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Abstract

Colon cancer (CC) is one of the most commonly diagnosed tumours worldwide. Single-
cell RNA sequencing (scRNA-seq) can accurately reflect the heterogeneity within and
between tumour cells and identify important genes associated with cancer development
and growth. In this study, scRNA-seq was used to identify reliable prognostic biomarkers
in CC. ScRNA-seq data of CC before and after 5-fluorouracil treatment were
first downloaded from the Gene Expression Omnibus database. The data were pre-
processed, and dimensionality reduction was performed using principal component
analysis and t-distributed stochastic neighbour embedding algorithms. Additionally, the
transcriptome data, somatic variant data, and clinical reports of patients with CC were
obtained from The Cancer Genome Atlas database. Seven key genes were identified using
Cox regression analysis and the least absolute shrinkage and selection operator method to
establish signatures associated with CC prognoses. The identified signatures were vali-
dated on independent datasets, and somatic mutations and potential oncogenic pathways
were further explored. Based on these features, gene signatures, and other clinical vari-
ables, a more effective predictive model nomogram for patients with CC was constructed,
and a decision curve analysis was performed to assess the utility of the nomogram. A
prognostic signatute consisting of seven prognostic-related genes, including CAV?2,
EREG, NGFRAPI1, WBSCR22, SPINT2, CCDC28A, and BCL10, was constructed and
validated. The proficiency and credibility of the signature were verified in both internal
and external datasets, and the results showed that the seven-gene signature could
effectively predict the prognosis of patients with CC under various clinical conditions. A
nomogram was then constructed based on features such as the RiskScore, patients' age,
neoplasm stage, and tumor (T), nodes (N), and metastases (M) classification, and the
nomogram had good clinical utility. Higher RiskScores were associated with a higher
tumour mutational burden, which was confirmed to be a prognostic risk factor. Gene set
enrichment analysis showed that high-score groups were enriched in ‘cytoplasmic DNA
sensing’, ‘Extracellular matrix receptor interactions’, and ‘focal adhesion’, and low-score
groups were enriched in ‘natural killer cell-mediated cytotoxicity’, and “T-cell receptor
signalling pathways’, among other pathways. A robust seven-gene marker for CC was
identified based on scRNA-seq data and was validated in multiple independent cohort
studies. These findings provide a new potential marker to predict the prognosis of
patients with CC.
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1 | INTRODUCTION

Colon cancer (CC) is the fourth most frequently diagnosed
cancer and the third leading cause of cancer deaths worldwide
[1]. In 2018, an estimated 97,220 new cases of CC were diag-
nosed, accounting for 6.1% of the annual global cancer cases |2,
3]. Although many new treatment methods have been proposed
for CC, the long-term survival rate of patients is unsatisfactory
due to tumour recurrence and metastasis. Moreover, the 5-year
survival rate of patients with CC is only approximately 50% [4].
Previously, systemic chemotherapy based on fluorouracil was
the main treatment modality for patients with metastatic CC. 5-
fluorouracil (5-Fu), an antimetabolite analogue of pyrimidine,
inhibits nucleoside metabolism and DNA synthesis, leading to
apoptosis [5]. Several studies have focussed on the development
of effective vectors to improve the targeted delivery of 5-Fu;
attempts have been made to increase the bioavailability of 5-Fu
and decrease its toxicity in vivo by administering lower doses
and ensuring the optimum accumulation of the drug at the
affected site [6-9]. Despite these advances, drug resistance re-
mains a major limitation to the clinical use of 5-Fu. Novel drug-
related combined chemotherapy, which targets both epidermal
growth factor receptor (EGFR) signalling and anti-angiogenic
pathways that inhibit vascular endothelial growth factor
(EGF), is now considered the standard first-line treatment of
CC [10-14]. Clinical trials on immunotherapy, represented by
immune checkpoint inhibitors, are currently underway in several
countries [15-18]. Despite these advances, treatment of CC is
limited by a poor progression-free survival (PFS); a minority of
cancer cells will continue to proliferate after chemotherapy,
leading to treatment failure. There is an urgent need to inves-
tigate the molecular mechanisms of drug resistance and
discover advanced predictive biomarkers in CC. Numerous
biomarkers associated with CC prognosis have been identified,
including Kirsten rat sarcoma virus, NRAS or BRAF mutations,
Her2 amplification, microsatellite instability, defective mismatch
repair, Neurotrophic tyrosine receptor kinase fusion proteins,
and PIK3CA mutations [19]. These biomarkers are predictors
of efficacy that are used to guide the methods of targeted
therapies and immunotherapies.

Single-cell RNA sequencing (ScRNA-seq) is a powerful
new technology that allows high-throughput sequencing anal-
ysis of the genome, transcriptome, and epigenome at the
single-cell level for the detection of clinically important tumour
subpopulations. It is an essential tool for studying tumour
progression and understanding tumour heterogeneity [20, 21].
Since the first scRNA-seq analysis was conducted in 2009 [22],
this approach has begun to address key questions in vatious
tumour types, including glioblastoma, hepatocellular carci-
noma, metastatic renal cell carcinoma, and breast and lung
adenocarcinoma [23-27]. SCRNA-seq analysis uncovers inter-
cellular heterogeneity by revealing the gene structure and gene
expression status of single cells. It overcomes the limitations of
traditional high-throughput sequencing and identifies impot-
tant genes with true tumour cell characteristics [28, 29]. CCis a
highly heterogeneous tumour; patients with CC sometimes
show significantly different clinical outcomes despite identical

actiologies and treatments. Results from several transcriptomic
analyses have shown that stromal cell characteristics are asso-
ciated with the risk of CC recurrence. These characteristics can
predict patient survival, highlighting the importance of multi-
ple cell populations in CC [30, 31]. Dai et al. conducted
scRNA-seq to generate comprehensive single-cell expression
profiles of cancer tissues from patients with CRC. Their ana-
lyses aimed to facilitate the understanding of how activated and
deactivated aberrant cell subpopulations contribute to the
onset, maintenance, and progression of CC [32]. In the coming
years, scRNA-seq is expected to greatly improve our under-
standing of invasion, metastasis, and therapeutic resistance of
cancer cells.

In this study, the scRNA-seq data of CC was first down-
loaded from the Gene Expression Omnibus (GEO) database
to identify all known genomic features and marker genes both
before and after 5-Fu treatment. The transcriptomic data, so-
matic variant data, and clinical data of patients with CC were
obtained from The Cancer Genome Atlas (TCGA), and a
seven-gene signature associated with CC prognosis was
developed using Cox regression analysis and the least absolute
shrinkage and selection operator (LASSO) algorithm. Based on
these gene signatures and other clinical variables, an effective
predictive model nomogram for patients with CC was con-
structed. The findings of this study suggest that the genes of
the prognostic signature are associated with drug resistance
and that they play a critical role in CC development. Further-
more, these genes may be employed as potential targets for the
treatment of patients with CC.

2 | METHODOLOGY

2.1 | Data source and pre-processing
We had searched for single-cell sequencing data related to CC
in the GEO database by keywords ‘scRNA-seq” and ‘Colon
cancer’ and obtained the GSE149224 dataset. Illumina HiSeq
4000 was used as the sequencing platform and Drop-seq was
used as the sequencing method. This single-cell transcriptome
sequencing data included data on 23,768 genes and 11,126
cells. Additionally, GMT files of gene symbols from the Kyoto
Encyclopaedia of Genes and Genomes (KEGG) pathway were
downloaded from the Molecular Database
(MSigDB).

Data pre-processing, dimensionality reduction, clustering,
and visualization of scRNA-seq data of the GSE149224
dataset were performed using the ‘Seurat’ package in R. Data

Signatures

were pre-processed using the following criteria: each cell
showed the expression of at least 200 genes; each gene was
expressed in at least three cells; the mitochondrial gene content
was less than 5%; the number of QC genes was between 200
and 2500. Dimensionality reduction was performed using
principal component analysis (PCA) and t-distributed sto-
chastic neighbour embedding (t-SNE) algorithms, and single-
cell datasets were dimensionally reduced using a plot-based
approach and were visualized using the t-SNE method.
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Finally, the expression profile dataset containing information
on 18,860 genes and 2699 cells was obtained.

2.2 | Construction of the prediction model
Using the feature gene set obtained above, TCGA-COAD data
were divided into training and test sets at a 1:1 ratio. The
marker genes were obtained by analysing the differences in
single-cell sequencing data before and after drug treatment.
Univariate and multivariate Cox analyses were performed
through the survival package [33], and LASSO analysis was
conducted through the cv.glmnet function of glmnet package
[34]. The above operations were all performed in the R soft-
ware (version 3.6.2). Specifically, we first performed univariate
Cox analysis on marker genes before and after drug treatment,
and then further screened genes through the LASSO algo-
rithm. Finally, we constructed a multi-gene prediction model
through multivariate Cox analysis.

2.3 |
cohort

Analysis of the entire TCGA-COAD

To investigate the prognostic relationship between these
feature genes and samples from the entire TCGA-COAD
cohort, univariate and multivariate Cox regression analyses
were performed on the entire TCGA-COAD dataset based on
the expression pattern of the aforementioned feature genes.
RiskScores were analysed for variations in different stages of
clinical features (tumour stage, T stage, M stage, and N stage).
Receiver operating characteristic (ROC) analysis was per-
formed to verify the accuracy of the model in predicting the 1-,
3-, and 5-year survival rates. Furthermore, Kaplan—Meier
survival analysis was performed to investigate the prognostic
differences between high- and low-risk groups.

2.4 | Construction of a nomogram

The RiskScores of clinical features (tumour stage, age, T stage,
M stage, and N stage) were integrated to construct nomograms
for predicting the prognosis of patients with CC. First, the
clinical features associated with PFS were screened by uni-
variate (p < 0.05) and multivariate Cox regression analyses,
followed by construction of the nomograms. The prediction
efficacy of the nomograms was evaluated by calibration curves,
ROC analysis, and survival analysis.

2.5 |
burden

Analysis of the tumour mutational

The tumour mutational burden (TMB) is defined as the
number of non-synonymous somatic mutations per Mb region.
We used the TCGAbiolinks package [35] in R to download the
MAF file of CC somatic mutations from the TCGA database

and used Perl programming to perform calculations. The
RiskScore of each patient was obtained based on the clinical
features, and the patients were divided into high- and low-risk
groups using the median RiskScore as the cut-off value. The
mutation data of the high and low-risk groups were visualized
using the ‘maftools’ package in R.

2.6 | Gene set entichment analysis

Gene set enrichment analysis (GSEA) analysis was imple-
mented using the clusterProfiler package [36] in the R software
(version 3.6.2). It was performed on the entire TCGA-COAD
dataset (reference dataset: KEGG Pathway of MSigDB) using
the value of RiskScores as a classification criterion to investi-
gate the differences in significantly enriched pathways between
high- and low-risk groups.

3 | RESULTS

3.1 | Single-cell data analysis

The distribution of genes, cells, and mitochondrial genes for
each sample is shown in Figure 1a. The distribution was based
on the screening criteria mentioned in the methodology. The
differences in the distribution of genes, cells, and mitochon-
drial genes for each sample were more obvious when the
number of PCs was 12 (Figure 1b). Therefore, the top 12 PCs
were selected for t-SNE dimensionality reduction, and the
final clustering yielded eight subpopulations. Additionally, the
top 10 marker genes were selected from each subpopulation
for visualization (Figure 1c). The distribution of sub-
populations, patients, and treatments is shown in Figure 1d—f,
from which it can be seen that the difference between medi-
cation and non-medication groups was significant. The
differentially expressed genes (DEGs) associated with drug
resistance were obtained using treatment as the grouping
criteria.

3.2 | Construction of the prediction model

Based on the DEGs, a univariate Cox regression analysis was
performed in the TCGA-COAD training set, while LASSO
regression was performed using the ‘glmnet’ package in R
(Figure 2ab). The trajectory of the independent variables
showed that as the lambda gradually decreased, the number of
independent variable coefficients tending to zero gradually
increased. The model was constructed using 10-fold cross-
validation, and the confidence interval under each lambda was
analysed as shown in the figure. The results showed that the
model reached the optimum value when log(lambda) = —5.6. For
this reason, 12 genes at log(lambda) = —6.3 were selected as
target genes, and a multivariate Cox analysis of these target genes
was performed to screen out seven genes associated with OS.
The RiskScore was calculated using the following formula:
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FIGURE 1 (a) Single-cell RNA sequencing data were subjected to quality control, where low quality cells and lowly expressed genes were removed; (b) The

number of principal components (PCs) for principal component analysis based on the p-value; (c) Heat map of clustered feature genes for each subpopulation;

(d) Clustering map of t-distributed stochastic neighbour embedding (t-SNE) dimensionality reduction, where all colon cancer single-cell data were clustered into
cight categories; (¢) t-SNE distribution of patients with colon cancer; (f) Distribution of patients with or without treatment

RiskScore = 0.557*exp (CA V2)—0.3*exp (EREG) + 0.239*exp
(NGFRAPI) + 0818*exp (WBSCR22) + 0.766%exp
(SPINT2) + 0.7824*exp (CCDC28A4)—0.710* (BCL10). Note:
The coefficient has been mentioned before the exponent, and
the gene name has been mentioned within brackets).

These genes were found to be differentially expressed in
separate subpopulations of single cells (Figure 2c).

3.3 | Validation of the prediction model

To validate the prediction efficacy of the seven-gene model,
ROC and survival analyses were performed in the training set
(Figure 3ab), the entire dataset (Figure 3d,e), and the
GSE17536 dataset (Figure 3g,h). The results revealed that the
accuracy of the model was better in predicting the 1-, 3-, and 5-
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FIGURE 2 (aand b) Twelve prognostic genes were identified in the The Cancer Genome Atlas training cohort based on the least absolute shrinkage and

selection operator approach using the ‘glmnet’ package in R (best cut-off value, —4.6); (c) The expression of these seven genes was analysed by multivariate Cox

analysis in each subpopulation

year survival rates in both the training set and the entire
TCGA-COAD cohortt, as all values of the area under the curve
(AUC) were greater than 0.6. Results of Kaplan—Meier survival
analysis showed significant differences in OS between the
high- and low-risk groups. The OS was higher when the
RiskScore was greater than the median OS and vice versa. The
risk curves and distribution plots of patients based on Risk-
Scores revealed that mortality was higher in patients with high
RiskScores in the training set (Figure 3c), entite TCGA-COAD
cohort (Figure 3f), and GEO cohort (Figure 3i).

3.4 | Clinical correlation analysis

In the entire TCGA-COAD dataset, the differences in Risk-
Scores between wvarious clinical features were analysed
(Figure 4a—d). This study indicated that the differences in
RiskScores between tumour stage, T stage, and N stage were
significant and that the RiskScores increased with advanced
tumour stage, T stage, and N stage. Therefore, these results
further confirmed the accuracy of the risk model. Next, the
ROC curves were used to analyse the efficacy of the prediction
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(c) Distribution of RiskScore and survival status in the training set; (d) ROC analysis of the risk model in the entire The Cancer Genome Atlas (TCGA) cohort;
(e) Survival analysis of the risk model in the entite TCGA cohort; (f) Distribution of RiskScore and survival status in the entire TCGA cohort; (g) ROC analysis
of the risk model in the GSE17536 validation set; (h) Survival analysis of the risk model in the GSE17536 validation set; (i) Distribution of RiskScore and

survival status in the GSE17536 validation set

model in predicting patient prognosis at 1, 3, and 5 years. The
results showed that the risk model could accurately predict the
prognosis of patients, as all values of AUCs were greater than
0.6. Results of survival analysis also revealed significant dif-
ferences in PFS between high- and low-risk groups (p < 0.001).

3.5 | Nomogram construction

Clinical features such as the RiskScore, age, tumour stage, T
stage, M stage, and N stage were used to construct the
nomogram. The clinical features associated with prognosis,
that is, tumour stage and RiskScore (high- and low-risk
groups), were screened by univariate and multivariate Cox
analyses (p < 0.05; TFigure 5ab). Moreover, nomograms
(Figure 5c) were constructed based on the tumour stage and
RiskScore, by which the prognosis of patients at 1, 3, and
5 years could be predicted. The calibration curve (Figure 5d),
ROC curve (Figure 5e¢), and survival analysis (Figure 5f) all
showed that the nomogram had a high prediction efficacy.

3.6 | TMB analysis

RiskScores for each patient in the entire TCGA-COAD cohort
wete obtained based on genes associated with drug resistance.
Subjects were divided into high- and low-risk groups using the
median risk score as the cut-off value, and differences in the
mutation frequency among the top 20 genes were identified
between the high-risk (Figure 6a) and low-risk groups
(Figure 6b). In the high- and low-risk groups, there were sig-
nificant differences in the mutation frequency of genes, such as
APC (66% vs. 80%), TTN (59% vs. 47%), TP53 (50% vs.
58%), and FAT4 (29% vs. 23%).

GSEA of the top 20 genes was performed on the entire
TCGA-COAD cohort using the RiskScore as a classification
criterion (Figure 6c). The results showed that genes in the
high-risk group were enriched in the pathways of ‘cytosolic
DNA sensing’, ‘Extracellular matrix receptor interaction’, and
‘focal adhesion’. However, genes in the low-risk group were
enriched in the pathways of ‘natural killer cell-mediated cyto-
toxicity’ and “T' cell receptor signalling’.
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between high and low-risk groups. TCGA, The Cancer Genome Atlas

4 | DISCUSSION

CC is a frequently diagnosed cancer worldwide. In recent de-
cades, further optimization of 5-Fu-based chemotherapy has
improved the survival prospects of patients; however, some
patients show a poor response to treatment. Therefore, it is
important to elucidate the underlying mechanisms associated
with the inefficacy of CC treatment and to identify biomarkers
that can predict treatment efficacy in patients with CC. Con-
ventional tissue sequencing uses a mixture of million or more
cells, and the results represent information on the average
transcriptome expression or the expression of dominant
transcripts in a group of cells. In contrast, scCRNA-seq can
accurately reflect the heterogeneity within and between tumour
cells and identify the important genes that truly characterize
cancer cells [37]. The genetic markers based on the scRNA-seq
data of CC cells can be used as reliable biomarkers for pre-
dicting the prognosis of CC.

In this study, data pre-processing, dimensionality reduc-
tion, clustering, and visualization of scRNA-seq data of CC
were performed by bio-signalling methods to characterize the
genomes of CC before and after 5-Fu treatment. PCA was then
implemented, and linear dimensionality reduction was per-
formed while maintaining as many data characteristics as
possible. Following this, nonlinear dimensionality reduction
was performed using the t-SNE algorithm. DEGs were initially

screened by univariate Cox regression models, and then vari-
ables were further optimized and selected using the multivar-
iate Cox regression method. Finally, key genes associated with
CC prognosis were identified. The signature was validated by
internal and independent researchers, and the seven-gene
signature was found to effectively predict the prognosis of
patients with CC under various clinical conditions. Addition-
ally, a nomogram was constructed based on clinical features
such as the RiskScore, age, tumour stage, T stage, M stage, and
N stage, and it was found to have good clinical utility. A higher
RiskScore was associated with a higher TMB, which was shown
to be a prognostic risk factor. However, whether these prog-
nostic markers can predict the efficacy of treatment remains to
be further studied.

The following seven genes associated with CC prognosis
were identified: CAV2, EREG, NGFRAP1, WBSCR22,
SPINT2, CCDC28A, and BCL10. Some of these genes play
important roles in the progression of other human cancer
types. Caveolin-2 (CAV2) is a member of the caveolae family
[38]. High expression of CAV2 is associated with the pro-
gression of different types of cancers, including lung, breast,
prostate, pancreatic, breast, and kidney cancers [39—44].
Nevertheless, the exact role of CAV2 in CC remains to be
explored. Epiregulin (EREG) belongs to the EGF family,
whose members bind to the EGFR or ErbB4 to generate
signals for proliferation, migration, differentiation, cytokine
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secretion, and innate immunity [45]. Elevated expression of
EREG is associated with a variety of human cancers; upre-
gulated EREG promotes tumour progression and metastasis,
thus reducing the survival time of patients [46-51]. High
EREG expression is associated with a better prognosis in
patients with CC receiving neoadjuvant concurrent radio-
therapy [52]. Therefore, EREG can be used as a potential
predictive marker and therapeutic target for patients with CC

who received neoadjuvant concurrent radiotherapy. Results
from a clinical trial have confirmed that EREG gene expres-
sion can be used as a predictor of OS in patients with mCRC
treated with oxaliplatin/fluoropytimidine in combination with
bevacizumab. Moteover, EREG gene expression is considered
a predictor of EGFR antibody efficacy [53]. In pre-treated K-
Ras wild-type status CC, patients with high EREG gene
expression appeared to benefit more from cetuximab
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FIGURE 6
the risk model; (c) Results of gene set enrichment analysis

treatment [54]. Many studies have validated our results that
EREG can be used as a predictive biomarker for assessing the
efficacy of CC treatment.

Nerve growth factor receptor-associated protein 1
(NGFRAPI), also known as brain-expressed X-linked pro-
tein 3, is an apoptosis-associated gene whose expression is
downregulated in certain solid organ malignancies and
chronic lymphocytic leukaemia [55, 56] The Williams-Beuren
syndrome chromosome region 22 (WBSCR22) gene [57] is
involved in the proliferation, invasion, and metastasis of
cancer cells [58]. In CC, the WBSCR22 gene is involved in
suggesting that WBSCR22 may
represent a novel oxaliplatin resistance biomarker as well as
a potential target for CRC therapy [59, 60]. This finding is
in agreement with the findings of our study. Serine peptidase
inhibitor Kunitz type 2 (SPINT2) is a proteinase inhibitor of
hepatocyte growth factor activator (HGFA) [61], which plays
an important role in deactivating the HGFA-MET pathway
and promoting the progression of multiple malignancies
[62—66].

The biological function of coiled-coil domain containing
protein 28A (CCDC28A) has not been determined; however,
some studies have confirmed that it serves a recurrent

oxaliplatin ~ resistance,

(a) The tumour mutational burden (TMB) in the high-risk group predicted by the risk model; (b) The TMB in the low-risk group predicted by

chromosomal translocation partner of nucleoporin 98 in acute
leukaemia [67]. B-cell lymphoma/leukaemia 10 (BCL10)
positively regulates the intracellular signalling protein B in
lymphocyte proliferation by coupling antigen receptor-induced
signalling in B and T cells to the activation of the transcription
factor NF-x [68]. Additionally, constitutive activation of the
NF-xB signalling pathway plays a key role in the pathogenesis
of activated B-cell-like diffuse large B-cell lymphoma (ABC-
DLBCL), which is the most aggressive and chemo-resistant
form of DLBCL [69].

Previous studies have reported that the seven identified
signature genes play a crucial role in the progression of several
malignancies and have highlighted the importance of these
genes in the drug resistance of certain tumours. Significant
differences in the expression of these specific genes have been
observed in different subpopulations of single cells. Therefore,
it is reasonable to believe that all seven genes have great po-
tential as prognostic biomarkers associated with drug resis-
tance in CC.

The GSEA was performed to further study the pathways
involved in the seven-gene signature. We divided the samples
into high- and low-risk groups based on the value of the
Riskscore. The results showed that the high-risk group was
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enriched in the pathways of ‘cytosolic DNA sensing’, ‘ECM
receptor interaction’, and ‘focal adhesion’ and that the low-
risk group was enriched in the pathways of ‘natural killer
cell-mediated cytotoxicity’, and “T-cell receptor signalling’.
Previous studies have shown that ‘cytosolic DNA sensing’
was closely associated with the secretion of cytokines sup-
porting innate and adaptive anti-tumour immunity [70, 71].
The significance of ‘ECM receptor interaction pathways’
suggests that tumour cell-environment interactions are dy-
namic [72]. Related studies have elucidated that ECM is
upregulated in prostate cancer tissues and is involved in both
tumour invasion and metastasis in gastric, glioblastoma,
[73-76]. Moreover, ECM promotes
the progression of epithelial-mesenchymal transition in CC
cells [77].

The pathways significantly enriched in the low-risk score

and breast cancers

group are mainly associated with multiple tumour immune
mechanisms, among which ‘natural killer cell-mediated cellular
cytotoxicity” affects the proliferation and migration of tumour
cells by altering their immune microenvironment [78-80]. The
“T-cell receptor signalling’ balances the differentiation, main-
tenance, and function of regulatory T (Treg) cells and affects
the gene expression, metabolism, cell adhesion, and migration
of these cells [81].

In summary, the seven-gene signature is associated with
important signalling pathways in tumours. Based on the results
of scRNA-seq and subsuequent validation, this signature was
found to perform well on both internal and external datasets.
Moreover, the seven-gene signature was associated with so-
matic mutation profiles in patients with CC. This is a simple
model with good performance features that can be applied in
the clinic. Nevertheless, there are still some limitations to this
study. The sample size in this study was limited, and the cohort
was not large enough, which may have affected the statistical
validity and accuracy of our results. Moreover, this study is
based only on bioinformatic analysis. Therefore, complemen-
tary and basic experiments are still needed to reveal the specific
mechanisms of action of the signature gene markers in pro-
moting tumour progression. Further studies will be necessary
to explore the underlying molecular mechanisms of action of
these genes, to demonstrate their applicability in clinical
applications.

In conclusion, this study explored CC cell heterogeneity
and genomic features based on scRNA-seq before and after
5-Fu treatment. It identified a reliable seven-gene drug
established a
model for CC progression, and provided new clinical

resistance-associated ~ signature, prediction
guidance for drug sensitivity and prognosis prediction to

develop personalized treatment regimens.
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