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Abstract: To investigate the effects of lignin methylolation and lignin adding stage on the resulted
lignin-based phenolic adhesives, Alcell lignin activated with NaOH (AL) or methylolation (ML) was
integrated into the phenolic adhesives system by replacing phenol at various adhesive synthesis
stages or directly co-polymerizing with phenolic adhesives. Lignin integration into phenolic adhe-
sives greatly increased the viscosity of the resultant adhesives, regardless of lignin methylolation or
adding stage. ML introduction at the second stage of adhesive synthesis led to much bigger viscosity
than ML or AL introduction into phenolic adhesives at any other stages. Lignin methylolation and
lignin adding stage did not affect the thermal stability of lignin based phenolic adhesives, even
though lignin-based adhesives were less thermally stable than NPF. Typical three-stage degradation
characteristics were also observed on all the lignin-based phenolic adhesives. Three-ply plywoods can
be successfully laminated with lignin based adhesives, and it was interesting that after 3 h of cooking
in boiling water, the plywoods specimens bonded with lignin-based phenolic adhesives displayed
higher bonding strength than the corresponding dry strength obtained after direct conditioning
at 20 ◦C and 65% RH. Compared with NPF, lignin introduction significantly reduced the bonding
strength of lignin based phenolic adhesives when applied for plywood lamination. However, no
significant variation of bonding strength was detected among the lignin based phenolic adhesives,
regardless of lignin methylolation or adding stages.

Keywords: Alcell lignin; lignin methylolation; phenolic adhesives; lignin based phenolic adhesives

1. Introduction

Lignin has been considered as an alternative and renewable source for bio-materials
and biochemicals in the past decades. As the second most abundant biopolymer from pulp-
ing and bioethanol industries, lignin displays an extremely complex structure depending
on the species of plant sources and isolation process. Organosolv processes using organic
solvents have been widely applied for lignocellulosic biomass fractionation [1,2]. As a
typical technical lignin, organosolv lignin displays a variety of advantages such as high
purity, low molecular weight and relatively narrow molecular weight distribution [3,4]. In
contrast to cellulose, lignin is currently mainly applied for energy recovery in mills and
thus is a vastly underutilized as a polymer.

The phenolic structure of lignin has been interesting to both academic and industrial
communities as this phenolic structure makes lignin particularly suitable for preparing high
strength polymeric materials, especially thermosetting resins such as phenolic resins, epoxy
resins, etc. [5]. Lignin-based PF resins in which phenol is partially replaced with lignin
have been extensively and intensely investigated by both academia and industry. While
according to the study of Marko et al., even a small amount of lignin (3.4–9.4%) addition
could promote the condensation reaction for PF resole synthesis, which was demonstrated
by the increased molar masses and relatively high ratios of methylene bridges to the
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sum of free ortho- and para-aromatic groups [6]. Moreover, lignin is highly reactive
to phenolic resin prepolymers. When phenolic adhesive system containing 20% lignin
and 80% phenolic resin is used for automotive brake pads, competitive advantages are
demonstrated when compared with the brake pads prepared with pure phenolic resin [7].

Although lignin reacts with formaldehyde, its reactivity towards formaldehyde is
relatively low due to the limited reactive sites and the steric impediments of side chains
in lignin structure. Therefore, lignin modifications such as demethylation [8], phenola-
tion [9,10] and methylolation are essential to improve lignin applicability for PF resins. By
forming catechol moieties in lignin macromolecule, thus reducing the steric hinderance
of methyoxyl groups, demethylation of lignin could effectively increase the reactivity of
lignin. Demethylation can sharply decrease the relative amount of the methoxy groups
and increase the amount of phenolic hydroxyl groups. Demethylated lignin based PF
adhesives with 60% phenol replacement contains less free formaldehyde or free phenol,
but higher bonding strength compared with the PF adhesive prepared with unmodified
lignin [8]. Phenolation effectively improves lignin reactivity by introducing more reactive
functional groups. Phenolated lignin-based phenolic resins demonstrated superior quality
to unmodified lignin based phenolic adhesives in both wet and dry bonding strengths [11].
Different from lignin phenolation, methylolation enhances lignin reactivity by introducing
methylol groups into one or two aromatic carbon of the basic lignin structures [12–14].
Methylolated lignin is generated in basic condition. During the methylolation, one or two
formaldehyde molecules is added on to the orth-C by replacing orth-H, forming methylol
groups that can further react with free phenol [15]. An increase of the reaction order to
100% was observed in methylolated lignin-based phenolic resin curing reaction [16].

In our earlier study, organosolv lignin fractionated from cornstalk was activated and
condensed directly with phenol formaldehyde adhesive for laminating plywood. When
condensing with neat phenol formaldehyde adhesive, the formed glueline in laminated
plywoods even demonstrated better bonding strength than that formed with neat phenol
formaldehyde adhesive [17]. In this study, lignin activated by sodium hydroxide and
methylolation are integrated into phenolic adhesives at various stages, to investigate
the effects of lignin methylolation and lignin adding stage during adhesives synthesis
on the resulted lignin based phenolic adhesives with respects to thermal stability and
bonding strength.

2. Materials and Experiments
2.1. Materials

Phenol, formaldehyde solution (~37.0 wt%) and sodium hydroxide solution (50 wt%)
were purchased from was purchased from Sigma-Aldrich, (Oakville, ON, Canada). Alcell
lignin was provided by Lignol and its chemical composition is shown in Table 1. All the
materials were used as received without further treatments.

Table 1. Elemental composition of Alcell lignin.

Elemental Composition (wt%, d.b.1)

C H N O 2 Ash 3

Organosolv lignin 71.60 (0.14) 6.30 (0.01) 0.17 (0.00) 21.90 (0.11) 2.68 (0.08)
1 On a dry basis. 2 Determined by the difference between 100% and total carbon/hydrogen/nitrogen/ash contents.
3 Determined by direct combustion at 575 ◦C.

2.2. Experiments
2.2.1. Preparation of Neat Phenol Formaldehyde Adhesive

Neat phenol formaldehyde (NPF) adhesive was synthesized at an F/P molar ratio of
1.8 with the catalysis of sodium hydroxide. During the synthesis, 200 g of phenol, 85.1 g of
water and 60 g of 50% sodium hydroxide solution were loaded into a 1000 mL three-neck
glass reactor and heated to 60 ◦C. During the heating, 310.5 g of 37% formaldehyde solution
was slowly added into the glass reactor. The reactor was then heated at 60 ◦C for 60 min,
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then heated at 80 ◦C for 180 min. The temperature was finally increased to 90 ◦C and
maintained at 90 ◦C for 30 min, then the reactor was cooled down to room temperature to
terminate the synthesis reaction.

2.2.2. Preparation of Lignin-Based Phenolic Adhesives

As Figure 1 illustrates, four types of Alcell lignin-based phenolic adhesives were
prepared. Before the preparation of the lignin-based adhesives, aqueous lignin solution
was first prepared: 200 g of Alcell lignin, 200 g of distilled water and 100 g of 50% NaOH
solution was cooked, where lignin was added at three stages. Briefly, 100 g of 50% NaOH
solution was mixed with 200 g of distilled water in a 1000 mL three-neck glass reactor
under agitation. After 10 min of stirring, 80 g of Alcell lignin was added into the reactor.
The reactor was then heated to 60 ◦C and held for 60 min. Sixty grams of the second portion
of lignin was loaded into the reactor and the reactor was heated at 80 ◦C for 10 min, then
60 g of the third portion of the lignin was added. Finally, the whole mixture was heated at
80 ◦C for 60 min and then cooled down to room temperature. The obtained lignin solution
was designated as AL. While for the preparation of methyloated lignin (ML) solution, AL
was first heated to 60 ◦C, followed by a dropwise addition of 54.05 g of 37% formaldehyde
solution. The mixture was then heated at 60 ◦C for 180 min.

Molecules 2021, 26, x FOR PEER REVIEW  4 of 7 
 

 

 

Figure 1. Diagram for phenolic adhesives preparation. 

2.2.3. Characterizations of the Adhesives 

Basic Characterizations 

Viscosity of the adhesives was tested with a brook viscometer (CAP 2000+ Viscome‐

ter, Brookfield, Middleboro, MA USA) equipped with cone spindle at the 500 rpm of ro‐

tation speed at 50 ℃ Non‐volatile content of the adhesives was determined by heating at 

125 ℃ for 105 min according to ASTM D4426‐01 method (reapproved 2006). Free formal‐

dehyde  content  in  the  adhesives was determined via  a hydroxylamine hydrochloride 

method in accordance with European Standard EN ISO 9397. 

Thermogravimetric Analysis (TGA) 

Thermal stability of the adhesives was tested via thermogravimetric analysis (TGA, 

Pyris 1 TGA, PerkinElemer, Shelton, CT, USA). Before the tests, all the samples were cured 

at 140 ℃ and ground  into powder. For each TGA run, 10.0 mg of powder sample was 

loaded into a platinum pan and heated from 50 ℃ to 800 ℃ at 10 ℃/min in N2 with a flow 

rate of 20 mL/min. 

Adhesives for 3‐Ply Plywood Lamination 

The prepared adhesives were applied in bonding yellow birch veneers into 3‐ply ply‐

wood for estimating bonding strength. Yellow birch veneers (11 × 11 × 1/16 inch3) were 

first conditioned at 20 °C and 65% RH for 7 days. The adhesives were mixed with wheat 

flour (10 wt% based on adhesive) as a filler. The mixture was then spread on the condi‐

tioned yellow birch veneers surface at the spread rate of 200 g/m2 for each glueline. The 

surface veneers were bonded perpendicularly with center veneer at 140 °C under 3.0 MPa 

for 4 min. Plywood specimens were cut for the mechanical test according to ASTM D 906‐

98. One‐half of the specimens from each adhesive bonded plywood was conditioned at 20 

°C and 65% RH  for 7 days,  followed by  the mechanical  test. While  the other half was 

cooked in boiling water for 3 h, then cooled down in fume hood. All the 3‐plywood spec‐

imens were tested at room temperature on shear stress of the glueline by tension loading 

with a benchtop universal testing machine (ADMET eXpert 7603 eP2 Universal Testing 

System) at a tension rate of 3 mm/min till failure. Honestly significant difference (Tukey’s 

HSD method) was applied for the statistical analysis among the mechanical testing results. 

Figure 1. Diagram for phenolic adhesives preparation.

As for AL-based adhesive synthesis, 250 g of AL, 125 g of phenol, 53.25 g of water and
6.25 g of 50% NaOH was first loaded into a 1000 mL three-neck glass reactor. The reactor
was then heated at 60 ◦C. After 60 min, 227.9 g of 37% formaldehyde solution was loaded
and further held at 60 ◦C for another 60 min. The heating temperature was then elevated
to 80 ◦C and maintained at 80 ◦C. After 180 min, temperature was further increased to
90 ◦C and kept for 30 min. The resulted black viscous product was designated as LPF. In
addition to LPF, three ML-based adhesives were also prepared. For MLPF-1 preparation,
153.95 g of ML was loaded into a 1000 mL three neck glass reactor connected to a condenser
and a thermometer, followed by adding 50 g of phenol, 21.3 g of water and 5.0 g of 50%
sodium hydroxide. The mixture was then heated to 60 ◦C. During the heating process,
77.65 g of 37% formaldehyde solution was loaded via a dropping funnel and the mixture
was heated at 60 ◦C for 60 min, then heated at 80 ◦C for 180 min. The mixture was further
heated at 90 ◦C for 30 min and the reactor was cooled down to room temperature to end
the preparation process. As for MLPF-2 synthesis, 100 g of phenol, 42.6 g of water and
10 g of 50% sodium hydroxide were loaded into a 1000 mL three-neck glass reactor. The
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reactor was then heated to 60 ◦C. During the heating process, 155.3 g of 37% formaldehyde
solution was loaded and heated at 60 ◦C for 60 min. The mixture was then heated up to
80 ◦C and maintained at 80 ◦C for 120 min. ML (307.9 g) was then loaded into the reactor.
After heating at 80 ◦C for 60 min, the temperature was further elevated to 90 ◦C and heated
for 30 min. MLPF-3 was prepared via a simple blending of ML and NPF at the weight ratio
of 1:1 under agitation for 10 min at room temperature.

2.2.3. Characterizations of the Adhesives
Basic Characterizations

Viscosity of the adhesives was tested with a brook viscometer (CAP 2000+ Viscometer,
Brookfield, Middleboro, MA, USA) equipped with cone spindle at the 500 rpm of rotation
speed at 50 ◦C Non-volatile content of the adhesives was determined by heating at 125 ◦C
for 105 min according to ASTM D4426-01 method (reapproved 2006). Free formaldehyde
content in the adhesives was determined via a hydroxylamine hydrochloride method in
accordance with European Standard EN ISO 9397.

Thermogravimetric Analysis (TGA)

Thermal stability of the adhesives was tested via thermogravimetric analysis (TGA,
Pyris 1 TGA, PerkinElemer, Shelton, CT, USA). Before the tests, all the samples were cured
at 140 ◦C and ground into powder. For each TGA run, 10.0 mg of powder sample was
loaded into a platinum pan and heated from 50 ◦C to 800 ◦C at 10 ◦C/min in N2 with a
flow rate of 20 mL/min.

Adhesives for 3-Ply Plywood Lamination

The prepared adhesives were applied in bonding yellow birch veneers into 3-ply
plywood for estimating bonding strength. Yellow birch veneers (11 × 11 × 1/16 inch3)
were first conditioned at 20 ◦C and 65% RH for 7 days. The adhesives were mixed with
wheat flour (10 wt% based on adhesive) as a filler. The mixture was then spread on the
conditioned yellow birch veneers surface at the spread rate of 200 g/m2 for each glueline.
The surface veneers were bonded perpendicularly with center veneer at 140 ◦C under 3.0
MPa for 4 min. Plywood specimens were cut for the mechanical test according to ASTM D
906-98. One-half of the specimens from each adhesive bonded plywood was conditioned
at 20 ◦C and 65% RH for 7 days, followed by the mechanical test. While the other half
was cooked in boiling water for 3 h, then cooled down in fume hood. All the 3-plywood
specimens were tested at room temperature on shear stress of the glueline by tension
loading with a benchtop universal testing machine (ADMET eXpert 7603 eP2 Universal
Testing System) at a tension rate of 3 mm/min till failure. Honestly significant difference
(Tukey’s HSD method) was applied for the statistical analysis among the mechanical testing
results. In a given figure, values or bars annotated with the same letter mean insignificant
difference at a 95% confidence level.

3. Results and Discussion
3.1. Basic Properties

As illustrated by Table 2, Alcell lignin-based adhesives show similar pH and non-
volatile contents to NPF. While Alcell lignin-based adhesives exhibited higher free formalde-
hyde contents than NPF. Residual free formaldehyde content in lignin-based phenolic
adhesives can be reduced by optimizing the formaldehyde/lignin ratio during lignin
activation and the formaldehyde/phenol ratio during the adhesive synthesis. Relatively
higher viscosity of lignin-based adhesives than that of NPF is observed and the addition of
ML during adhesives synthesis at the second stage contributes to extremely high viscosity.
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Table 2. Basic properties of the adhesives.

pH Viscosity (50 ◦C, cP) Non-Volatile Content (%) Free Formaldehyde Content (%)

NPF 10.91 56.7 (3.7) 46.6 (0.2) 0.06 (0.002)
LPF 10.73 144.5 (4.9) 45.3 (0.5) 0.31 (0.019)

MLPF-1 10.74 131.3 (6.3) 44.7 (0.4) 0.41 (0.022)
MLPF-2 10.80 181.9 (10.9) 45.4 (0.3) 0.36 (0.032)
MLPL-3 11.17 131.3 (6.3) 44.5 (0.2) 0.43 (0.017)

3.2. Thermal Stability

TGA and derivative thermogravimetric (DTG) profiles of the cured adhesives are as
displayed by Figure 2. All the adhesives display typical three-stage degradation charac-
teristics of phenol formaldehyde adhesive as we observed previously [18]. NPF shows
three degradation peaks at 210 ◦C, 404 ◦C and 509 ◦C, respectively. The similar thermal
degradation peaks were observed on the lignin based phenolic adhesives at approximately
210 ◦C, 360 ◦C and 490 ◦C, respectively. Compared with NPF, the associated degradation
peaks shift to lower temperature levels, due to the less thermal stability of lignin based
adhesives. Moreover, the solid residue of NPF and lignin based adhesives ranges in 58–62%,
suggesting the similar fixed carbon content in all adhesives.
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Figure 2. TGA and DTG profiles of the cured adhesives.

3.3. Bonding Strength of the Bonded 3-Ply Plywood

Bonding strength of 3-ply plywoods bonded by the adhesives is displayed in Figure 3.
In contrast to the reported data, wet strength is higher than the corresponding dry strength
for all the adhesives, even after 180 min of cooking of the plywood specimens in boiling
water. This could be due to the further curing or cross-linking reaction of adhesives as
well as the complete release of interior stress in the glueline during the cooking process.
NPF adhesive can withstand up to 2.26 MPa and 2.44 MPa of tensile shear stress at dry
and wet conditions, respectively. Lignin introduction into phenolic adhesives reduces the
bonding strength when applied for plywoods. LPF displays a tensile shear strength of
1.59 MPa and 1.95 MPa at dry and wet conditions, respectively. For the associated MLPF-1,
the bonding strength at dry and wet conditions is 1.49 MPa and 1.76 MPa, respectively.
Lignin methyolation does not contribute to increased bonding strength compared with
LPF. Addition of ML into adhesive at the second stage of adhesives synthesis results in
further decreased bonding strength of 1.43 and 1.71 MPa at dry and wet conditions. While
direct blending of ML and NPF for adhesive purpose contribute to comparable dry and wet
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bonding strength of 1.55 MPa and 1.84 MPa. Despite the above observations, lignin-based
adhesives all meet the requirement for ASTM standard. Honestly significant difference
analysis demonstrated that difference between bonding strength of NPF and any lignin
based adhesive is significant. Meanwhile, regardless of methylolation or adding stage,
difference among the lignin based adhesives is not significant as far as the bonding strength
is concerned.
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Figure 3. Tensile shear strength of 3-ply plywood bonded with the adhesives.

4. Conclusions

Alcell lignin was activated with sodium hydroxide and successfully integrated into
phenolic adhesives at various stages. All lignin-based adhesives display both higher vis-
cosity and free formaldehyde content than the neat phenol formaldehyde adhesive. When
methylolated lignin was introduced during the second stage of adhesive synthesis, the
resultant adhesive is much more viscous than any other adhesives. When exposed to heat
at 50–800 ◦C, all the adhesives display typical three stage degradation characteristics, even
though lignin-based adhesives show lower thermal stability than neat phenol formalde-
hyde adhesive. Bonding strength of lignin based adhesives all meet the requirement for
ASTM standard, but bonding strength of any lignin based adhesive is significantly lower
than that of neat phenol formaldehyde adhesive, regardless of dry or wet condition. While
regardless of lignin methylolation or adding stage, difference among the lignin based
adhesives is not significant with respect to bonding strength.
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