supported by analyses of
the complex genetic and mutational landscape of gliomas [67] and their staggering clonal
heterogeneity [68]. These features are general hallmarks of aggressive tumors, including
advanced, metastasizing carcinomas. Again, it is mainly the context within the tumor
tissue that matters with Notch functionality.

It appears that LOF of Notch signaling may specifically promote progression in some,
predominantly epithelial cancers or carcinomas, possible also at early stages and even
tumor initiation. This can be explained by the loss of regulatory control of Notch over
epithelial pattern-formation processes, with a net growth advantage of cells suffering
such mutations. Further tumor progression, which often includes acquisition of inva-
sive/aggressive properties and EMT, may then be more frequently associated with Notch
GOF mutations, similar to reports on stem cell maintenance in some cancer types like
BrCa [69]. This GOF associated with tumor progression is supported by the characteriza-
tion of oncogenic mutations in NOTCH receptors in cancers such as colorectal carcinomas
(reviewed in [70]), breast cancers [71], and many cancer cell lines (Figure 1). These data
indicate that differential activation or inactivation of NOTCH receptors, ligands, and Notch
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downstream genes may be involved at different stages or progression and in different
microenvironments. Notch signaling may also change its mode of cooperation with other
signaling pathways during progression. Distinct steps of progression, which can involve
either activating or LOF mutations, may thus be highly characteristic and distinctive for
various tumor entities and tumor subtypes, as well as for their specific stages of progres-
sion and acquiring an aggressive phenotype. It is now believed that modulation of Notch
signaling contributes to the increasing heterogeneity observed in advanced and specifically
metastatic cancers [63], itself a hallmark of cancer progression and poor patient outcome.
This unique wiring of Notch signaling in a patients’ tumor may further promote the vast
individual differences observed between cancer patients [72], which increases in advanced
cancers. Thus, our understanding of Notch signaling and its impact may be critical for
future personalized medicine [73]. We have also seen that increased, persistent Notch
signaling is likely to be relevant for maintaining stem-cell characteristics of CSCs [74] and
may thus contribute to tumor relapse after therapy, also known as “tumor dormancy”,
or the persistence of occult micro-metastases, one of the main problems in current cancer
therapy that is leading to poor patient outcome and early deaths. Better understanding of
tumor relapse, therapy failure, acquired drug resistance, and subsequent metastasis are
considered the holy grail of personalized medicine. In this context, there is also a massively
increased interest in exploring the true role of Notch signaling for defining the “stem cell
niche” in cancers [75].

3.4. Context Truly Matters with Notch: CROSSTALK with Other Signaling Pathways

Increasing tumor heterogeneity, a hallmark of advanced, aggressive, and metastasizing
cancers, relies on complex interactions of tumor cells with each other, but also with stromal,
immune, and vascular cells. Most of the cell types that make up the TME also express
various components of the Notch signaling pathway (including receptors and ligands).
Maybe most importantly, they are simultaneously connected to multiple other signaling
pathways altered in cancers. Here, we will describe some of the best understood, and most
recently characterized Notch-related interactions between diverse cell types and signaling
pathways in solid cancers, although this has been recently reviewed elsewhere [76]. Maybe
the most important pathway known for crosstalk with Notch is the Wnt (Wingless) pathway
(Figure 2).

WNT factors are a family of secreted proteins (at least 19 in humans) that act by
binding and activating the Frizzled receptors (FZD). The 10 FZDs, all members of the
superfamily of G protein-coupled receptor (GPCRs), are usually expressed in conjunction
with membrane co-receptors, such as the Lipoprotein receptor-related protein (LRP)-5 or
-6, or tyrosine kinase (TK) receptors. In short, the canonical WNT pathway involves the
binding of WNT proteins to FZD and LRP5/6 factors, thus triggering phosphorylation of
LRP, followed by recruitment of Dishevelled (DVL) proteins from the cytoplasm to the
plasma membrane, eventually resulting in the inactivation of the β-catenin destruction
complex. Activation of this central signaling pathway thus results in the stabilization
and accumulation of β-catenin (CTNNB1), which translocates to the nucleus to interact
with TCF and LEF family transcription factors (TCF7, LEF1, TCF7L1, and TCF7L2). The
resulting transcription-activating complex switches multiple cellular processes on or off.
Lack of β-catenin regulation leads to the transformation of specific subtypes of colorectal
cancers, for example tumors carrying mutations in the adenomatous polyposis coli (APC),
a member of the β-catenin destruction complex. This results in the accumulation of β-
catenin and overexpression of downstream genes such as c-Myc and CyclinD1 [77–79].
These two factors are well-known drivers of cell cycle progression via the G1/S checkpoint,
although β-catenin is also involved in other cell cycle events, i.e., by promoting centrosome
cohesion [80].
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Figure 2. Notch crosstalk with other signaling pathways. Activation of Notch receptors by ligand-presenting cells results in
the release of the Notch intracellular domain (NICD), forming a transcriptional activator complex with CBF1, Suppressor of
Hairless, Lag-1 (CSL) and mastermind-like protein 1 (MAML). It also interacts with other signaling pathways, for example,
by binding to β-catenin and inducing its degradation. The Wnt/β-catenin pathway is involved in cell cycle regulation.
NICD also interacts with hypoxia-inducible factor 1-alpha (HIF1a) during hypoxia enhancing HIF1a transactivating activity.
Likewise, SMAD transcription factors, which are activated downstream the TGFR and BMP pathways, also interact with
NICD/CSL complex. Interactions with additional pathways include communication with Sonic Hedgehog (SHH), where
binding to Patched (Ptch) results in the release of Smoothened (Smo) and activation of a cascade of signaling centered in Gli.
Hes1, a downstream target of Notch, represses GLI, while Gli activation by Smo triggers downstream genes such as HES1
and other stemness genes. Gene symbols used according to Genome Reference Consortium Human Build 37 (GRCh37).
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In addition, WNT factors can also bind to FZD and ROR2 (Tyrosine-protein kinase
transmembrane receptor 2). This activates the non-canonical β-catenin-independent WNT
pathway, which also involves DVL proteins that activate G proteins of the Rho family (Rho
and Rac, Figure 2) and Rho kinases (ROCK1 and 2). This, in turn, triggers intracellular
Ca2+ fluxes and downstream Ca2+-dependent responses, e.g., reorganization of the actin
cytoskeleton, and gene expression changes (reviewed in [81]). The promoting effect of
Wnt/β-catenin signaling on cell cycle progression may be counteracted by Notch signaling,
which activates a series of mechanisms that delay G1/S phase progression. This is achieved,
for example, by direct binding of the NICD to active β-catenin, inducing the degradation
of the latter [82]. Yet, none of this is straightforward, as a number of Notch-downstream
genes play roles in promoting phenotypical changes that can result in tumor promotion.
For example, HES1 actively represses the expression of p27 Kip1, thus contributing to
the proliferation of tumor progenitor cells [83]. These data suggest that Notch signaling
can also function as a regulator of cell proliferation and division, alternatively stalling or
promoting cell cycle progression, depending on other cell signaling pathways, the cell
status, and the environment (especially within tissues).

Many of the findings outlined above raise the key question how Notch activity may
sometimes act as a tumor enhancer and sometimes as a promoter? This can only be ad-
dressed in context, since Notch signaling relies on homotypic and/or heterotypic cell–cell
contacts. Notch receptors and ligands may be expressed on the same cells, but also on
different cells (cis- and trans-acting). With this strong emphasis on cell–cell communication,
it is not surprising that Notch signaling plays a key role in the regulation and control
of cell fate. Cell fate decisions are critical hallmark of differentiation or maturation of
tissues, and their opposite: de-differentiation and acquiring stem-cell like properties. This
is possibly most prominent in stem cell renewal, which helps cancer cells to maintain a
stem-like phenotype (“stemness”) within a larger tissue-context. Stemness may promote
long-term quiescence and survival of tumor cells in the corresponding stem cell niches,
eventually resulting in tumor relapse long after (chemo-)therapies have ended. Quiescence
and refraining from cell cycle progression are “traditional” hallmarks of stem cells, but this
may be ambivalent in CSCs. Increased stem-cell characteristics may also promote a highly
variable, but consistent proliferation potential to tumor cells, a less clearly understood and
probably highly variable characteristic of CSCs that differs from non-transformed stem
cells. Notch signaling is often activated in cancer cells that show enhanced stem cell mainte-
nance. Notch-positive CSCs have recently been shown to be preferentially associated with
endothelial cells within the tumor tissue, which is likely to act as a perivascular stem cell
niche in breast cancer [84,85]. It was shown that tight association of quiescent cancer cells
with an effective stem cell niche can significantly contribute to tumor dormancy and protect
CSCs from therapeutic interventions such as chemo- and radiotherapy [84]. A similar
perivascular stem cell niche for the persistence of CSC has recently been characterized in
detail, and found to be promoted by active Jagged-1-Notch-1 signaling [84,85]. The Notch-
dependent response in these CSCs involves the upregulation of ZEB1 in a positive feedback
loop and stimulates endothelial cells by paracrine production of VEGFA. Disrupting the
cycle, e.g., by ZEB1 deletion, decreases tumorigenesis and progression in vivo [85]. The
mechanisms by which Notch signaling may promote stemness are certainly complex and
may also involve additional cell types other than endothelial cells. For example, there
may be functional involvement of stromal cell types (like fibroblasts and cancer-associated
fibroblasts, or CAFs) with the potential to enhance stemness-supporting signaling loops.
Mammary gland stem cells express DLL1 to activate NOTCH on stromal macrophages
in vivo. In return, tumor-infiltrating macrophages respond to Notch-signaling by increas-
ing the expression of WNT ligands (Wnt3, Wnt10A, and Wnt16 in particular) that feedback
on CSC functions [86]. CAFs also promote stemness via secretion of IL-6, which activates
the STAT3 signaling and the expression of Notch signaling molecules in hepatocellular
carcinoma cells [87].
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Another important signaling cascade linked to Notch is Hedgehog (Hh) signaling,
a pathway (like Notch itself) that is active mostly during tissue and organ development.
In the postnatal period, Hh signaling is restricted almost entirely to stem cells but can be
re-activated in tissue repair and wound healing or inflammation. There are three Hedgehog
glycoproteins (Sonic (SHH), Indian (IHH), and Desert (DHH) Hedgehog), of which SHH
has been most frequently associated with cancer progression in several tumor types. SHH
acts upon the 12-transmembrane proteins Patched (PTCH1 or 2, Figure 2), inhibitors of
a constitutively active GPCR named Smoothened (SMO). This interaction results in the
release of SMO from PTCH1 and triggers an intracellular cascade of events that eventually
lead to the activation and nuclear translocation of GLI transcription factors [88]. As
expected for anything related to Notch, the functional Notch–Hh interactions are complex
and occur at different levels. HES1, a downstream target of Notch, binds and represses
GLI1 (glioma-associated oncogene 1) and regulates Hh signaling in melanoma cell lines and
primary glioblastoma cultures [89]. It appears that Notch and Hh signaling regulate and
sometimes compensate for each other, as HES1 is also a target of SHH in stem-like cells [90].
The crosstalk between Notch and Hh, as well as Wnt, results in compensation when one
of these pathways is suppressed. For example, Notch inhibition (using GSI) results in
upregulation of Hh and Wnt signaling activity in glioblastoma cells [89]. Targeting both
Notch (with GSI) and Hh (by cyclopamine) induced cell death by apoptosis and blocked
colony formation in comparison to either inhibitor alone, thus confirming the nature of
compensatory signaling cascades. Tumors in advanced cancer patients with a hyperactive
Notch–Hh signature also show increased stemness properties. Such cells were again found
in niches with generally low, or hypoxic, oxygen content. These cells are also immune-
privileged by attracting immunosuppressive T-cells, myeloid-derived suppressor cells, and
tumor-associated macrophages [91]. Altogether, the balance and synergies between these
signaling pathways, and many others such as EGFR and BMP, determine the outcome of
cell fate instructions by Notch signaling. They may also be responsible for the ambivalent
nature of Notch pathway activation versus inactivation in many cancer-relevant processes.

3.5. A “Holistic” Approach: NOTCH-Related Signatures, Gene Sets, and Pathways

Since 2004, our understanding of Notch deletions and amplifications, point muta-
tions causing either gain or loss of functions, but also differential expression and activity
of Notch ligands and downstream executors has yielded a large body of evidence and
over 7500 publications covering almost any cancer type. However, it has also become
increasingly evident that genetic alterations in the four human NOTCH receptors and
five ligands may only represent the tip of the iceberg. Many additional genes are linked
to Notch signaling, either as upstream regulatory factors, or down-stream effectors and
executors of Notch functions. Many of these genes are themselves mutated at low or
very low frequencies in cancers. Such rarely mutated genes have been termed “long tail”
cancer genes: They represent a long string of many genes (the “tail”) that are significantly
affected as a whole, but only emerge more prominently when large numbers of cancers are
analyzed. Such “long tail” genes may be mutated with low penetrance as the result of slow,
stochastic processes in which each candidate provides only a small growth advantage for
cancer initiation and progression. Each mutation by itself may not have the potency to
significantly shift the balance towards tumor progression, but many such genes combined
do. Which of the genes are affected in a patients’ tumor depends on random genetic events,
followed by slow Darwinian selection in the emerging pre-malignant, later malignant
cancer tissues. For example, such small and incremental advantages may only result in
tiny increases in cell proliferation and protection from apoptosis, slightly more successful
evasion of immune cells, and later also to moderately increased resistance to anti-cancer
drugs. Such genes may provide tiny benefits for cancer stem cell survival, homing at
the stem cell niches, and tumor dormancy. Together, however, they may be critical for
overt tumor progression and relapse at later stages. For example, a large number (>400)
of such “long tail” cancer genes with relevance for Notch pathway modulation have been
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identified in HNSCC [92]. Our own analyses in databases confirm the existence of such
“Notch fingerprint” genes in HNSCC and other tumor entities. The functional relevance of
some candidate genes, such as AJUBA, for in vivo cancer initiation and progression has
subsequently been validated by functional CRISPR-Cas9 screens [93]. Research on such
prognostic gene signatures, related to Notch (and EMT) in cancers, is only beginning. In
total, these new “systemic” data indicate that even rare mutations, in combination with
the more frequent mutations observed for the four NOTCH receptors themselves, may
contribute to progression and carcinogenesis of two thirds (67%) of all HNSCC cases [92].

These and other Notch-related genes and gene sets can be validated by systematically
exploring mutation frequency and/or over-expression in human genomic databases, such
as the TCGA (The Cancer Genome Atlas), e.g., using the ICGC database tools for min-
ing [94]. These data bases contain both genomic data (mutations, deletions, amplifications)
and mRNA expression data (RNAseq, or older microarray data). It is likely that such
“long tail” Notch-related gene signatures are strikingly different between cancer entities
and subtypes, and even between patients with otherwise patho-morphologically similar
tumors. It is also expected that there is significant overlap of “long tail” genes and their
net activating effects with other cancer-relevant pathways [95], in particular the previously
mentioned canonical and non-canonical WNT pathway [96,97], the HIPPO pathway [98],
but also the AKT and PI3Kinase pathways [99] or K-Ras signaling [100]. Finally, there is also
indication that distinct NOTCH receptors, such as NOTCH2, play distinct and specific roles
in this overlap, e.g., with WNT signaling [101]. Only very recently, comparable distinct
roles for NOTCH ligands in various cancer types and in connection with certain signaling
pathways have been identified, such as for JAG1 [102], DLL1, and DLL4 [103]. We will
see that there is a particularly high degree of interaction of NOTCH signaling (and many
of the rare genes modulating Notch signaling) with processes that drive EMT, which can
only sometimes be traced back to certain NOTCH receptors like NOTCH2 [102]. This high
connectivity of NOTCH signaling as a whole is particularly interesting and important for
future drug discovery and target validation approaches, and functional NOTCH modulator
screens [104].

We have identified mRNA gene expression patterns from very different cancer types
and localizations that show striking similarities and overlaps, including common genetic
events such as amplifications, leading to overexpression of the target genes. We show such
representative patterns for HNSCC and BrCa in Figures 3 and 4.

Other tumor entities can show different signatures, only partly overlapping to those
shown in Figures 3 and 4, although often also very prominent and with high frequency
of mutations (typically, >20% of tumors). A large number of genes associated with Notch
signaling have been extracted from comprehensive gene expression databases, such as the
MSigDB database at BROAD Institute/MIT [105]. These genes (over 1000) were explored
for genetic events (mutations, amplifications, homozygous deletions) and differential
mRNA expression in large numbers of human tumors, using the cBioPortal browser [106]
that provides open access to the TCGA collections of genetic analyses of primary cancers;
Figures 3 and 4).
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Figure 3. Analysis of most frequently altered NOTCH and EMT-related genes in head and neck
squamous cell carcinomas (HNSCCC). (a) Mutation and gene expression profiles for 12 target genes
associated with both Notch signaling and EMT in the cBioPortal genomic database (sorted by patient
number, not mutations). Indicated are mainly genomic amplifications, deletions, and point mutations,
followed by mRNA and protein overexpression across 530 HNSCC tumor samples from the “Firehose
legacy” sequencing project. (b) Number of patients with positive lymph nodes (left) is increased for
tumors that harbor genetic alterations in the 12 Notch/EMT genes show above. (c) Patients with
a high degree of genetic changes in Notch/EMT signature genes also show a larger proportion of
tumors with angiolymphatic invasion, or penetration of tumor cells into lymph vessels in the tumor
periphery. (d) Patients with large numbers of Notch/EMT genes mutated further show a larger
likelihood to develop high grade tumors (G3 and G4), with enhanced invasive properties.
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Figure 4. Analysis of the 12 most frequently mutated genes associated simultaneously with Notch
signaling and EMT, in 1039 breast cancers (TCGA sequencing project). In contrast to Figure 3,
tumors have been sorted according to most frequent mutations (CCND1, MYC) to illustrate the high
frequency of amplifications. (a) Sorted incidence of mutations, including amplifications, deletions,
point mutations, and RNA overexpression, as generated by the cBioPortal browser. Data have been
sorted according to type of mutation/genetic alteration. (b) Tumors with high frequency of genetic
alterations in Notch/EMT target or signature genes also show a higher degree of genetic instability.
(c) Tumors with high levels of Notch/EMT-related genetic alterations more frequently belong to the
triple-negative and basal-like breast cancers that lack expression of progesterone receptor (PR). (d)
Corresponding finding for expression of estrogen receptor (ER) in the same tumors, as analyzed by
immunohistochemistry (IHC).

The results from some of our bioinformatics analyses point to remarkable similarities
in the mRNA expression patterns and frequency of genetic events affecting similar panels
of Notch-related genes, including the 4 NOTCH receptors themselves, between different
tumor types. This is particularly striking between squamous cell carcinomas of the head
and neck (HNSCC) and the lung (LSCC, not shown). These strong similarities indicate a su-
perior impact of tissue origination, morphogenesis, and intrinsic differentiation patterns for
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gene expression patterns observed in certain cancer subtypes (in this case, the squamous cell
carcinomas of different localizations), and Notch-related genes. This may reflect functional
similarities (such as the previously mentioned lineage-specific developmental programs)
in the corresponding cells of origin, as a hallmark of the common “squamousness” of these
normal tissues. This may result in similar oncogenic processes, and similar panels of genes
affected by genetic alterations, that lead to tumor initiation and progression in these cancer
entities (Figure 3). The origin of squamous cell carcinomas (and thus “squamousness”) are
the keratinocytes, epithelial cells with strong mucosal differentiation potential found in the
skin, the cervix uteri, the lungs, upper aerodigestive tract, and the oral mucosa. It is thus
not surprising that skin, cervical, oral, and lung squamous cell carcinomas share several
Notch-regulated or Notch-regulatory genes, which are frequently amplified and overex-
pressed, deleted, or show recurrent point mutations. We have further observed that these
remarkably similar gene signatures may be further linked to both Notch signaling and EMT
across the squamous carcinomas: over 180 genes have been identified in the MSigDB data
base that are associated with both EMT and Notch signaling, many of which show a high
percentage of genetic alterations (>10%) in HNSCC (Figure 3a). Such genetically conserved
gene sets correlate with measurable phenotypic features such as lymph vessel invasion
(angiolymphatic invasion), as shown for HNSCC (Figure 3b–d). Expression patterns of
Notch and/or EMT-related genes are also detectable in other, non-squamous tumor types,
such as lung adenocarcinomas (tumors with glandular differentiation patterns), but they
are strikingly different (Figure 4a). For each tumor type or subtype, characteristic sets of
Notch/EMT-associated genes or “gene signatures” can be identified, which often correlate
with advanced histopathological features and more aggressive tumor subtypes. This is
particularly prominent in TNBC and basal-like BrCa, which simultaneously lack expression
of oestrogen receptor (ER), progesterone receptor (PR), and HER2 (Figure 4c,d). Altered
Notch/EMT genes were also associated with increased genomic instability and mutation
load (Figure 4b). The association of Notch mutations with TNBC is not novel, and has been
independently observed and confirmed in several studies [40,107]. In this fashion, cell- and
tissue-specific epithelial differentiation and hormone-regulated maturation, e.g., in BrCa,
are opposed to de-differentiation, concomitant with increased tumor cell aggressiveness or
invasion, EMT, and (possibly) metastasis. These phenotypes represent the extreme ends of
a spectrum of processes linked to Notch functionality. It remains, however, unclear which
genetic alterations in Notch signaling occur first and what are their functional consequences
for cancer initiation and progression. To tackle the complexity and chronology of events, it
may be highly beneficial not to work only with single genes (like NOTCH receptors 1–4) or
investigate functional consequences of the genetic changes that are affecting them. Instead,
it may be worthwhile to use a broader, “holistic” approach and explore the activity of
Notch together with the functionally linked pathways, gene sets, or gene signatures. This
can be done across many individual patients’ tumors, hopefully revealing critical insights
into (expanded) Notch functions for clinical decision-making and personalized medicine.

3.6. Functional Validation of NOTCH Signaling and Personalized Cancer Medicine

The direct consequences of Notch receptor mutations, but also of many rare mutations
in Notch-associated genes and pathways, have not been systematically validated. We
still do not know the true function of many or even most of these genes, and the due
consequences of genetic mutations in the context of living cancer tissues. To a large degree,
this even applies for the functions of the NOTCH1-4 receptors and ligands themselves. It
is therefore not surprising that no Notch-targeted drugs have been approved yet for any
anti-cancer therapies (although drug discovery efforts continue). Over the past 10 years,
different classes of drugs therapeutically targeting Notch including receptor/ligand anti-
bodies have been clinically tested, most of them gamma (γ)-secretase inhibitors (GSI). Only
more recently, a new class of Notch transcription complex inhibitors has been developed,
including SAHM1, a circular peptide that targets the protein–protein interface and prevents
Notch complex assembly [108]. Another novel type inhibitor is FLI-06 [109] which disrupts
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Notch trafficking and processing. A particularly promising novel type Notch inhibitor is
CB-103, which directly targets the NOTCH transcriptional activation complex [110]. New
pharmacological developments concerning the specific inhibition of Notch are summarized
in [111]. In the year 2020, over 70 cancer clinical trials have been registered, typically early
phase I and II trials. Nevertheless, at least one clinical study phase III currently recruits
patients for a trial on the drug Nirogacestat, another GSI. Time will show if any of these
trials are more successful than those of the past, and one can hope that better functional
insights may promote the success of early-stage drug discovery, and clinical evaluation.

Our lack of functional understanding is also due to our consistent lack of model
systems to explore Notch functions in cancers. Much of Notch-related research has been
performed in animal models that are of limited value for cancer research, as mainly human
cells (cancer cell lines) are utilized, e.g., for xenografts, which rarely metastasize, e.g.,
in mice. There is also a severe lack of useful in vitro model systems, which would be
complex enough (and yet standardized) to allow investigating the impact of NOTCH-
mutations observed in solid cancer tissues. Current models make it very difficult to
quantitatively measure their potential impact on progression and invasion. However, it
should be possible to explore the interactions, e.g., between cancer and stromal cells (such
as cancer-associated), provided they recapitulate the connectivity of NOTCH receptors
and ligands. However, few in vitro models have been explored for this research purpose.
As a consequence, there is relatively little research related to the true impact of Notch
receptors, ligands, and pathway(s), especially in the clinically most relevant processes such
as tumor cell invasion, lymph-angiogenesis, lymph node, or distant metastasis. Similarly,
we lack suitable, standardized cell culture and/or tissue models to explore the role of Notch
signaling in formulating the tumor stem cell niche and tumor dormancy, and how this
may affect the emergence of drug resistance and relapse. Considering the ambivalence and
partial redundancy of Notch, it is questionable if genetic analyses of genes like the NOTCH
receptors 1–4 by themselves will contribute significantly to predicting patient outcome,
response, or resistance to therapy. Without models systems with matching complexity, it
will also remain difficult to experimentally address altered Notch functions in the context
of the TME, and its interactions with e.g., CAFs, endothelial cells, or invading immune cell
populations. Similarly, Notch signaling is likely to be affected by changes in the nature
and density of the ECM, which is critical for mechano-sensing within tissues. The nature
of the ECM in cancers is surprisingly difficult to mimic in vitro, and most model systems
use artificial, poorly characterized and non-human ECM extracts such as mouse Matrigel,
or pure collagen; none of these are close proxies for the ECM in living tumor tissues. In
addition, it is difficult to achieve not only the complexity, but also the high density of the
ECM observed for tissues in model systems.

Apart from the NOTCH receptors and ligands themselves, and the pathways they
engage in serious crosstalk with, a growing number of additional, somatic drivers of
cancer progression were identified that may regulate, or are regulated by, altered NOTCH
activity [112]. Such studies are rare, but will be necessary to assign reliable proto-oncogene
or tumor suppressor gene-functions to such rare targets. It is promising that some of
the more prominent and widely researched Notch target genes such as HEY1 have been
identified as prognostic and diagnostic biomarkers. Elevated expression of HEY1 indeed
correlates with poor patient outcome [113] in HNSCC. Differential activity of the Notch
pathway and downstream signaling may also be functionally linked to the differences
observed between Human Papillomavirus (HPV) positive and negative HNSCC [114],
a key question for treatment of patients. It is possible that NOTCH1 mutational status
promotes the development of (HPV)-associated oral or cervical cancers. The additional
HPV oncogenes like E6 and E7, with their potent modification of the retinoblastoma (Rb)
and p53 (TP53) regulation of the cell cycle progression, may disrupt or modulate the
tumor-suppressive activities of Notch signaling, and vice versa; links between Notch and
target genes like Cyclin D1 and MDM2 may also contribute to these net effects, as has been
outlined above. Notch and cell cycle progression pathways may exert a mutual influence
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on each other. The net effect may then have consequences for tumor progression (HPV+

tumors rarely metastasize) and the response to therapy (HPV+ tumors respond better
to therapy, rarely metastasize, and show better outcome) [38]. NOTCH mutations and
NOTCH-related pathway activities, or gene signatures, also have an impact on many other
epithelial cancer types, including colon- or colorectal cancer (CRC) [115] with a specific
impact on the stemness and mesenchymal properties of these cancers [116], possibly due
to the strong functional links to Wnt/β-catenin signaling outlined above. In CRC, Notch-
mutations and pathway activities may also be specifically linked with recurrent KRAS
mutations [117]. This can be blocked by recombinant antibodies targeting the DLL4 protein
at the cell surface of cancer and/or stromal cells within these tumors [117], or possibly the
endothelial cells in these tumors that also express DLL4.

4. NOTCH and EMT Signatures

The basic ability of epithelial cells to trans-differentiate into a more mesenchymal-like
phenotype can also be acquired (or hijacked) by tumor cells. One of the most distinctive
features of the EMT is the loss of E-cadherin (CDH1) expression, which leads to the loss
of tight cellular junctions and epithelial polarization and enables increased motility. With
the epithelial integrity lost, it becomes easier for tumor cells to engage in cell motility
and migration or invasion. The regulation of EMT is still a matter of very active research,
which continues to deliver surprises. EMT profiles can be highly variable, dynamic, and
transitional, even within the same tumor, due to heterogeneity and high levels of genomic
instability [118]. Nevertheless, it has been clearly demonstrated that EMT promotes pro-
cesses like cancer invasion and fibrosis [119], which are intricately associated with cancer
progression. It remains unclear, however, if EMT also promotes metastasis, in particular
distant metastasis. EMT may indeed contribute to local invasive procedures, which are at
the same time highly relevant for clinicians (e.g., the definition of positive tumor margins,
and the “budding” of tumor cells into the vasculature). EMT may thus also promote
or favor the penetration of lymph and blood vessels and the formation of lymph node
metastases. However, successful metastasis of “seeds” (=tumor cells) to a fertile “soil” (=at
a distant metastatic site) may require more than just an active cytoskeleton and invasive
properties. We will see in the following paragraphs that EMT itself is delicately balanced,
and it may in fact be part of this tight balance, which also drives successful dissemination
of tumor cells to distant sites.

NOTCH1 activation is further known to repress CDH1 expression by complexing
with CSL (now RBPJ) and the CDH1 promoter [120]. The same molecular machinery is
used to activate expression of the Snail1 (SNAI1) and Slug (SNAI2) transcription factors,
well-known and central EMT markers and regulators [121–123] of outstanding relevance.
Both transcription actuators have been reported to further repress CDH1 and induce cell
invasion [43]. In animal models of ectopic and orthotropic colorectal cancer, infiltrating
Jag2-expressing bone marrow cells were found to induce EMT in cancer cells, by a Notch-
depended decrease of E-cadherin and concomitant increase of vimentin expression [124].
Moreover, mesenchymal factors seem to be able to fuel Notch signaling. For example, the
EMT-inducer Twist1 (TWIST1) may enhance Notch activity by increasing the expression of
“classic” Notch-downstream genes (HEY1, HEY2, and HES1), but not the Notch ligands
or receptors [57]. TWIST seems to also play a pivotal role in tumor progression [125]. A
number of studies show that TWIST overexpression is strongly associated with cancer
invasiveness and metastasis in BrCa in both animal models [126,127] and in patients [128].
Similarly, a functional knock-out of TWIST1 inhibits cell plasticity and metastasis [126].
For example, in glioblastoma (and possibly other tumor types), the glycoprotein Epsin3
(EPN3) may be related to Notch and WNT/β-catenin signaling pathways, and helps
to induce EMT in glioblastoma cells after activating SLUG, TWIST, and ZEB1, but not
Snail1 or ZEB2. Experimental data further indicate that EPN3 may promote the migration
and invasion of glioblastoma cells [129]. We cannot refer here to a plethora of newer
reports related to EPN3/Epsin functions, e.g., in podocyte formation, invasiveness, and
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tumor cell plasticity. In contrast, recent studies have shown that miR-139-5p has been
defined as a tumor suppressor that inhibits NOTCH1 and restrains metastasis and EMT of
glioblastoma [130].

Notch activation of EMT is further strongly enhanced under hypoxia, where hypoxia-
inducible factor 1α (HIF-1α) complexes with CSL, NICD, and MAML, resulting in higher
SNAI1 expression [120]. This relationship has been confirmed in many cancer entities, in-
cluding pancreatic cancer, bladder cancer, as well as oral squamous cell carcinoma [131–133].
HIF-1α also induces EMT by overexpression of lysyl oxidase (LOX), which in turn stabilizes
Snail1. Yet, NOTCH1 can substitute a blockade on hypoxia and trigger EMT in squamous
cell carcinomas (SCC). Additional data show that Notch signaling is essential to link the
hypoxic stimulus with induction of EMT, thereby inducing progressive motility and inva-
siveness [134]. Notch-ligand activation by hypoxia was found to stimulate Jagged 2 in BrCa
cells, trigger EMT, and enhance cell survival in vitro [135]. Moreover, studies demonstrated
that the Notch ligands Jagged1, DLL1, DLL3, and DLL4, except Jagged2, were all expressed
in mesenchymal stem cells (MSC), and strongly increased by HIF [136]. The HIFs may
thus also control molecular signaling between BrCa cells and MSCs, as a means to stim-
ulate invasiveness and possibly metastasis [137]. High expression of NOTCH1 was also
observed in organoids from SCC, which exhibit EMT features, suggesting the association
of this pathway with mesenchymal properties [138]. Indeed, blocking of Notch signaling
decreases the expression of EMT markers, and inhibits cell migration in many different
types of cancer, such as oral squamous cell carcinoma, CRC, and BrCa [122,134,139]. The
inhibition of Notch signaling in liver cancer resulted in differentiation of liver CSCs into
mature hepatocytes via the opposing process to EMT, termed mesenchymal–epithelial tran-
sition (MET). This very same process also resulted in reduced malignancy [140]. Moreover,
simultaneous inhibition of SMAD4 and NOTCH1 led to reduction of EMT activities in
cancer cells [118]. In vivo mouse models have further shown that deletion of NOTCH1
forcefully decreased mouse xenograft tumor formation [138].

Like the NOTCH receptors, Notch ligands are also related to the induction of EMT
in cancer. Elevated expression of JAG1 correlates with poor prognosis in many cancer
type [85,141,142]. Notch activation via both DLL and JAG ligands leads to induction of
EMT, and interaction with Jagged increased the formation of cell clusters, a specific pheno-
type that could be stabilized by Numb or Numbl proteins [139,143]. It was further shown
that JAG1 is a substrate of K-ras signaling in CRC [141]. While Notch ligand–receptor inter-
actions are rarely investigated in experimental studies, it has been confirmed that JAG1 may
be critical for Notch/KRAS signaling and required to promote tumor aggressiveness [141].
The conditions in the TME, such as hypoxia, and the presence of transforming growth
factors or cytokines may further affect the fate of cells. Under these conditions, NOTCH1
signaling may be modulated by physical interactions with different transcription factors,
which can lead to activation of non-canonical signaling pathways. The overexpression
of ERα and resulting estrogen effects may also activate Notch signaling, e.g., via binding
to the NOTCH1 promoter in prostate cancer cells. As a result, the increased of NOTCH1
expression enhances EMT [142]. It is also known that cross-talk between Notch signaling
and Transforming Growth Factor beta (TGFβ) is critical for induction and maintenance
of EMT [118]. TGFβ signaling by itself is known as one of the most potent regulators of
epithelial differentiation and EMT and (like Notch) is also a key driver of developmental
processes. The presence of TGFβ in the microenvironment strongly induces normal squa-
mous cell differentiation. In tumors, however, TGFβ may induce a shift in the spectrum of
NOTCH1 target genes, promoting EMT. In addition, NOTCH1 and ZEB1 may cooperate to
promote EMT in the presence of TGFβ [138] (Figure 2). The analysis of the TGFβ promoter
shows a number of canonical CSL (RBPJ)-DNA binding motifs, which play a key role in
Notch signaling [64]. There is also known crosstalk between bone morphogenic proteins
(BMPs) and Notch to promote EMT, in which BMPs activate Notch via SMAD proteins, in
a γ-secretase independent manner (non-canonical Notch signaling) [144]. BMPs belong to
the TGFβ superfamily, with overlapping downstream signaling; therefore, this connection
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may not be surprising. The BMP/Notch link appears specifically relevant for colorec-
tal and other cancers with glandular differentiation of the adenocarcinoma type [144],
in which BMPs (via EMT) may specifically promote invasive properties. Malfunctions
and “driver” mutations in NOTCH1 can also exhibit oncogenic properties, for example
through activation of the epidermal growth factor receptor (EGFR)-phosphoinositide 3-
kinase (PI3K)-protein kinase B (AKT) signaling pathway [99,145], usually described in
short as the PI3K/AKT/mTOR pathway.

The interaction between signaling from different NOTCH receptors in subtypes of
cancer differs significantly. In contrast to NOTCH1, NOTCH3 limits EMT in squamous
cell carcinoma [138]. In BrCa lines (MCF7 and SUM149), NOTCH3 expression is activated
by hypoxia via HIF-1α. NOTCH3 in these BrCa lines downregulates expression and
secretion of the pro-inflammatory cytokine IL-6 via HEY2 expression. When NOTCH3
was knocked out, these lines grew more steadily under constant stimulation by IL6 and
downstream STAT3 activation. Blocking IL-6 has the opposite effects, and even potentiates
the anti-tumor effects of GSI in NOTCH3-expressing BrCa cells. Expression of IL-6 also
affects the proliferation of the mesenchymal-stem cell population (MSCs, described as
CD24-/CD44+ phenotype) [146]. These findings suggest that NOTCH3 can play, at least
partially, opposing roles relative to NOTCH1, especially in regulating EMT and stemness,
and under these specific cell culture conditions and cell lines. Like every good actor,
NOTCH receptors therefore show an outstanding degree of flexibility and readiness for
complex interactions with other actors. In a liver cancer model, the knockdown of NOTCH1,
NOTCH3, and NOTCH4 led to an increase of CDH1 expression, with due consequences
for EMT, while NOTCH2 had the opposite effect [118]. Additionally, posttranscriptional
regulation of NOTCH2 through miR-195-5p in colorectal cancer leads to a significant
reduction of NOTCH2 protein, and subsequently to a lowered EMT profile [49]. Blocking of
ligand activation of Notch (all receptors) by using a soluble Notch4 exodomain (XNotch4) in
BrCa xenografts promoted apoptosis and reduced tumor size and metastasis concomitantly
to SNAI2 expression reduction, CDH1 upregulation, and active β-catenin suppression [147].
The non-canonical Notch activity, which does not require γ-secretase cleavage, results in
a variety of not yet well-characterized interactions such as inhibition of the potent tumor
suppressor PTEN, which leads to the activation of PI3K-AKT-mTOR survival axis [13].
AKT also play roles in cytoskeletal changes that result in changes in cell migration [148].

5. Notch in Cell Migration/Invasion

The involvement of Notch signaling has been reported already at relatively early
stages of cancer spread, namely invasion and migration. To invade, epithelial cancer cells
have to penetrate the ECM, or more specifically, the basement membrane/basal lamina,
which delimits epithelial tissues. Some studies show that Notch, whether directly or
indirectly, interacts with components of ECM (summarized in a recent review [149]). For
example, Notch receptors can directly bind to ECM glycoproteins like CCN3 (Cellular
Communication Network Factor 3) and TSP-2 (Thrombospondin 2), which may facilitate
or block the interactions with Jagged ligands and influence the activity of Notch signaling
pathway. A potential functional connection between NOTCH1 and Thrombospondin has
also been described for hepatocellular carcinoma [150]. It was observed that Notch1 may
specifically bind to soluble E-cadherin (sE-Cad) and Trombospondin-1 (Thbs) and that
these proteins are released from tumor cells when Notch1 is targeted. Additionally, ECM
components like the laminins, key components of the basement membrane, were shown to
modulate the transcription of Notch receptors and ligands. Although brain tumors like
glioblastomas and neural-type cancers like neuroblastomas rarely metastasize, they are
among the most aggressive tumors. In these locally invasive cancers, enhanced Notch
signaling might fuel their aggressive potential, as suggested by recent studies on mice.
Blocking laminin expression in brain tumors leads to a decrease in expression of Notch
ligand DLL4 at the protein level, decreasing the tumor volume [151], although this may
primarily relate to the critical functions of DLL4 in the tumor vasculature in general, and
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endothelial cells in particular. Glioblastoma stem cells with downregulated NOTCH1 not
only had a reduced self-renewal potential but were invasion-deficient in both the cell lines
and mouse xenografts. Further detailed experiments revealed that low Notch signaling
is unable to stimulate the expression chemokine receptor CXCR4, which in turn cannot
trigger the AKT/mTOR pathway essential for cell invasion [152].

The mechano-sensing properties of Notch are regulated in a variety of ways. The first
level of regulation occurs by the type of ligand that binds. This process may differentiate
between the frequently observed shifts between pulsating versus constant Notch activation
by different ligands [153]. This may relate to the ON/OFF switching of Notch signaling that
requires the interaction of two ligands, the second ligand for permanent activation. This
phenomenon may also define the binding strength of ligands to the Notch extracellular
domain [154]. In addition to the ligand type, the characteristics of the “sending cell”
matter. It is relevant whether such cells have more mesenchymal properties (indicated by
co-expressing vimentin, VIM, and Jagged), which increases signaling strength. In contrast,
VIM and DLL ligands seem not to cooperate and show no additive effects [155]. The
successful invasion of adjacent tissues by tumor cells often involves the secretion of matrix-
degrading proteases, in particular matrix metalloproteases (MMPs). High level expression
of MMPs can also be a typical feature of EMT, and therefore, a link to Notch signaling
would be interesting. Indeed, NOTCH1 signaling can augment the transcription of MMPs,
in particular MMP2 and MMP9. This occurs likely indirectly via NF-kB activation [156].
Knock-down of NOTCH1 results in a concomitant decrease of MMP9 expression in prostate
cancer cells [157], and of MMP2 and MMP9 in BrCa cells [158].

After breaking through the laminin-reinforced basement membrane (BM) and the
ECM, cancer cells can invade blood and lymph vessels (illustrated in Figure 5). This
process is termed intravasation and relies on the direct interaction of cancer cells with
macrophages, podocytes, and endothelial cells. Upon this interaction, cancer cells form
actin-based structures called invadopodia, which aid the local migration and invasion
processes. These invadopodia or podosomes (now increasingly summed up under the
term “invadosomes”) are mostly observed in cell culture but are thought to correlate to
similar invasive structures observed when tumor cells locally degrade the ECM. Díaz
et al. report that Notch signaling mediates activated invadopodia formation upon hypoxia.
This occurred by ADAM12-dependent release of Heparin-binding EGF-like growth factor
(HB-EGF) and subsequent activation of epithelial growth factor receptor (EGFR) in various
types of cancer, including head and neck, lung, and pancreatic tumors [159]. The assembly
of invadopodia was found to be coordinated by the MenaINV protein, which is activated
upon macrophage-NOTCH1 contact. This was shown in BrCa cells and subsequently
confirmed in mice, using a NOTCH1 blocking antibody [160].

The growth of new vascular network in the primary tumor, also called neo-angiogenesis,
is also critical for local invasion, i.e., the migration of cancer cells into the surrounding
tissues. Notch signaling is highly active in endothelial cells and blood and lymph vessels.
The presence of DLL4 and JAG1 ligands on endothelial cells is known to regulate the
process of angiogenesis (Figure 5).

Expression of DLL4 is increased through VEGF/VEGFR signaling [161], and the
JAG1/NOTCH interaction reinforces expression of the mesenchymal-specific intermediate
filament protein vimentin [126]. In vitro and in vivo cancer models have shown that
active Notch regulates the expression of adhesion molecule VCAM1 ensuring cancer cell
migration across capillaries and blood vessels [162]. Additional studies showed that amino-
terminal enhancer of split (AES), a suppressor of the transcriptional activity of Notch, leads
to a reduced potential for invasion in colon and prostate cancers. Deletion of Aes in a mouse
model of colon cancer resulted in marked elevation of Notch activity and the increase in
the cells’ ability to intravasate [163,164]. It is important to keep in mind that vasculature is
Notch positive under physiological conditions.
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Figure 5. Notch activity in different contexts, exemplified here within the context of epithelial
tissues and cells (olive-green cells, partly with brush border). Notch activity is important in stem
cell renewal and differentiation (top-right). This is hijacked in some cancer cell types to maintain
stem-like features such as unlimited proliferation and acquiring resistance to radio/chemotherapy
(cells orange-brown color), in others to gain a mesenchymal phenotype (gray cells) that can resemble
the phenotype of cancer-associated fibroblasts (CAFs, dark brown) and may result in collective
invasion, characteristic for epithelial cells. As tumors grow, they may become increasingly hypoxic,
which triggers neo-angiogenesis. The vasculature (endothelial cells, turquoise) is positive for Notch
receptors and ligands, thus the interaction of the vasculature with tumor cells is likely a factor in
invasiveness. One of the most striking features of Notch signaling, via Jag1 and hyb-E/M (hybrid
epithelial-to-mesenchymal transition), is its supportive role in circulating clusters of tumor cells
that have particularly high metastatic potential (olive colored, rounded cells), partnering also with
immune cells (stellate, blue cells with red nuclei). The inset shows the ligand–receptor activation
between 2 cells. Gene symbols explained in the text.

6. Notch Signaling and Metastasis

Metastasis is the spread of neoplastic cells from the primary site of the tumor to
distant locations. Metastasizing tumor cells need to penetrate first into adjacent tissues
and later colonize distant places, reached via the bloodstream and the lymphatic system.
Many studies report that triggering the EMT process may self-regulate itself, but the
precise mechanisms remain incompletely understood. Is EMT required for metastasis?
We have seen that the interplay between EMT and Notch signaling could contribute
to vascular intravasation [133,165,166]. However, it remains unclear which exact role
Notch signaling may play in the context of distant metastasis. Latest data have identified
an intermediate state between the epithelial and mesenchymal phenotypes, known as



Cells 2021, 10, 94 22 of 32

hybrid EMT (hyb-E/M), that is characterized by maintaining simultaneous epithelial
(such as cell–cell adhesion) and mesenchymal (migration) features. Such transition states
may correspond to the “tumor cell plasticity” observed in many cancer cell lines, which
enables epithelial tumor cells to rapidly adjust to changes in their environment and also
promotes invasion. The hyb-E/M state plays crucial roles in metastasis of cell clusters via
bloodstream [167,168]. Recent data show that hyperactive Notch is not simply inducing
EMT–it is more likely to fine-tune EMT. It appears that a co-ordinated interplay between
NOTCH and EMT supports local (neo-)angiogenesis and lymph-angiogenesis (Figure 3),
and ultimately promotes local metastasis and malignant cell proliferation (Figure 5). The
mechanisms behind distant metastasis are less well understood than those related to tumor
cell invasion and local migration. Mounting evidence suggests that cells may not even
actively engage in an overt EMT status when they metastasize. In fact, deletion of key
drivers of EMT like Snail, Slug, and Twist are dispensable for metastasis in a mouse model
of pancreatic cancer [169]. In addition, several other EMT marker genes were not expressed
during the metastatic process, e.g., of spontaneous lung cancer in a mouse model [36].
After intravasation of blood vessels, cancer cells may enter the blood stream either as single
circulating tumor cells (CTC) or as clusters of CTCs, often together with endothelial and
stromal cells (Figure 5). The activity of the Notch signaling pathway is important for the
formation of such CTC clusters [170–172]. However, the mechanisms by which Notch
signaling supports the metastatic potential of such heterogeneous clusters is an unresolved
topic. The studies of Boareto et al. show that specific Notch–Jagged interactions promote
cancer cells to undergo the previously mentioned hyb-E/M phenotype. This status may
promote the formation of such cell clusters and stabilize them in the blood stream, thus
also favoring extravasation [139] (Figure 5). These cells simultaneously express E-cadherin
and vimentin as well as other epithelial and mesenchymal markers and have been found
capable of metastasizing. These studies are of strong clinical relevance and may directly
relate to the connection between invasive cancer cells and distant metastasis. Furthermore,
the infiltration of neutrophils due to TGFβ stimuli is a critical factor for NOTCH1-induced
metastasis in CRC [64]. Neutrophils have also been found to escort and thus protect
circulating tumor cells within the blood stream. This may later also support extravasation
and the formation of distant metastases [173] that successfully proliferate. Several other,
often rather isolated and poorly connected, findings also point towards a potential role
of Notch genes and Notch signaling in metastasis. For example, mice lacking Dll4 in
endothelial cells form smaller (Lewis lung carcinoma) tumors with reduced expression of
EMT markers (Snail1, Twist, Slug and Tgf-b) and stemness markers. This is associated with
a reduced capacity for metastatic potential [166]. Dll4 also plays a key role in regulating
angiogenesis, which will be discussed in detail below.

In this context, it is revealing that single, isolated CSCs have never been shown to
successfully metastasize to other organs. This may be due to the high likelihood for
single CSCs to perish due to anoikis, which is a form of attachment-depleted apoptosis.
In contrast, it appears to be clusters of CSCs that are capable to form distant lesions in
animal models [174]; possibly due to the supporting functions of Notch signaling within
such heterogeneous aggregates. Interestingly, involvement of different Notch ligands
may result in different CSC- cluster sizes and phenotypes. Where JAG1+ clusters have a
distinguished hyb-E/M phenotypes, DLL+ clusters have either epithelial or mesenchymal
phenotypes [139,175]. The reason for such clusters to be successful in metastasis may
relate to their advanced adhesion and collective migration capacity, promoted by co-
expression of epithelial and mesenchymal genes like E-cadherin and Ovo Like Zinc Finger
2 (OVOL2; epithelial), as well as MMPs, vimentin, ZEB, Snail, and Twist (mesenchymal
markers) [139]. This highly dynamic, hybrid phenotype not only renders these CTC cell
clusters capable of surviving, in the blood circulation, but may also support extravasation
by degradation of the basement membranes at the distant sites via MMPs. In addition, a
good degree of stemness may also protect such migrating cells in the new environment
from anoikis and help to evade the immune system at these sites. Circulating BrCa cell
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clusters that are positive to Jag+, CD24Hi (epithelial marker), and CD44Hi (mesenchymal
and stemness cell marker) are particularly capable, able to repopulate distant localizations
and successfully metastasise [139]. The combination of markers CD24Hi/CD44Hi is also
a characteristic hyb-E/M signature. Populations of these hyb-E/M cells have also been
shown to be enriched after chemotherapeutic treatment, suggesting that these are also
typical characteristics of chemo-resistant cells. The pro-invasive and pro-metastatic hyb-
E/M phenotype is likely to be maintained via Notch signaling, which also prevents the cells
from entering full-blown EMT status. This has been determined via mathematical means
by Bocci and collaborators [143] and later also experimentally proven. In these studies,
Notch modulation (or moderation) mainly occurred via the repressive functions of NUMB
protein, an inhibitor of Notch intracellular signaling. This fine-tuned mitigation of Notch
signaling may be sufficient for the cells to block entering full EMT. A comparable metered
regulation of Notch signaling by Numb (NumbLow and NotchHi) has also been shown in
TNBC lines [143]. Clinical outcome data from numerous lung, breast, and ovarian studies
show a clear, significant correlation between NUMB expression and poor survival [143].
The mounting data on CSC clusters and hyb-E/M belongs, to date, to the most convincing
and detailed molecular mechanisms of action of metastasis in several tumor types. We
expect that much more data on this subject will be presented soon, and with it new insights
into the roles of Notch signaling in this understudied phenomenon.

7. Notch Signaling in (Neo-)Angiogenesis

A critical aspect of successful metastasis, and the survival of tumor cells at sites distant
from the primary tumor (to which they had been perfectly adapted), is vasculogenesis
or neo-angiogenesis. Since Notch signaling is genuinely involved in vascular formation
(angiogenesis during foetal and embryonal development), and expressed in blood vessels,
capillaries, and endothelial cells, it is not surprising to find high levels of Notch signaling
activity also in the newly formed vasculature around and within metastases, including
both local lymph node and distant metastases.

In patients with HNSCC, one of the decisive parameters influencing the prognosis is
the condition of the lymph nodes [176]. Hypoxia within the tumor tissues has been recently
reported as the main cause for the shedding of larger numbers of CTC clusters, resulting in
increasingly successful distant metastases [177]. This is in contrast to other studies showing
that angiogenesis increases the metastatic process. For example, inhibiting or deleting DLL
or Jag ligands reduces neo-angiogenesis in tumors, and resulted in more hypoxic tumors.
These tumors only grow to smaller lesions, which is correlated with the formation of
fewer metastatic lesions [5]. Additionally, data show that tumors with a high angiogenesis
score were associated with recurrent metastasis, especially to the brain and bone [178].
Additionally, DLL4 expression is increased in distant metastases compared to primary
HNSCC tumors and associated with poor outcome [56]. In HNSCC with overexpression of
Jag1, xenografted together with human endothelial cells into mice, stimulated angiogenesis,
and tumor invasion phenotypes [179].

Both Notch receptors and ligands are expressed in vessels, capillaries, and endothelial
cells, and angiogenesis is promoted as tumors grow and become hypoxic. More specifically,
co-activation of Notch signaling between endothelial cells and different cancer cells is
promoted during neovascular formation. For example, it has been reported that blocking
the action of Notch ligands such as DLL4 by a recombinant antibody can block angio-
genesis and tumor progression–what was attributed to inactivation of hyperactive Notch
signaling in BrCa [180]. Yet, it is more likely that this is due to blocking endothelial cells
and neo-angiogenesis, which indirectly but nevertheless potently affects tumor growth,
again demonstrating the relevance of the TME for tumor progression and therapy. Im-
munohistochemistry analyses for DLL4/JAG1 expression and microvascular formation
of glioblastoma tumor tissue show enhanced expression of both Notch ligands in tumor
vasculature and demonstrate a clear correlation with poor outcome in glioblastoma. Thus,
DLL4 and JAG1 may have an inverse effect on tumor angiogenesis in glioblastoma [181].
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This is further supported by another study demonstrating that mouse DLL4 or JAG1 are
expressed in glioblastoma cells and reduced tumor cell proliferation in vitro, but stimulated
tumor growth in vivo by modulating angiogenesis [182]. As results reported in breast
cancer, tumors with a high score of angiogenesis also have enriched signaling pathways,
including EMT, Notch, Hedgehog, and WNT/β-catenin signaling (162). Since metastasis
is significantly reduced after knock-out of DLL4, this could be interpreted as mainly due
to an inhibition of EMT (and thus Notch-linked), or alternatively due to a reduction of
the number of circulating tumor cells [166]. A third option to explain the effects of Dll4
knock-down may relate to the inhibition of neo-angiogenesis and thus reduced access to
the vasculature by cancer cells. The protective function of co-clustered neutrophils, which
we have seen to associate with CSCs, may also be critical for the initiation of growth and
neoangiogenesis right after extravasation [173].

8. Conclusions and Future Perspectives

In summary, we have mainly focused on the roles of Notch signaling in dynamic
processes, such as EMT and cancer cell motility/invasion. We have shown that Notch
receptors, ligands, and downstream genes are critical for those dynamic processes, that
likely also promote cancer progression, such as vascular invasion and lymph-node and
distant metastases. Nevertheless, the conclusions, especially on the putative connections
between the Notch pathway and metastasis, cannot be finalized before much more research
has elucidated the underlying mechanisms. This, however, will be difficult, as this type
of research needs to take the complexity of Notch signaling and its dependency on the
context in which it occurs into account. This also remains difficult by itself, as suitable
model systems to investigate this connectivity of Notch with other pathways, cells, the
ECM, and TME, and probably the immune system, are still rare. Similarly, more complex
models systems, either in vitro or animal models (such as genetically engineered mouse
models), may be required to firmly establish the true functionality of Notch signaling and
Notch downstream genes and targets in cancer stem cell biology, the definition of the
stem cell niche(s), and the resulting cancer dormancy. Last but not least, these aspects
all contribute to the truly critical aspect, the question if we will be able to predict the
response of patients to chemotherapy, by the means of (future) personalized medicine.
The complexity of Notch signaling may be an outstanding hallmark directly related to
individualized responses to cancer chemotherapy, even if Notch itself is not always directly
targeted. Improved understanding of the interactions of the Notch pathway with other
signaling pathways is likely to be a critical component of future individualized therapy
and clinical decision-making. This accounts as much to Notch activity, its mutations,
amplifications, and deletions observed in primary cancers, as to its incredibly flexible
activity in the bigger context of living cancer tissues.
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