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Abstract: Rapid detection of viable microbes remains a challenge in fields such as microbial food
safety. We here present the application of deep learning algorithms to the rapid detection of
pathogenic and non-pathogenic microbes using metabolomics data. Microbes were incubated for
4 h in a protein-free defined medium, followed by 1D 1H nuclear magnetic resonance (NMR)
spectroscopy measurements. NMR spectra were analyzed by spectral binning in an untargeted
metabolomics approach. We trained multilayer (“deep”) artificial neural networks (ANN) on the data
and used the resulting models to predict spectra of unknown microbes. ANN predicted unknown
microbes in this laboratory setting with an average accuracy of 99.2% when using a simple feature
selection method. We also describe learning behavior of the employed ANN and the optimization
strategies that worked well with these networks for our datasets. Performance was compared to other
current data analysis methods, and ANN consistently scored higher than random forest models and
support vector machines, highlighting the potential of deep learning in metabolomics data analysis.

Keywords: artificial neural networks; machine learning; food safety; NMR; pathogens

1. Introduction

About 10% of the world’s population is infected by foodborne disease per year, causing
economic loss, hospitalizations, and death [1]. Efforts to curb the spread of pathogens
through food products include strict sanitary protocols, new technologies for inactivating
food microbes, and testing for microbial contaminations [2]. Despite these efforts, outbreaks
of foodborne disease remain a common occurrence. One reason for these outbreaks is that
food microbial testing can be a slow process. Current methods for the detection of food
microbes include classical microbiological methods such as plating and qPCR analysis. In
some cases, tests results are available after periods of 24 h or more, which may be too slow
to stop the distribution of contaminated food products. Metabolomics, the comprehensive
measurement of metabolites in a system, is a promising technique in this case because of
its speed in delivering results [3]. Nuclear magnetic resonance (NMR) metabolomics has
been proposed as a method to distinguish between E. coli and Shigella strains [4].

Artificial neural networks (ANN) are a type of computational algorithm inspired by
the layered structure of the brain’s neurons and its ability to learn from, and classify, visual
information [5]. ANN usually consist of layers of mathematical functions called “neurons”
in reference to the nerve cells of the same name. Each neuron can take multiple inputs and
deliver a single numeric output value. For this, each numeric input value is multiplied by
a factor or “weight”, where high weights cause an input to have a large influence on the
output, while low weights mean that this input has little or no effect on the output. The
output value is calculated by applying a so-called activation function on the sum of inputs
multiplied by their respective weights.

An example for a multiplayer ANN is shown in Figure 1. In this example, numeric
data of four features are used as input data. ANN have a first layer of “input neurons”;
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these neurons can either pass through the original value or perform data scaling or trans-
formation. Next, one or multiple “hidden layers” of neurons are added. In a “dense” (fully
connected) layer, all neurons receive input values from all neurons in the previous layer.
Finally, there is an output layer of neurons. In a classification problem, each output neuron
might be associated to one possible output value; in our example in Figure 1 these outputs
have two possible values: “Salmonella” and “Not Salmonella”. The output neuron with
the highest numeric values represents the prediction outcome; in Figure 1, this outcome
is Salmonella.
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Figure 1. Example of a simple multilayer artificial neural network (ANN) with four input neurons, two fully connected
hidden layers of three neurons each, and two output neurons. In this example, the output neuron “Salmonella” has the
maximum output value, and thus, the ANN predicts that the input data came from a Salmonella sample.

After creating the network structure, the network needs to be trained on training data.
In this step, the weights of the individual neurons are adapted to gain the desired result
by means of backpropagation. One “epoch” of training is defined as a training cycle in
which the network is trained once on each sample of the training dataset. To achieve a
well-trained ANN, multiple epochs of training may be required. After training or learning,
the network can be used to predict unknown data inputs. The quality of the outputs of an
ANN can be either assessed by calculating accuracy, or by calculating the “loss”, a measure
of the difference of the predicted output values to the expected (true) output values. The
goal of training or learning is minimizing loss and maximizing accuracy.

Multiplayer ANN, as shown in Figure 1, are commonly known as deep neural
networks. Deep learning algorithms have been suggested as a powerful tool in the
metabolomics field but have so far not been widely employed [6,7].

The aim of the presented study is to test the potential of metabolomics techniques combined
with deep learning algorithms to rapidly detect pathogenic and non-pathogenic microbes.

2. Results

The dataset consisted of NMR spectra from 10 different microbial strains, resulting
in 80 spectra. Spectra were binned with a bin width of 0.005 ppm. After noise removal
and removal of the solvent area, each sample had 1384 bins (features). To account for
slight differences between batches of medium, a binned spectrum of pure medium was
subtracted from each binned spectrum after microbial growth.

2.1. Unsupervised Approach

A principal component analysis (PCA) plot revealed strong differences between
microbes (Figure 2). Partial group separations are visible for most stains. Salmonella was the
only strain that showed complete separation from all other samples. The two E. coli strains
clustered together and partially overlapped. The loadings plot of this PCA (Supplemental
Figure S1) shows that acetic acid contributed strongly to the observed group separation.
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Figure 2. Principal component analysis (PCA) of the 1D 1H NMR data. Complete group separation
is visible for Salmonella, while the other microbial strains show partial group separation.

2.2. ANN Training

To predict the microbial strain based on metabolite profiles, we created and trained
ANN models. Initial tests showed that using two hidden layers increased accuracy by
3.8% as compared to ANN with one hidden layer, while using three or more hidden layers
did not further increase accuracy. Using hidden layers of equal size of 800 neurons each
yielded consistently good accuracies. Tests of different activation functions showed that
rectified linear unit (ReLU) [8] yielded better results for these data than Leaky ReLU, linear,
sigmoid, and tanh functions. During training, the optimizer Adam (adaptive moment
estimation) [9] yielded 7.7% higher accuracies than stochastic gradient descent (sgd).
Therefore, we employed ANN with 2 × 800 hidden neurons, ReLU activation, and Adam
for optimization in all further analyses.

Figure 3 shows the training behavior of these models on our dataset. It is interesting to
note that the accuracy of the internal cross-validation (solid green lines) reached 100% after
less than 30 epochs of training; however, this finding was not accompanied by maximum
accuracy in the outer cross-validation (dashed red line). It is, thus, of importance to use
outer cross-validation to estimate true accuracies. During further training, internal accuracy
stayed at 100%, but loss decreased continuously, and external accuracy increased, until
about 300 epochs of training. Then, a steep increase in loss and decrease in accuracy
occurred. After further training, better results were obtained until epoch 550, when
further accuracy decreases started occurring. At these points, the models get worse when
continuing learning through the effect of overfitting. This means that the model is learning
the outcomes of the given training samples “by heart” without being able to generalize this
knowledge. To avoid overfitting, we need to define ways to stop training before accuracy
decreases to find optimal models.

Based on these observed training behaviors, we created a set of criteria to select the
correct amount of learning (Figure 4):

Case (a): If the loss function decreases after an epoch of training, training continues.
This scenario is also known as a “greedy” algorithm.

Case (b): Training may continue even if the loss function increases, but only if the
new loss value is lower than the maximum loss value from the previous seven epochs of
training. Visually, this means the algorithm can “jump” out of narrow and shallow valleys.
Without this criterion, training might end when reaching a local minimum, but missing the
global minimum.
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Case (c): Training stops if loss increases more than the maximum value of the past
seven epochs. This criterion means the algorithm stops in broad and/or steep valleys that
might indicate a global minimum.

Case (d): Training always stops if the new loss value exceeds 2.25 times the lowest
loss observed during training, even if the value is lower than the maximum of the last
seven epochs. This number was empirically chosen based on analysis of initial tests, where
such a steep increase in loss was usually observed shortly before a huge increase in the
loss function.

In rare cases where a loss value of exactly zero is observed, this value is replaced by a
very low value of 2 × 109 to allow for the calculations for the above criteria. This value
was chosen as it was in the range of the lowest non-zero loss values observed in our data.
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The criteria defined above were then used for training the actual ANN models to
estimate prediction accuracy by outer cross-validation.
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Table 1 shows the prediction accuracies when using all signals in the dataset to create
ANN models. ANN models were able to correctly predict 91.2% of unknown microbes
in this case. We expected some of the metabolites produced during microbial growth to
be specific for the respective microbial strain. Therefore, in a second step, we repeated
the training of classification models, this time using only metabolite signals that increase
during the incubation time. ANN now reached 99.2% accuracy (Table 1).

Table 1. Prediction accuracies of various methods, determined by outer cross-validation.

Accuracy 1

Method Using All Signals Using only Increasing Signals

Artificial neural networks (ANN) 91.2% ± 1.5% 99.2% ± 1.0%
Random forests (RF) 89.8% ± 2.2% 96.5% ± 1.6%

Support vector machines (SVM) 88.8% ± 0.0% 94.6% ± 0.0%
1 Mean ± standard deviation.

2.3. Method Comparison

To compare the results of the ANN in the realm of more commonly used metabolomics
methods, we conducted random forests (RF) and linear support vector machines (SVM) in
an identical cross-validation setup. Table 1 shows the prediction accuracies when using all
signals in the dataset to create the models. RF and SVM showed lower results than ANN.
Using only increasing signals, accuracy increased for all tested models.

Table 2 shows final prediction accuracies of ANN per microbial strain when using
only increasing signals. Most strains were predicted correctly in all cases. Interestingly,
the two E. coli strains were correctly identified in all cases, despite their partial overlap in
the PCA.

Table 2. Prediction accuracies for artificial neural networks using only increasing signals.

True

B
ac

il
lu

s

C
an

di
da

E.
co

li
-K

12

E.
co

li
-O

15
7H

7

Li
st

er
ia

P
se

ud
om

on
as

Sa
lm

on
el

la

Sh
ig

el
la

St
ap

hy
lo

co
cc

us

Ye
rs

in
ia

pr
ed

ic
te

d

Bacillus 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Candida 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

E. coli-K12 0% 0% 100% 0% 0% 0% 0% 3.3% 0% 0%
E. coli-O157H7 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

Listeria 0% 0% 0% 0% 95.2% 0% 0% 0% 0% 0%
Pseudomonas 0% 0% 0% 0% 4.8% 100% 0% 0% 0% 0%

Salmonella 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
Shigella 0% 0% 0% 0% 0% 0% 0% 96.7% 0% 0%

Staphylococcus 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
Yersinia 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Green indicates optimal accuracies, yellow indicates imperfect accuracies.

To assess the metabolic differences between strains, t-test were performed to identify
signals that changed significantly during growth. P-values were corrected using the
FDR method. Figure 5 shows volcano plots to visualize the significant signals for each
microbial strain, including the metabolites that could be assigned to significant signals by
database searches. Metabolite identities and respective chemical shift values can be found
in Supplemental Table S1.



Metabolites 2021, 11, 863 6 of 13

Metabolites 2021, 11, x FOR PEER REVIEW 6 of 13 
 

 

Salmonella 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 
Shigella 0% 0% 0% 0% 0% 0% 0% 96.7% 0% 0% 

Staphylococcus 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 
Yersinia 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 

Green indicates optimal accuracies, yellow indicates imperfect accuracies. 

To assess the metabolic differences between strains, t-test were performed to identify 
signals that changed significantly during growth. P-values were corrected using the FDR 
method. Figure 5 shows volcano plots to visualize the significant signals for each micro-
bial strain, including the metabolites that could be assigned to significant signals by data-
base searches. Metabolite identities and respective chemical shift values can be found in 
Supplemental Table S1. 

 

Figure 5. Volcano plots of strain-wise t-tests of the untargeted NMR data. Metabolites significant after FDR correction are
colored in red (decreasing) or blue (increasing).

Table 3 shows a list of identified metabolites that were significantly increasing in a
specific microbe. Some metabolites, such as acetic acid, increased in most of the analyzed
microbes, while others were more specific and found in only a few of the microbial samples
under the given growth conditions.
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Table 3. Metabolites that significantly increased during microbial growth for different microbes.
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Acetic acid + + + + + 0 + + + +
Ethanol 0 0 0 + 0 0 + 0 0 0

Formic acid 0 0 0 0 0 0 + 0 + 0
Fumaric acid + 0 + 0 0 0 + + + +

Indole 0 0 + 0 0 0 0 0 + +
Lactic acid + 0 0 0 0 0 0 0 0 0
1-Propanol 0 0 0 + + 0 + 0 0 +
Spermidine 0 0 + + 0 0 + + 0 +

Succinic acid + 0 0 0 + 0 + 0 0 +
+ (yellow) indicates metabolites that consistently increased in a microbe; 0 (blue) indicates metabolites that did
not consistently increase during growth of a microbe.

3. Discussion

In this study, we cultivated various common microbes in order to analyze differences
in their metabolic products. A future application of this research could be the identification
of unknown microbes. In these cases, one cannot select a growth medium that is optimal
for growth of the respective microbe as the microbial strain will be initially unknown.
Therefore, we needed to choose a medium that allows for growth of various microbial
strains. The molecular composition of the medium will influence the growth behavior and
the profile of secreted microbial metabolites. To achieve reproducible results, the chemical
composition of the medium needs to be well-defined. Rich media such as Muller Hinton
medium are based on extracts of animal tissues and may thus show large batch differences
in their molecular make-up based on the used starting material. These differences can
impede long-term reproducibility. Therefore, we chose a new, protein-free, chemically
defined medium that allows cultivation of a broad range of microbes for this study [10].
Media was inoculated with 106 CFU/mL of each microbial strain and medium samples
were collected after 4 h of growth. 1D 1H NMR spectra were recorded for all samples and
analyzed using an untargeted binning approach.

ANN with two hidden layers of 800 neurons each were created and trained according
to an optimized set of training criteria, avoiding shallow local minima but stopping at
unusually steep increases in the loss function (Figure 4). These training criteria resulted
in excellent predictive results for unknown samples (Table 2). Simple feature selection,
in this case selecting only increasing signals, was shown to improve the accuracy of the
ANN models. It is of importance that this feature selection step must happen within the
cross-validation loop (after removal of test samples), and may not happen outside of this
loop, as this would use information from the test samples during training and invalidate
the results. Overall, ANN allowed for very accurate prediction of unknown microbial
samples grown under lab conditions. Especially, ANN accuracies were higher than those
of two other common machine learning algorithms, namely RF and SVM. RF had slightly
higher accuracies than SVM in both datasets (all signals/only increasing signals), which is
in line with previous reports [11].

To further investigate metabolic differences between the analyzed microbes, we per-
formed additional untargeted analyses. PCA analysis revealed partial or complete group
separation for most microbial strains (Figure 2). Loadings plot analysis revealed that acetic
acid was strongly contributing to this separation, indicating it is present at higher levels
after growth of microbes such as Salmonella and E. coli (Figure S1). Statistical analysis
indeed revealed significantly elevated levels of acetate for all analyzed microbes except
for Pseudomonas (Figure 5). A closer analysis of the NMR signal of acetate (Figure 6) re-
vealed that acetate is visibly produced during growth of Pseudomonas when compared



Metabolites 2021, 11, 863 8 of 13

to a medium sample, but at much lower rates than in microbes such as Salmonella. This
small release of acetate did not reach the significance level in the presented study though.
Aerobic production of acetate has been reported for Bacillus [12], Candida [13], E. coli [14],
Listeria [15], Salmonella [16], Shigella [17], Staphylococcus [18], and Yersinia [19].
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Ethanol was significant in E. coli O157:H7 and Salmonella. Ethanol is a known microbial
metabolite that is mainly associated with anaerobic growth of E. coli, but it has been shown
that E. coli can produce significant amounts of ethanol under aerobic conditions as well [20].
Similarly, ethanol secretion in Salmonella is mostly known from anaerobic growth. Still,
aerobic production of ethanol has been previously reported for Salmonella and it was
hypothesized that intracellular microcompartments allow for this effect [16].

1-Propanol is produced under aerobic conditions in E. coli [20], Salmonella [21], and
Yersinia. In Listeria, 1-propanol has been shown to be produced [22], but not under glucose-
rich conditions as in our study.

Formic acid was found elevated in accordance with previous studies on aerobic growth
of Salmonella [23], but no formate production has previously been reported aerobically in
Staphylococcus [24]. However, the latter study used a markedly different medium, which
could affect the produced metabolites.

Fumaric acid was found to be significantly increased after growth of most of the mi-
crobes analyzed in this study. It has been shown that fumaric acid is being secreted during
aerobic growth of E. coli to facilitate the uptake of L-aspartate via the DcuA transporter [25].
L-aspartate is part of the defined medium, making this a possible explanation for the
observed increase in fumaric acid.

Indole was secreted in significant amounts in E. coli K12, Staphylococcus, and Yersinia
(Table 2). Indole has multiple physiological roles, including intercellular signaling, and is
produced by various bacteria [26]. Indole is a metabolite of tryptophan, which is part of
the defined medium, thus explaining the observed indole production.

Lactic acid was significantly increasing in Bacillus under the employed growth con-
ditions. Bacillus has been previously shown to secrete lactic acid in aerobic, glucose-rich
conditions [27].

Spermidine was found in the growth medium of both E. coli strains, the closely related
Shigella, Salmonella, and Yersinia. It has been shown that various common microbes can
produces spermidine from amino acids and secrete it into the medium [28]. The employed
medium contains a large number of amino acids, which can serve as precursors for the
observed spermidine.
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Succinic acid was found in several microbes, and a potential pathway for the syn-
thesis of succinic acid from glutamate has been described for Listeria [29]. Glutamate is a
compound found in the defined medium we used for this study, which would explain the
observed succinic acid.

Overall, we found multiple microbial metabolites to be significantly elevated after
microbial growth. While some of these metabolites were elevated in many microbes,
the individual levels and the combination with more rarely observed metabolites gen-
erates a kind of metabolic fingerprint that the ANN can employ to classify different
microbes effectively.

Future applications of this technique include the identification of unknown microbes
in real-life samples. While we did not attempt this in the presented study, we expect this
application to add new analytical challenges that need to be addressed properly before the
method will be able to deliver correct predictions. First, real-world samples will usually
contain a combination of microbial species rather than a single microbial strain, which
will result in significant changes to the obtained metabolite concentrations. This might
require adjustments to the experimental protocols, such as optimal growth times, as well as
adjustments to the employed data analysis methods. ANN would need to be trained with
data stemming from microbial co-cultures to enable the networks to capture this added
complexity. In addition, real-life sample collection will introduce contaminations to the
growth medium that could hamper correct prediction. We believe the approach we used
in this study (subtracting a spectrum of original medium from the final sample) will be
beneficial in these cases as well. In addition, proper control and standardization of sample
collection and preparation will be required to limit the effects of such matrix effects. Lastly,
differences in initial microbial cell counts need to be quantified. This could be achieved
by using general linear models based on a targeted set of metabolites after initial microbe
identification using ANN.

4. Materials and Methods
4.1. Microorganism Cultivation

All chemicals were of analytical grade and purchased from Fisher Scientific (Hamp-
ton, NH, USA) unless stated otherwise. Escherichia coli (E. coli) K12, E. coli O157:H7,
Salmonella enterica serovar Typhimurium, Listeria innocua, Pseudomonas fluorescens, Staphylo-
coccus epidermidis, Yersinia enterocolitica, Bacillus subtilis, Shigella flexneri, and Candida albicans
were obtained from Professor Ahmed Yousef at the Department of Food Science and Tech-
nology of The Ohio State University and stored at –80 ◦C. Cultures were streaked on tryptic
soy agar (TSA) plates and incubated at 30 ◦C (P. fluorescens, B. subtilis, and C. albicans) or
37 ◦C (the other strains) for 24 h, respectively. A single colony from each plate was picked,
inoculated into 10 mL of tryptic soy broth (TSB) (BD Bacto, Franklin lakes, NJ, USA), and
incubated at 30 ◦C or 37 ◦C for 20 h with 280 rpm agitation.

Cells were harvested, centrifuged at 7600× g for 3 min, washed twice with 0.01 M
phosphate buffered saline (PBS, pH 7.4), and resuspended to the original volume in PBS.
Optical density at a wavelength of 600 nm (OD600) of the suspension was measured using
a Biowave Cell Density Meter CO8000 (Biochrom, Holliston, MA, USA) to determine cell
density. Then, the cell density of the suspension was adjusted to 108 CFU/mL by the
addition of 0.01 M PBS. The concentration of each strain in the suspension was confirmed
by plate counting. An aliquot of 100 µL of the suspension was used to inoculate 10 mL
of a protein-free defined medium in a 50 mL culture flask to result in a final starting
cell count of 106 CFU/mL. The protein-free defined medium was prepared as described
recently [10]. Three replicates of each strain were incubated at 37 ◦C for 4 h, after which
medium samples were collected and immediately filtered using a 0.22 µm filter membrane
to remove microbes. As a reference, medium samples were also collected immediately
following inoculation (time point 0). This procedure was repeated three times with new
batches of medium, representing biological replicates.
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4.2. NMR Measurements

Metabolic profiles were analyzed using Nuclear Magnetic Resonance (NMR) spec-
troscopy. Six hundred µL of the medium were mixed with 50 µL of deuterium oxide with
0.05% trimethylsilyl-2,2,3,3-tetradeuteropropionate (TSP) as an internal standard and boric
acid to prevent bacterial growth. The pH was adjusted to 7.4 before the solution was
transferred into 5 mm NMR tubes. 1D 1H NOESY spectra were collected at 298 K on an
850 MHz Avance III HD Ascend spectrometer equipped with a cryoprobe (Bruker BioSpin,
Billerica, MA, USA). For each sample, the probe was automatically locked, tuned, matched,
and shimmed. Spectra were processed in Topspin 3.6.1 (Bruker). For selected samples,
1H-13C heteronuclear single quantum coherence (HSQC) NMR were measured to aid in
metabolite identification.

4.3. Data Preparation

An untargeted metabolomics approach was chosen for this study, allowing for a broad
analysis of unexpected metabolites, without restricting the dataset to a set of expected
metabolites. For this, spectra were binned with a bin width of 0.005 ppm using mrbin
(1.6.1) [30]. Spectra were scaled to the internal concentration standard (TSP), but no further
scaling or transformation of the signals (e.g., to total spectrum intensity or microbial cell
count) was used. Noise bins were automatically removed from the dataset. All statistical
analysis were performed in R (3.5.1) (The R Foundation for Statistical Computing, Vienna,
Austria). To take into account batch differences of the defined medium, we subtracted
a binned spectrum of medium at time point 0 from each binned spectrum. Principal
component analysis (PCA) was calculated and plotted to visualize the data.

4.4. Classification

To predict microbial identifies, a supervised approach was employed. Artificial Neural
Networks (ANN) were created using R packages keras (2.6.0) and tensorflow (2.6.0). The
network architecture used two dense, completely linked hidden layers of 800 neurons
each with ReLU as activation function. The output layer had ten neurons, one for each
analyzed microbial strain, and used a softmax activation function. During ANN training,
accuracy was optimized using the Adam optimizer. Models were trained until no further
decrease in the loss function (sparse categorical crossentropy) was observed. RF and linear
SVM models were created using the R packages caret (6.0–86), randomForest (4.6–14), and
e1071 (1.7–6).

For each method (ANN, RF, and SVM), a series of models were generated with an
external (outer) leave-one-out (LOO) cross-validation. In this approach, one spectrum is
removed from the dataset, then a model is trained, and then the missing sample is predicted
using the generated model. This process was repeated until all spectra were predicted once.
This approach allows us to estimate the true error of prediction. Accuracy was calculated
by taking the mean of the correct estimates per strain divided by the total number of spectra
from the respective strain. To analyze the influence of the random numbers used during
modeling, this process was repeated six times with different starting seeds for the random
number generator.

In a second analysis, the calculations were repeated, this time using only signals that
increased during microbial growth compared to a time point 0 medium sample. Increasing
signals were picked within the cross-validation loop by selecting signals that increased
in all samples containing this strain. This step was performed to put an emphasis on
metabolites produced by microbes rather than metabolites consumed, which we expect to
be less specific.

4.5. Statistical Data Analysis

Two-tailed, unpaired one-sample t-tests were calculated for each microbial strain,
testing differences of the feature intensity from 0. These tests were repeated for each
feature (bin) in the dataset and resulting p-values were corrected for multiple testing
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using FDR controlling at a level of 20% [31]. Volcano plots were used to plot the negative
decadic logarithm of the raw p-values versus the feature intensity after subtraction of
a pure medium spectrum as detailed above. Fold changes were not employed in this
version of volcano plots as many features of interest were absent in the pure medium,
and fold changes are not defined for starting concentrations of 0. Features that were
significantly increasing were identified using database searches in the Human Metabolome
Database (http://hmdb.ca/, accessed on 20 November 2021) and the Biological Magnetic
Resonance Data Bank (BMRB, http://bmrb.wisc.edu/, accessed on 20 November 2021)
and measurements of pure compounds.

5. Conclusions

Here, we present a study on the detection of pathogenic and non-pathogenic microbes
using metabolomics and deep artificial neural networks. Various microbes were grown in
different flasks of identical defined, protein-free medium for 4 h, and medium metabolites
were then measured by 1D 1H NMR spectroscopy. Artificial neural networks with two
hidden layers of 800 neurons each were trained on the data and used to predict unknown
samples in an outer cross-validation scheme. Estimation of true error rates showed ex-
cellent accuracies, exceeding the results of other current methods such as RF and SVM.
Results were highest when using meaningful feature selection, in this case using only
metabolite signals that increased during microbial growth (microbial metabolites). To the
best of our knowledge, this study is the first to employ deep learning to classify NMR
metabolomics data for microbe detection. The results show the potential of these powerful
algorithms for metabolomics studies, which will need to be further developed to meet
real-world requirements.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11120863/s1, Figure S1: Loadings plot of the Principal Component Analysis (PCA);
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