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A novel coronavirus, designated as SARS-CoV-2, first emerged in Wuhan City, Hubei Province, China, in
late December 2019. The rapidly increasing number of cases has caused worldwide panic. In this review,
we describe some currently applied diagnostic approaches, as well as therapeutics and vaccines, to
prevent, treat and control further outbreaks of SARS-CoV-2 infection.

© 2020 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
In late December 2019, a pneumonia of unknown etiology
emerged in Wuhan City, Hubei Province, China. Patients presenting
with acute respiratory failure were seen in the ER and then
admitted to ICU facilities for further treatment [1]. The causative
pathogenwas later identified as a novel coronavirus named as 2019
novel coronavirus (2019-nCoV) by World Health Organization
(WHO), or SARS-CoV-2 by the Coronavirus Study Group (CSG) of
the International Committee on Taxonomy of Viruses (ICTV) on
February 12, 2020, or human coronavirus 19 (hCoV-19) by a group
of virologists in China [2]. TheWHO announced coronavirus disease
19 (COVID-19) as the official name of the disease. Respiratory
droplet transmission is themain route of transmission, and human-
to-human transmission had been occurring among close contacts
since the middle of December 2019 [3]. WHO declared COVID-19 as
pandemic on March 11, 2020. As of April 22, 2020, a total of
2,475,723 cases had been confirmed globally, with 169,151 deaths
(https://www.who.int/emergencies/diseases/novel-coronavirus-
2019).
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Coronaviruses, which are enveloped non-segmented positive-
sense RNA viruses, belong to the family Coronaviridae. They are
broadly distributed in humans and other mammals [4]. Previously,
six coronavirus species were known to cause human disease,
including HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1,
SARS-CoV and Middle East respiratory syndrome coronavirus
(MERS-CoV) [5]. The first four species caused only mild symptoms,
but SARS-CoV and MERS-CoV have caused more than 10 thousand
cumulative infections in humans in the past two decades with
mortality rates of ~10% for SARS-CoV and ~34% for MERS-CoV,
respectively [6e8]. SARS-CoV-2 is the seventh number of the
family of coronavirus that can infect humans [9]. Although the
mortality rate of SARS-CoV-2 is lower than that of MERS-CoV and
SARS-CoV, its transmissibility (median R0: 5.7) is much higher than
that of either MERS-CoV (R0: <1) or SARS-CoV (R0: 3) [10]. Genome
sequencing analysis of clinically isolated samples from patients
showed that SARS-CoV-2 shares 88% nucleotide similarity with two
bat-derived SARS-like coronaviruses, bat-SL-CoVZC45 and bat-SL-
CoVZXC21, but has only around 79% and 50% identity with SARS-
CoV and MERS-CoV, respectively [11]. The genome of SARS-CoV-2
and other emerging pathogenic human coronaviruses encodes
four major structural proteins, including spike (S), membrane (M),
envelope (E) and nucleocapsid (N), as well as sixteen nonstructural
proteins (nsp1-16), plus five to eight accessory proteins [12].
Among them, SARS-CoV-2 uses S protein to bind its host cell
d.
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membrane receptor angiotensin converting enzyme 2 (ACE2) for
virus entry (Fig. 1) and subsequent pathogenesis [13]. Phylogenetic
analysis suggested that bats might be the primary reservoir for
SARS-CoV-2 [14], while the intermediate host is still under inves-
tigation. The rapid worldwide expansion of SARS-CoV-2 calls for
smart POCT diagnostic approaches, safe and effective vaccines, as
well as novel therapeutics, to detect, prevent and cure COVID-19
infection. Here, we highlight the safety and effectiveness of vac-
cines with respect to Dr. Shibo Jiang’s recent appeal that safety be
foremost on the minds of vaccine developers as they begin to
engage in preclinical and clinical trials to tackle SARS-CoV-2 [15].
Here we briefly summarize current diagnostic approaches and
development of vaccines and therapeutics for SARS-CoV-2.
1. Diagnostic approaches for SARS-CoV-2 detection

Those infected with SARS-CoV-2 may present with such symp-
toms as fever, dry cough, fatigue, or shortness of breath, with or
without nasal congestion, runny nose or other respiratory symp-
toms [1]. However, patients with mild symptoms may not present
any positive signs. Thus, rapid and accurate detection of the caus-
ative pathogen is essential in controlling the outbreak among both
asymptomatic carriers and individuals showing signs of the dis-
ease. However, since SARS-CoV-2 is a newly discovered virus, the
diagnostic toolkit is limited.

Up to now, SARS-CoV-2 has been detected from clinical speci-
mens analyzed by electron microscopy, cell culture, real-time
reverse-transcription PCR (RT-PCR) and next-generation
sequencing [9]. Molecular tests for rapid detection of the causa-
tive virus are urgently needed for early identification of infected
patients; meanwhile, RT-PCR, which combines the reverse tran-
scription of RNA and amplification of specific cDNA regions, re-
mains the primary means of diagnosing SARS-CoV-2 [16].
Normally, sputum, lower respiratory tract secretions, blood, urine
or stool samples are collected form suspected patients. Nasopha-
ryngeal and oropharyngeal swabs are the recommended upper
respiratory tract specimen types for SARS-CoV-2 detection [17].
The University of Hong Kong-Shenzhen Hospital enrolled a family
of six patients who travelled to Wuhan from Shenzhen between
December 29, 2019 and January 4, 2020. Nasopharyngeal or throat
swabs were collected. After RNA extraction, an RT-PCR assay was
performed to amplify the genes encoding the internal RNA-
Fig. 1. Schematic diagram of SARS-CoV-2 structure and ACE2 receptor on the host cell
surface.
dependent RNA polymerase (RdRp) and the surface spike (S)
protein of SARS-CoV-2. Phylogenetic analysis of the RT-PCR
amplicons and two full genomes by next-generation sequencing
confirmed that the family was, indeed, infected by SARS-CoV-2
[18]. Prof. Poon’s group developed two 1-step quantitative RT-
PCR assays to detect the ORF1b and N genes of SARS-CoV-2. The
assays were evaluated using a panel of positive (RNA extracted
from cells infected by SARS coronavirus) and negative controls.
The detection limits were found to be below 10 copies per reaction,
and samples from two SARS-CoV-2 infected patients were positive
in the tests [19]. Samples from all collections contained sputum, as
well as nose and throat swabs, with or without viral transport
medium. RNA extraction and RT-PCR were performed to amplify
the RdRp, E and N genes of SARS-CoV-2. The assays were highly
sensitive and specific because they did not cross-react with other
coronaviruses [20].

Collection of nasopharyngeal or oropharyngeal specimens may
cause discomfort and bleeding, especially in patients with throm-
bocytopenia [18]. This method also requires close contact between
healthcareworkers and patients, which poses a risk of transmission
[17]. Consequently, neither nasopharyngeal nor oropharyngeal
specimens are ideal for serial monitoring of viral load. One study
used saliva to screen respiratory viruses among hospitalized pa-
tients without fever or respiratory symptoms [21]. Prof. Yuen’s
group collected saliva from 12 Hong Kong patients with laboratory-
confirmed cases of coronavirus infection, and the novel coronavirus
could be detected in the saliva specimens of 11 patients (91.7%) by
in-house one-step real time RT-qPCR assay targeting the S gene
[17], suggesting that saliva could be a practical noninvasive spec-
imen type. Several rapid diagnostic kits for SARS-CoV-2 detection
are now commercially available. Among them, one is from the
Beijing Genome Institute (BGI). It can detect multiple pathogens
using sequencing and microarray technologies, and it has been
approved for clinical use [16].
2. Development of vaccines against COVID-19 infection

Vaccine development is the most effective strategy to prevent
and eliminate infectious disease. By learning from the vaccine
development path of MERS and SARS, several platforms,
including DNA, mRNA, recombinant protein, and adenoviral
vector, are being investigated. Since S protein and its fragments,
such as S1, S2, RBD, and N protein, are prime targets for devel-
oping MERS and SARS vaccines, it is expected that similar regions
of SARS-CoV-2 could also be considered as critical targets for
COVID-19 vaccines [22,23]. Since the genetic sequence of SARS-
CoV-2 has been released on 11 January 2020, more than 40
pharmaceutical companies and academic institutions from many
countries have engaged in actively developing COVID-19 vac-
cines, and some candidates have entered efficacy evaluation in
animals and clinical trials.
2.1. Nucleic acid vaccines

Several major biotechnology companies have advanced nucleic
acid platforms for COVID-19 vaccine development. The Innovation
and Value Initiative (IVI), Inovio and the Korea National Institute of
Health (KNIH) are collaborating with the Coalition for Epidemic
Preparedness Innovations (CEPI) to test the safety and immuno-
genicity of a DNA vaccine named INO-4800 in Phase 1/2 clinical
trial in South Korea [24]. Both Moderna/NIH and CureVac are
focusing onmRNAvaccine development, and a safety clinical trial of
Moderna’s candidate vaccine mRNA-1273 with a sample size of 45
volunteers was performed in March 2020 [25].
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2.2. Subunit vaccines

Subunit vaccines based on recombinant S or S1 protein of SARS-
CoV and MERS-CoV have been demonstrated to be efficacious in
many studies [26e29]. Clover Biopharmaceuticals is developing a
vaccine consisting of a trimerized SARS-CoV-2 S protein using their
patented Trimer-Tag technology [30]. The receptor-binding domain
(RBD) in SARS-CoV-2 S protein was identified, and it was further
demonstrated that SARS-CoV-2 RBD exhibited significantly higher
binding affinity to ACE2 receptor compared to binding between
SARS-CoV RBD and ACE2 [31], suggesting that the RBD-based SARS-
CoV vaccines have the potential to be developed for prevention of
SARS-CoV-2 infections. RBD-based vaccines are now under devel-
opment by several organizations through international collabora-
tions [32]. The pulmonary surfactant-biomimetic nanoparticles
used to potentiate heterosubtypic influenza immunity can be used
as adjuvant to enhance the immunogenicity of SARS-CoV-2 subunit
vaccines [33].

2.3. Inactivated or live-attenuated virus vaccines

Whole inactivated or live-attenuated virus vaccines represent a
traditional vaccine strategy. Researchers at the University of Hong
Kong have developed a live influenza vaccine that expresses SARS-
CoV-2 proteins [34]. Codagenix has developed a “codon deoptim-
ization” technology to attenuate viruses, and the company is
exploring COVID-19 vaccine strategies [35].

2.4. Virus vector-based vaccines

Vaccines based on viral vectors offer a high level of protein
expression and long-term stability, and induce strong immune re-
sponses [36]. Johnson & Johnson is developing an adenovirus-
vectored vaccine using AdVac®/PER.C6® vaccine platforms [37].
The first COVID-19 vaccine candidate based on adenovirus-
vectored vaccine developed by Chen Wei group entered human
clinical testing (NCT04313127) with unprecedented rapidity early
on 16 March 2020. Another phase I safety trial of a recombinant
adenovirus vaccine candidate (Cansino Biologics Inc., Tianjin,
China), Ad5-nCoV, recruited 108 healthy adults in Wuhan, China in
March 2020 [38]. Apart from adenovirus vector-based vaccine, two
lentivirus vector-based vaccine candidates, COVID-19/aAPC and LV-
SMENP-DC have been developed by Shenzhen Geno-Immune
Medical Institute. The COVID-19/aAPC vaccine was developed by
applying lentivirus modification including the SARS-CoV-2 mini-
genes and immune modulatory genes, to the artificial antigen
presenting cells (aAPCs). The Phase I clinical trial consisting of 100
participants started on February 15, 2020 and the estimated study
completion date was December 31, 2024 (NCT04299724). The LV-
SMENP DC vaccine was developed by modifying DC with lenti-
virus vectors expressing SARS-CoV-2 minigene SMENP and im-
mune modulatory genes. The Phase I clinical trial involving 100
patients was conducted onMarch 24, 2020 and the estimated study
completion date was also December 31, 2024 (NCT04276896)
(http://clinicaltrials.gov/).

As we all know that adjuvants play a critical role by enhancing
immunogenicity of the vaccine candidates and make dose viable in
some vaccine platforms. So far, there are at least 10 developers have
engaged into developing adjuvanted COVID-19 vaccines. Vaccine
developers Dynavax, Seqirus and GlaxoSmithKline have committed
tomaking some liscensed adjuvants includingMF59, AS03 and CpG
1018 available for use [36].

No matter which platform we take to develop the COVID-19
vaccines, researchers need to carefully evaluate the effectiveness
and safety of the candidate vaccine at each step. In this situation,
SARS-CoV-2 especific animal models seems quite essential. Until
now, some different animal models are under developed, including
hamsters, ferrets, ACE2-transgenic mice and non-human primates
[36].

3. Therapeutic strategies to treat COVID-19

Specific drugs to treat the novel coronavirus will probably take
several years to develop and evaluate; however, a range of existing
host-directed therapies are under investigation. For example,
clinical trials with protease inhibitors (clinical trials.gov:
NCT04276688, NCT04255017, and so on) and nucleotide analog
remdesivir (clinical trials.gov: NCT04280705, NCT04257656,
NCT04252664, and so on) are ongoing in China and the United
States [39].

Lopinavir and ritonavir, two licensed HIV protease inhibitors,
have been tested in combination for efficacy in 99 COVID-19 pa-
tients in China, but the results suggested no difference in the
clinical outcome when compared with standard care [40]. Still, one
54-year-old male, the third patient diagnosed with COVID-19
infection in Korea, did show a significant decrease in viral load af-
ter lopinavir/ritonavir administration, and no virus titer was
observed [41]. The preliminary results of a clinical trial on favipir-
avir for the treatment of COVID-19 with a total of 80 patients
showed that favipiravir had more potent antiviral action than that
of lopinavir/ritonavir [42]. Future trials on patients with severe
COVID-19 may help to confirm or exclude the efficacy of lopinavir/
ritonavir treatment.

Remdesivir, the antiviral agent, was designed for the Ebola virus
infection, and it was shown broad-spectrum antiviral activity
against several RNA viruses [43]. Remdesivir was shown to be
highly effective in the control of SARS-CoV-2 infection in vitro [44].
It was used to treat the first case of COVID-19 infection in the United
States, and the patient’s clinical condition improved after only one
day [45], indicating the promise of Remdesivir, an anti-SARS-CoV-2
drug. Several clinical trials are ongoing.

It has been demonstrated that SARS-CoV-2 uses the same cell
entry receptor ACE2 as SARS-CoV [13]. The use of recombinant
ACE2 (rACE2) to neutralize the virus (clinical trials.gov:
NCT04287686) is now under clinical investigation [39]. In vitro
studies have demonstrated that Vero cells pretreated with chloro-
quine are refractory to SARS-CoV infection by interruption of the
glycosylation process [46]. Chloroquine has been demonstrated to
be highly effective in the control of SARS-CoV-2 infection in vitro
[44]. Accordingly, chloroquine was first tested in clinical trial by
Chinese investigators on more than 100 patients with COVID-19,
and it showed a reduction in the duration of symptoms and exac-
erbation of pneumonia, along with radiological improvement,
leading to virus-negative seroconversion [47]. Hydroxychloroquine,
a less toxic derivative of chloroquine, was shown to be effective in
inhibiting SARS-CoV-2 infection in vitro [48]. However, no
confirmed results from a normalized clinical trial cliHydroxy-
chloroquine, along with azithromycin, was tested by French in-
vestigators on patients with COVID-19, and it showed that 100%
patients with COVID-19 treated with hydroxychloroquine in com-
bination with azithromycin exhibited virological cure on day 6 of
the treatment. However, only 57.1% of patients treated with
hydroxychloroquine alone have exhibited virologocal cure [49].
However, its use for treatment of COVID-19 outside of the hospital
setting or a clinical trial was against by the US FDA due to risk of
heart rhythm problems (https://www.fda.gov/drugs/drug-safety-
and-availability/fda-cautions-against-use-hydroxychloroquine-or-
chloroquine-covid-19-outside-hospital-setting-or).

Another interesting strategy is to use convalescent plasma (CP)
as treatment, but it should be noted that CP should be collected
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within two weeks after recovery to ensure a high neutralization
antibody titer [50]. It was reported that SARS-CoV-2 isolated from
the bronchoalveolar lavage fluid of a severe patient could be
neutralized by sera from several other patients [51]. Another pre-
liminary uncontrolled case involved 5 patients with severe COVID-
19. After they were administered CP containing neutralizing anti-
bodies (nAb), their clinical status improved [52]. One dose of
200 ml of CP with the nAb titers above 1:640 was transfused to 10
patients with severe COVID-19 as an addition to maximal sup-
portive care and administration of antiviral agents. The clinical
symptoms were significantly improved within 3 days, and several
parameters were improved compared to pretransfusion, including
decreased C-reactive protein and increased lymphocyte counts
[53]. Presently, 36 clinical trials are ongoing worldwide (http://
clinicaltrials.gov/).

Previous research on MERS-CoV- and SARS-CoV-specific nAbs
may provide valuable guidelines for rapid design and development
of SARS-CoV-2-specific nAbs. Among the structural proteins of
SARS-CoV-2, S fragments, such as S1-NTD, RBD and S2, can be
considered as targets for nAb development [12]. Polycloncal human
immunoglobulin G (IgG) derived from transgenic cows has been
tested successfully for MERS-CoV in animal models [54], and this
strategy has been tested for safety in clinical trials (clinical tri-
als.gov: NCT02788188). Because of the high identity of the RBD in
SARS-CoV-2 and SARS-CoV, the cross-reactivity of SARS-CoV-
specific human monoclonal antibodies was tested on SARS-CoV-2,
and it was found that only CR3022 bound potently with SARS-
CoV-2 [55], indicating that CR3022 might be a potential thera-
peutic candidate for treatment of COVID-19 infections. Cocktails
consisting of antibodies specific for RBD and other regions in the S
protein can be considered to further improve the breadth and ef-
ficacy of nAbs against SARS-CoV-2 infection [12].

Studies have also revealed that some coronavirus entry in-
hibitors have potential to be developed for treatment or prevention
of SARS-CoV-2 infection. The peptides derived from the HR2
domain of the spike proteins of SARS-CoV [56], MERS-CoV [6] and
SARS-CoV-2 [57,58], have been shown to be effective against the
fusion, entry and replication of the corresponding coronavirus. A
pan-corovirus fusion inhibitor (EK1) were reported to be highly
effective against divergent human coronaviruses, including SARS-
CoV, MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL-63, and
SARS-CoV-2, as well as several bat SARS-related coronaviruses
(SARSr-CoVs) [58,59]. A series of lipopeptides derived from EK1,
which targeted the HR1 domain, were highly potent in inhibiting
entry and infection of divergent human coronaviruses, including
SARS-CoV-2. For example, the lipopeptide EK1C4 inhibited SARS-
CoV-2 S protein-mediated membrane fusion with IC50 of 1.3 nM
[57]. Therefore, these peptides have great potential to be further
developed as a therapeutic or prophylactic for treatment or pre-
vention of the current SARS-CoV-2 and MERS-CoV infection and
future emerging and reemerging coronavirus infections.

Researchers announced that darunavir, which is a second-
generation HIV-1 protease inhibitor, inhibited SARS-CoV-2 infec-
tion in vitro and that the inhibition efficiencywas 280-fold over that
of the untreated group [42]. Another trial (NCT04304053) is looking
at the efficacy of a durunavir/cobicistat plus choroquine treatment
[60]. Chinese herbal medicines, such as Radix Sophorae and Rhi-
zoma Polygoni Cuspidati, may contain agents against SARS-CoV-2
[42]. The combination of traditional Chinese and Western medi-
cine treatments is also promising. Nonetheless, the efficacy and
safety of all these potential candidates in the treatment of COVID-19
need to be confirmed in further preclinical and clinical trials.
However, development of safe and effective COVID-19 therapeutics
is often hampered by the lack of valid COVID-19 animal models for
evaluation their in vivo safety and efficacy [61].
4. Conclusion and perspectives

Here we reviewed recently published information about diag-
nostic approaches, as well as vaccine and treatment development,
for SARS-CoV-2. Quickly identifying a person with SARS-CoV-2
infection is critical to control the continuing spread of the virus.
The noninvasive specimen collection strategy has the advantage
when collecting clinical specimens. It cannot be overstated that
both vaccine development and investigation into potential drugs
are subject to further studies to validate safety and efficacy,
including, for example, immunization strategies, adjuvant selec-
tion, or establishment of animal models. International collabora-
tions, or consortia, will promote COVID-19 and move vaccine
development forward. Safety evaluation of candidate vaccines
against SARS-CoV-2 is paramount, and this issue is related to the
type of vaccines to be selected and immunogens to be designed.
Potential therapeutics include lopinavir/ritonavir, remdesivir,
chloroquine, hydroxychloroquine, CP and polyclonal/monoclonal
antibodies. Again, however, clinical trials are needed for further
confirmation of the efficacy and safety of these agents in treating
COVID-19.
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