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Abstract

Motivation: Many methods for transcript-level abundance estimation reduce the computational

burden associated with the iterative algorithms they use by adopting an approximate factorization

of the likelihood function they optimize. This leads to considerably faster convergence of the opti-

mization procedure, since each round of e.g. the EM algorithm, can execute much more quickly.

However, these approximate factorizations of the likelihood function simplify calculations at the ex-

pense of discarding certain information that can be useful for accurate transcript abundance

estimation.

Results: We demonstrate that model simplifications (i.e. factorizations of the likelihood function)

adopted by certain abundance estimation methods can lead to a diminished ability to accurately

estimate the abundances of highly related transcripts. In particular, considering factorizations

based on transcript-fragment compatibility alone can result in a loss of accuracy compared to the

per-fragment, unsimplified model. However, we show that such shortcomings are not an inherent

limitation of approximately factorizing the underlying likelihood function. By considering the ap-

propriate conditional fragment probabilities, and adopting improved, data-driven factorizations of

this likelihood, we demonstrate that such approaches can achieve accuracy nearly indistinguish-

able from methods that consider the complete (i.e. per-fragment) likelihood, while retaining the

computational efficiently of the compatibility-based factorizations.

Availability and implementation: Our data-driven factorizations are incorporated into a branch

of the Salmon transcript quantification tool: https://github.com/COMBINE-lab/salmon/tree/

factorizations.

Contact: rob.patro@cs.stonybrook.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Shortly after the RNA-seq assay became popular as a tool for tran-

scriptome profiling and quantification, the computational commu-

nity began developing principled inference methodologies to allow

accurate transcript-level quantification in the presence of multi-

mapping reads. Tools such as Cufflinks (Trapnell et al., 2010),

RSEM (Li et al., 2010), mmseq (Turro et al., 2011) and IsoEM

(Nicolae et al., 2011) provided statistical models by which

transcript-level abundance estimates could be inferred. These meth-

odologies principally rely on maximum likelihood estimation to

infer the transcript abundances that would be most likely given the

observed data (i.e. the alignments of the sequenced fragments to the

underlying genome or transcriptome). Bayesian methodologies such

as BitSeq (Glaus et al., 2012) and Tigar (Nariai et al., 2013) were

also developed and adopt different inferential approaches varying

from fully Bayesian approaches like collapsed Gibbs sampling

(Glaus et al., 2012) to approximate inference approaches like vari-

ational Bayesian optimization (Hensman et al., 2015; Nariai et al.,

2013, 2014).

These methods vary widely in their details, though adopt a similar

generative model of the underlying RNA-seq experiment; one which

is well-represented by the generative model of RSEM (Li et al., 2010;

Li and Dewey, 2011). In this paper, we shall refer to this as the full

model. It is a generative model of an RNA-seq experiment that con-

siders the likelihood of observing a collection of alignments as de-

pendent upon the parameters of interest (i.e. the transcript

abundances), as well as the details of each alignment of a sequenced

fragment to the reference transcriptome. In this way, the full model

provides very high fidelity, and is capable of incorporating a tremen-

dous amount of information into the inference procedure (e.g. the
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implied fragment length under each alignment, details about the align-

ment and the fragment’s quality values, the probability of different

start positions for the sampled fragment, etc.).

Unfortunately, however, this means that straightforward infer-

ence procedures that adopt this full model scale in the number of

considered alignments per-iteration. For example, a 30 million frag-

ment RNA-seq experiment may produce 100 million fragment align-

ments, all of which are considered by the inference procedure in

each of its (typically) hundreds to thousands of iterations. This ap-

proach, then, poses two problems. First, inference is typically slow

since each iteration must consider a large number of independent

probabilities. Second, so as to prevent the inference algorithm from

becoming even slower, these per-alignment probabilities are typic-

ally retained in memory, which can lead memory requirements to

scale linearly with the number of alignments. One approach to miti-

gate the cost associated with optimizing the full model is to alter the

actual inference algorithm that is used. For example, eXpress

(Roberts and Pachter, 2013) uses an online-EM algorithm, rather

than a batch-EM algorithm (by default), to infer transcript abun-

dances. This eliminates the need to cache alignments in memory for

efficiency, resulting in constant memory usage. However, a single

pass over the data is not always sufficient to achieve the same accur-

acy as methods that run batch algorithms to convergence.

One of the more popular approaches for reducing the computa-

tional burden and speeding up the inference procedure is to form an

approximate factorization of the likelihood function (see Section

2.1). For example, mmseq introduced a notion of fragment equiva-

lence classes, which treats as equivalent any fragments that align to

exactly the same set of transcripts. This leads to a likelihood func-

tion in which the counts of fragments compatible with subsets of

transcripts serve as sufficient statistics. The likelihood defined over

these counts is typically orders of magnitude faster to evaluate, but

it can discard certain fragment-level information encoded in the

alignments. Distinct but related notions of equivalence classes were

also introduced by Salzman et al. (2011) and Nicolae et al. (2011).

Because of the computational economy of this approximate fac-

torization, it (or similar variants) were later adopted by new light-

weight approaches for transcript quantification like Sailfish (Patro

et al., 2014; Srivastava et al., 2016) and kallisto (Bray et al., 2016).

By coupling a very fast inference approach with techniques that

removed the requirement of computing traditional alignments for

each sequenced fragment, such approaches reduced the time

required to obtain transcript-level quantification estimates by orders

of magnitude over existing approaches. These lightweight methods

have proven an important and popular development. Recently,

Patro et al. (2017) introduced a new lightweight approach, Salmon,

that uses a ‘dual-phase’ inference algorithm, which combines an on-

line stochastic inference method with an efficient offline inference

algorithm. While adopting a similar approximate factorization as

mmseq, Sailfish and kallisto, Salmon also maintains aggregate (i.e.

average) weights per equivalence class that allow retaining some in-

formation about fragment-level probabilities during the offline infer-

ence algorithm. However, this information is restricted to a single

scalar value per transcript-equivalence class pair, and so is necessar-

ily limited in its ability to represent the full model with complete

fidelity.

In this paper, we argue that the dual-phase algorithm introduced

by Salmon allows one to derive a data-driven approximate factoriza-

tion of the full model likelihood function. The online phase of the al-

gorithm assesses each individual fragment probability, and uses this

information to build a highly reduced but accurate proxy for the full

model likelihood that can be efficiently optimized during the offline

phase. While only slightly increasing the per-iteration cost of the

underlying inference algorithm, this data-driven factorization can

represent the fragment-level likelihood function with much higher fi-

delity. In fact, we demonstrate that a data-driven likelihood factor-

ization can produce transcript-level abundance estimates that

display essentially no loss in accuracy compared to what is obtained

under the full model. Thus, such a factorization is preferable to the

more common compatibility-based approximate factorization, since

it can provide a substantial improvement in accuracy while intro-

ducing only a small increase in the computational burden. We note

that we focus in this paper on how to factorize the likelihood func-

tion, and not, specifically, the algorithm by which this function is

best optimized. Thus, we expect the approaches we introduce here

to easily translate to other likelihoods or optimization approaches;

e.g. to variational Bayesian optimizations (Nariai et al., 2013), or

natural gradient-based optimization algorithms (Hensman et al.,

2015).

2 Approach

2.1 The likelihood function and its factorizations
We begin by considering the basic generative model laid out by Li

et al. (2010). We consider a transcriptome T to consist of a set of M

transcripts, t1; t2; . . . ; tM. In a given sample, there are ci copies of the

ith transcript. Further, we can assign to each transcript its length,

such that the length of ti is given by ‘i. The generative model of an

RNA-seq experiment states that the expected number of fragments

sequenced from each transcript type ti is proportional to the total

number of sequencable nucleotides that it constitutes in the underly-

ing mixture—that is we expect that ai / gi ¼ ci �‘iP
j
cj �‘j

—where ai is the

number of fragments drawn from transcripts of type ti. Assuming

that each fragment is drawn independently, the likelihood of a col-

lection F of fragments can be written as:

Lðh;F Þ ¼
Y
fj2F

XM
i¼1

PrðtijhÞPrðfjjtiÞ; (1)

where h denotes the parameters of the model, which are the underly-

ing transcript abundances. We note that, throughout this manu-

script, we use the term ‘fragment’ as a generic term which is

represented by a single read (in single-end protocols) and a read pair

(in paired-end protocols). The methods we propose in Section 3

work only in terms of the conditional fragment probabilities, and so

are equally applicable in both single and paired-end protocols,

though the definition of these conditional probabilities will be

protocol dependent.

The primary quantity of interest, with respect to the factoriza-

tions being proposed in this paper, are the PrðfjjtiÞ terms—that is,

the conditional probability of drawing a particular fragment fj, given

transcript ti. This term encodes, given parameters of the model and

experiment, how likely it is to observe a specific fragment fj arise

from transcript ti. Many terms can be included in such a conditional

probability, some common terms include:

Pr djjfj; ti

� �
¼

PrD dj

� �
P‘i
k¼1

PrD kð Þ
; (2)

the probability of observing a mapping of implied length dj for fj

given that it derives from ti , where PrDðkÞ is the probability of
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observing a fragment of length k under the empirical fragment

length distribution D;

Pr pjjdj; fj; ti

� �
¼ 1

‘i � dj þ 1
; (3)

the probability of a observing a mapping starting at position pj for

fragment fj given that it has implied length dj and is derived from ti ;

Pr ojjfj ;ti

� �
¼

(
0:5 ifunstranded

(
1:0 ifcompatibleorientation

e if incompatibleorientation
if strand� specific

;

8>>>>><
>>>>>:

(4)

the probability of observing a mapping with a specific orientation oj

(i.e. forward or antisense) with respect to the underlying transcript

for fj , given ti , e (a user-defined constant), and knowledge of the

underlying protocol, and

Prðajjfj ; oj; dj; pj; ti Þ; (5)

the probability of observing the particular alignment (e.g. CIGAR

string) aj for fj given it is sampled from transcript ti , has orientation

oj, implied length dj and starts at position pj—such a probability is

calculated from a model of alignments, like those presented in (Li

et al., 2010; Patro et al., 2017; Roberts and Pachter, 2013).

In fact, one can conceive of many such general models of ‘frag-

ment-transcript agreement’ (Patro et al., 2017). The framework we

propose in Section 3 can naturally account for such conditional

probabilities that one might consider as part of PrðfjjtiÞ. However, in

this manuscript, we consider that PrðfjjtiÞ is simply the product of

the conditional probabilities defined in Equations (2) to (5), appro-

priately normalized.

2.2 Equivalence classes and approximate likelihood

factorizations
Here, we describe the most common definition of fragment equiva-

lence classes, and explain how they are used to derive an approxi-

mate factorization of the likelihood function, we adopt a notation

similar to Patro et al. (2017).

Let AðT ; fj Þ be the set of all alignments of fragment fj to the

transcriptome T and let Xðfj Þ ¼ fhi; ti ijti 2 AðT ; fj Þg be the tuple

of transcripts to which fj maps—considering the ti are ordered by

their index i. Fragment equivalence classes are defined in terms of

the equivalence relation �, such that fm � fn if and only if

Xðfm Þ ¼ Xðfn Þ. Thus, fragment equivalence classes consider as

equivalent (for the purposes of inference), sequenced fragments that

align to the same set of transcripts. We will refer to Xðfj Þ as the label

of fj for all fj 2 F q , where F q is the equivalence class to which fj

belongs. We will also refer to XðF q Þ ¼ Xðfj Þ; 8fj 2 F q as the label

of fj ’s equivalence class. Finally, it will be convenient to define the

total size of each such equivalence class as Nq ¼ jF q j, which is the

total number of equivalent fragments in the class F q .

Now, we can write the equivalence class-based approximation

to the likelihood function as:

Lðh;F Þ �
Y
F q 2 C

X
hi;tii2X F qð Þ

Prðti jhÞ � Pr f jF q ; tið Þ

0
@

1
A

Nq

; (6)

where C is the set of all equivalence classes, and Prðf jF q ; ti Þ is the

probability of generating a fragment f given that it comes from

equivalence class F q and transcript ti . The key to the efficiency of

likelihood evaluation (or optimization) under this factorization, is

that the probability Prðf jF q ; ti Þ is assumed to be identical for each

of the Nq fragments in each equivalence class F q —hence, we do not

subscript f in Equation (6). This allows one to replace the product

over all fragments fj in Equation (1) with a product over all equiva-

lence classes in Equation (6). The approximation, of course, stems

from the fact that, under the full model, a fragment fj may have a

probability Prðfj jti Þ that is arbitrarily different from Prðf jF q ; ti Þ.
Moreover, the most common approximations, like those adopted in

mmseq, Sailfish and kallisto consider this probability to be fixed and

essentially independent of any fragment-level information (e.g. it is

set to one divided by the effective length of ti ).

2.3 What approximate factorizations elide
Figure 1 provides an illustrative example why considering condi-

tional fragment probabilities can be important. Consider a multi-

isoform gene, and a single fragment fj, which aligns equally well

(i.e. the sequence of both ends of the fragment match the sequence

of the underlying transcripts equally well) to isoforms A and B of

this gene. If we consider only transcript-fragment compatibility,

then both of the alignments illustrated in Figure 1 are delineated

only in that isoform A has fewer potential start locations.

However, considering the implied length of this fragment, given

the expected insert size distribution of the experiment (either pro-

vided as input to the model, or inferred from the collection of pre-

viously aligned fragments), can provide strong evidence that one or

the other of these isoforms was more likely to have generated fj.

For example, were the mean of the fragment length distribution

250, then we would expect isoform A to be much more likely to

have generated fj. Conversely, were the mean of the fragment

length distribution 400, then we would expect that, in fact, isoform

B might have been more likely to generate this fragment. Standard

(i.e. compatibility-based) approximate factorizations of the full

likelihood function into equivalence classes discard (or collapse)

this fragment-level information. For example, compatibility-only

factorizations of the likelihood into equivalence classes simply

treat Prðdjjfj; tiÞ as equal for all transcripts in the equivalence class

to which fragment fj belongs. The factorization adopted by Salmon

attempts to maintain slightly more information by computing these

conditional probabilities and averaging them; maintaining a single

extra scalar per transcript-equivalence class pair, that represents

the conditional probability that any fragment coming from a par-

ticular equivalence class would derive from a particular transcript.

Though this maintains some extra information, it is not always

Fig. 1. A fragment multimapping between two different isoforms (A,B) of a

gene. Depending on the parameters of the fragment length distribution of the

underlying sample, either multi mapping locus could be more probable a pri-

ori. Under the approximate likelihood factorization that considers only com-

patibility-based equivalence classes, such information is necessarily hidden

from the resulting inference algorithm. We note that, of course, such multi-

mapping can also happen between different genes (e.g. paralogs)
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enough to faithfully approximate the full-model likelihood

function.

Below, we describe a data-driven approach that allows for a

much more faithful representation of the full model likelihood func-

tion, while still greatly reducing the amount of information that

must be maintained for inference. A broad overview of how these

factorizations relate to each other is given in Figure 2, and the spe-

cific factorizations are described in more detail below.

3 Materials and Methods

As illustrated in Figure 2 and described above, the approximations

that rely on compatibility-based factorizations can discard informa-

tion that may be useful for correct transcript abundance estimation.

Specifically, such notions of equivalence classes sacrifice per-

fragment information encoded in the conditional probabilities

Prðfj jti Þ. We propose here alternative notions of equivalence classes

that take into account both the transcripts with which a fragment is

compatible, as well as the vector of conditional probabilities that en-

codes how likely the fragment is to have been sequenced from each

such transcript. That is, these factorizations account both for the set

of transcripts t1 ; . . . ; tk to which a fragment fj maps, as well as the

conditional probabilities Prðfj jt1 Þ; . . . ;Prðfj jtk Þ that fj was sampled

from each of these transcripts. Our approach is agnostic to how

Prðfj jti Þ is computed, but, as stated in Section 2.1, we consider here

each conditional probability to be the product of Equations (2) to

(5), appropriately normalized.We accomplish this by defining new

equivalence relations over fragments that consider and summarize

these conditional probabilities in a data-driven manner.

As one divides each equivalence class into smaller sub-classes of

fragments, the factorized likelihood approaches the likelihood (and

hence fidelity) of the full model. Conversely, as the number of

equivalence classes increases so does the complexity of evaluating

and optimizing the likelihood.

Here, we introduce two different factorization methods that re-

fine the compatibility-based notion of equivalence classes. These

approaches are a refinement in the strict sense that each sub-cluster

of fragments that fall within the newly defined equivalence classes

align to the same set of transcripts as all other fragments in the ori-

ginal, compatibility-based definition of the equivalence class.

However, in these factorizations, the conditional fragment probabil-

ities (with respect to the set of transcripts) tend to exhibit smaller

distance to mean; i.e. the approximate weight used to summarize the

conditional probability of all fragments within these refined equiva-

lence classes is much closer to the individual conditional probabil-

ities of all the fragments placed in the class. Subsequently, this leads

to a more accurate approximation of the likelihood function.

Moreover, we find that only a small number of such refined equiva-

lence classes is required to approximate the full likelihood very

closely, meaning that the computational complexity of evaluating

and optimizing the likelihood function is very close to what is

required when considering the original compatibility-based equiva-

lence class factorization (see Results).

3.1 Rank-based factorization
We call the first factorization method that we consider to refine the

notion of equivalence classes the ‘rank-based factorization’. We con-

sider all transcripts to which a fragment aligns, and sort the tran-

scripts based on the conditional probability values of the fragment

given each transcript. Then, the equivalence class for a fragment is

determined by the set of transcripts to which it maps, and the rank-

order of the conditional probabilities for this fragment given those

transcripts. For instance, consider 1000 fragments which all align to

the transcripts t1 and t2, where 250 of these fragments align to t1
with a higher conditional probability than that with which they

align to t2 (and vice-versa for the rest). In this case, the rank-based

equivalence relation will induce two equivalence classes (whereas

the compatibility-based relation would have induced 1), the first

250 fragments will become members of one equivalence class with

label fh1; t1 i; h2; t2 ig and the rest will be assigned to another

equivalence class with the label fh1; t2 i; h2; t1 ig. As with the ori-

ginal notion of rich equivalence classes in Salmon (Patro et al.,

2017), a single scalar value per transcript is saved in each equiva-

lence class, which is the mean of all conditional probabilities of the

fragments given each transcript. Of course, in this factorization, the

total number of equivalence classes is typically larger than the num-

ber of compatibility-based equivalence classes. Formally, we define

the rank-based equivalence relation �< as follows: let rðf ; fhi1; ti1 i;
hi2; ti2 i; . . . ; hij; tij igÞ be a function that returns a permutation r of

ðti1 ; ti2 ; . . . ; tij Þ such that Prðf jtr1
Þ � Prðf jtr2

Þ � . . . � Prðf jtrj
Þ,

with ties broken arbitrarily in favor of the transcript having the

smaller index. We define two fragments fm and fn to be equivalent

(fm�< fn ) if and only if Xðfm Þ ¼ Xðfn Þ and rðfm ;Xðfm ÞÞ ¼
rðfn ;Xðfn ÞÞ.

3.2 Range-based factorization
We consider a second factorization approach that we call ‘range fac-

torization’ (Salmon-RF). In this approach, we seek equivalence

classes that have fragments which both align to the same set of tran-

scripts and which have similar conditional probabilities with respect

Fig. 2. There is a conceptual tradeoff between the computational efficiency of

an inference technique, and the fidelity with which it models the full, frag-

ment-level likelihood function. kallisto, Sailfish (using quasi-mapping

(Srivastava et al., 2016)) and mmseq simply consider the compatibility of

fragments with transcripts, and thereby discard the conditional fragment-

level probabilities completely. Salmon collapses the fragment-level condi-

tional probabilities to a single scalar (their average value) per-equivalence

class; this recovers some of the fidelity lost in the other approaches, but can

still discard useful fragment-level information. Approaches that consider

each fragment independently in each round of the optimization algorithm

(e.g. RSEM and Salmon-FM and eXpress (offline)) sacrifice no fidelity, but

each iteration scales with the total number of aligned/mapped fragments. Our

proposed data-driven clustering approach (Salmon-RF) captures most of the

important fragment-level probabilities of the full model, while retaining an

update time very similar to Salmon ’s standard model in its offline rounds.

The online rounds of Salmon and eXpress are not directly comparable to the

batch rounds considered in this figure (they update the parameters more fre-

quently), but they do consider the conditional probability of each fragment

individually

Improved data-driven factorizations i145

Deleted Text: -
Deleted Text: ,
Deleted Text: &hx0022;
Deleted Text: &hx0022;. 
Deleted Text: ,
Deleted Text: 2 
Deleted Text: &hx0022;
Deleted Text: &hx0022; 


to these transcripts. To motivate this approach, consider, first, the

case of two fragments that have exactly the same conditional proba-

bilities for the same set of transcripts, then one can safely group

them together without any loss of accuracy with respect to the ori-

ginal likelihood function. In fact, this is the equivalence relation pro-

posed by Nicolae et al. (2011). However, this particular

factorization can have a negative impact on performance since most

of the time probabilities of fragments are not exactly proportional.

Hence, this can lead to a model similar to the full model that con-

siders all fragment-transcript likelihood values. However, we can

compromise the ‘exact’ proportionality of probabilities for the

sake of performance. Instead of clustering fragments that have

exactly proportional probabilities, we place fragments with the

same conditional probability ‘range’ into the same equivalence

class. We first divide the valid range of probabilities ½0;1� into k

bins, and then consider two conditional probabilities equal if

their values are in the same bin. Two fragments are considered

equivalent under this definition, denoted �r, if they fall into the

same set of bins with respect to all transcripts to which they

align. Formally, let bkðf ; fhi1; ti1 i; hi2; ti2 i; . . . ; hij; tij igÞ be a func-

tion that returns a vector of bin values (one for each transcript,

and each between 0 and k – 1). We define two fragments fm and fn

to be equivalent (fm �rfn ) if and only if Xðfm Þ ¼ Xðfn Þ and

bkðfm ;Xðfm ÞÞ ¼ bkðfn ;Xðfn ÞÞ.
We can tune the parameter k to tradeoff of the number of such

equivalence classes versus the accuracy they provide. As k

approaches infinity (or, rather, machine precision), the fidelity pro-

vided by this factorization approaches that of the full model, be-

cause all fragments will end up in either single-member equivalence

classes, or in equivalence classes of fragments having conditional

probabilities exactly proportional to theirs. On the other hand, as k

gets smaller, the number of clusters gets closer to a small constant

times the number of compatibility-based equivalence classes, but

each cluster consists of fragments with the wider range of condi-

tional probabilities. In this approach, we do not simply replace each

conditional probability with the center of the bin into which it falls.

Rather, for each bin, we record the sum and a total number of con-

ditional probabilities stored in this bin. After processing all frag-

ments, the centroid of each bin is computed and used as the

representative conditional probability for this bin. This model is a

natural extension of the rich equivalence class model used in

Salmon, and the models coincide when k¼1. Throughout this

paper, range-based equivalence classes have a number of bins equal

to 4þ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jXðF q Þj

p
e.

Figure 3 provides a good example of this factorization and its

impact on the average of conditional probabilities for each tran-

script. There are 225 fragments that all are aligned to the two tran-

scripts in this equivalence class. Each dot represents a fragment

with its x value equal to Prðf jt1Þ and y value equal to Prðf jt2Þ. call

shows the average value of conditional probabilities of all frag-

ments for transcript t1 and t2. As can be observed, the deviation of

call from many of the conditional probabilities is large since the

conditional probabilities are widely distributed over the range

from zero to one. However, when we divide the range into three

bins and then separate fragments based on the bin into which their

conditional probabilities fall, we obtain three clusters containing

fragments whose within-cluster conditional probabilities fall into

much smaller ranges. So, in this case, all fragments that have the

same bin for their conditional probability given t1 and their condi-

tional probability given t2 end up in the same cluster. Lines show

the borders of each bin and colored circles show the centroids used

to represent the conditional probabilities in each bin. In this case,

we expect to obtain results closer to the full model; yet, the number

of clusters over which one must iterate to apply the EM algorithm

is still much smaller than the total number of fragments (see

Results).

Though we have implemented and experimented with both of

these alternative factorizations, in this paper we will focus on the

range-based factorization, as we observe that it almost always pro-

vides a better approximation of the likelihood than the rank-based

factorization.

4 Results

We test the ability of our proposed factorization to improve the ap-

proximation of the full model likelihood on both synthetic and ex-

perimental data. We demonstrate that, as expected, the range-based

factorization almost always provides a very good approximation of

the full model likelihood. Interestingly, we also observe that it some-

times leads to a slightly more accurate solution than when no factor-

ization is applied (i.e. when the likelihood is evaluated for each

fragment independently). Though we have not investigated this in

depth, it is likely that, in some cases, a small degree of smoothing of

the conditional probabilities can lead to a more stable and accurate

solution.

We consider both small-scale and transcriptome-wide simu-

lated data. In Section 4.1 we consider simulations over the tran-

scripts from families of paralogous genes. Such situations represent

the most challenging abundance estimation problems for transcript

quantification tools since high levels of multi-mapping are preva-

lent. We conduct the simulations over many random settings of the

abundances of these transcripts, and look at how well different

methods are able to recover the true abundances at different aver-

age coverage levels. We directly observe how, in the most adversar-

ial situations, the proposed factorization allows us to recover

important information that leads to improved abundance

estimates.

In Section 4.2 we explore the effect that different factorizations

have on abundance estimates transcriptome-wide. Here, we observe

that, while the data-driven factorizations lead to improved abun-

dance estimates, the differences between methods becomes much

smaller, since the statistics are aggregated over the entire transcrip-

tome and since many transcripts fall into the ‘easy’ case of abun-

dance estimation. The differences between methods, while still

Fig. 3. Factorizing an equivalence class consisting of 225 fragments and 2

transcripts into k¼3 bins. Each dot represents one fragment. The vertical

lines indicate borders of bins for transcript t1 and the horizontal lines show

borders of bins for transcript t2. The purple circle with label call shows the cen-

ter for original equivalence class. The rest of the circles are indicators of the

centers for each cluster after the factorization
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moderate, are larger when we restrict our assessment to a more diffi-

cult subset of transcripts.

Finally, in Section 4.3, we examine the effect of different factor-

ization methods over experimentally sequenced data. We explore

how closely different factorizations approach the abundance esti-

mates derived by RSEM—though we note (as observed in some of

the simulated data) that RSEM is not necessarily more accurate than

the alternative methods or factorizations.

In Sections 4.1–4.3 we consider the transcript abundance esti-

mates generated by RSEM, eXpress (both in default mode and with

50 batch EM rounds) and variants of Salmon (using different factor-

izations). We focus on the performance of these tools when quan-

tifying abundances using alignments, instead of mappings

(Srivastava et al., 2016). We keep the input data as close as possible,

since the purpose of this paper is not an investigation of the effect of

alignment versus mapping on expression estimation, but rather the

effect of the factorization of the likelihood and how that factoriza-

tion affects inference. We noticed that, regardless of the factoriza-

tion used, there was a small but persistent gap between non-

alignment-based tools (kallisto and mapping-based variants of

Salmon) compared to RSEM and alignment-based variants of

Salmon on the RSEM-sim data. It is not clear that this is due to any

fundamental superiority of alignment compared to mapping, but ra-

ther, may be a result of the fact that the specific error model, learned

by RSEM and used to simulate reads in RSEM-sim, acts as a ‘side-

channel’ of information for alignment-based approaches. However,

this question, though outside the scope of this paper, deserves fur-

ther consideration and analysis.

In the Supplementary Material, we explore the effect of these

factorizations on mapping-based solutions by comparing different

variants of mapping-based Salmon with kallisto (which only allows

using pseudoalignment for quantification).

Alternative factorization variants:

Salmon (i.e. without any modification) uses a compatibility-

based notion of equivalence classes called ‘rich’ equivalence classes.

Under this notion, the equivalence classes themselves are compatibil-

ity-based, but each transcript-equivalence class pair is associated

with a scalar weight which is computed as the mean conditional

probability of all fragments in this equivalence class to derive from

this transcript. We also consider a variant of Salmon (denoted as

Salmon-U herein) that adopts a purely compatibility-based notion

of equivalence classes. That is, it stores no extra information about

the conditional probability of deriving the fragments in each equiva-

lence class from the different transcripts, and during inference con-

siders only that Prðf jtÞ ¼ Prðpjf ; tÞ ¼ 1=~‘t, where ~‘t is the effective

length of transcript t and is defined as ~‘t ¼ ‘t � l‘td . l‘td is the mean

of the truncated empirical fragment length distribution as described

in Patro et al., 2017.

We also consider a variant of Salmon, Salmon-FM, that performs

no additional factorization. Instead, like RSEM, it considers each

fragment and its relevant conditional probabilities independently. In

this case, the only difference between Salmon-FM and RSEM is that

the former computes the conditional fragment probabilities using an

online stochastic inference algorithm, while RSEM recomputes the

conditional fragment probabilities after updating auxiliary model

parameters during the first 10 iterations of an offline (i.e. batch) EM

procedure.

Finally, we consider a variant of Salmon, Salmon-RF, that

uses the range-factorization described in Section 3.2 to generate

equivalence classes based on �r and compute the associated

weights.

We use both the mean absolute relative difference (MARD) and

Spearman correlation to assess performance. We define the absolute

relative difference (ARD) as:

ARDi ¼
0 if xi þ yi ¼ 0

jxi � yij
xi þ yið Þ otherwise

;

8><
>: (7)

Where yi is the estimated number of reads originating from ti

and xi is the true (or assumed) number of reads originating from ti .

The MARD is simply defined as MARD ¼ 1
M

PM
i¼1 ARDi, where M

is the total number of transcripts.

Experimental setup and software parameters:

In the tests below, Salmon v0.8.0 was run in alignment mode

with the –useErrorModel flag. Salmon-RF consists of Salmon run

with –useRangeClusterEqClasses 4. Salmon-U consists of

Salmon run with –noRichEqClasses. RSEM v1.3.0 was run with

default parameters. eXpress v1.5.1 was run with –no-bias-cor-

rect and other parameters were left as default (the extra parameter

–additional-batch 50 was used to produce the eXpress (þ50)

results). All alignments were generated using Bowtie 2 version 2.2.9

with the default parameters chosen by RSEM. We note that these

default parameters disallow indels in the resulting alignments

(though Salmon and eXpress allow indels in the alignments they

process, RSEM does not). Further, we note that since we examine

simulated data without bias and since we compare against RSEM

(which does not model sequence-specific or fragment-GC bias) in

the experimental data, we run all other methods without bias correc-

tion. On experimental RNA-seq data, one might expect bias correc-

tion alone to substantially improve the accuracy of a given method.

Though those accuracy improvements should be orthogonal to those

obtained by improving the fidelity of the likelihood function. All the

tests are performed on a 64-bit Linux server with 256GB of RAM

and 4 x 6-core Intel Xeon E5-4607 v2 CPUs running at 2.60GHz.

4.1 Small-scale simulations on RAD51 and its paralogs
We first consider a few small-scale simulations to motivate how the

conditional probabilities considered by the full model (and approxi-

mated closely by the range-based equivalence classes) might improve

abundance estimates. We note that these simulations are specifically

constructed to represent adversarial and difficult-to-quantify mix-

tures of highly related isoforms. We consider the transcripts from

large families of paralogous genes, under many random distributions

of abundances. Often, the fragments will align to many different

transcripts with few-or-no nucleotide differences, and sometimes

even with similar implied insert sizes. Thus, we expect that closely

approximating the conditional fragment probabilities might have a

large effect in this case. We note, however, that such adversarial

abundance configurations are likely rare in experimental data.

We consider two different, small-scale tests focusing around the

gene RAD51 and members of its paralogous family in Homo

Sapiens. The RAD51 family includes eight paralogous genes includ-

ing RAD51 itself. RAD51 codes for a 339-amino acid protein that has

a significant role in repairing double strand breaks of DNA (Yates

et al., 2015).

In the first experiment we apply RSEM and all varieties of

Salmon on all isoforms of the RAD51 gene. We extracted all (10) ref-

erence transcripts of RAD51 from the Ensembl (release 80) reference

transcriptome. True reads counts for all transcripts were generated

by sampling a read count for each transcript uniformly over ½1;200�;
these counts represent base-depth coverage (left) in Figure 4a. These

counts were multiplied by 10 to derive the input read counts at 10X
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coverage (Fig. 4a, center) and by 100 to derive the counts at 100X

coverage (Fig. 4a, right).

Given these read counts, the Polyester simulator (Frazee et al.,

2015) was then used to simulate five different read sets (replicates)

from the same input distribution. This entire procedure was re-

peated 30 times, setting R’s random seed from 1 to 30 in sequence.

Since the reads are simulated, we can assess the deviation of the

estimated abundances from the exact abundances for each tran-

script. We use the absolute relative difference (ARD) of estimated

versus true read counts (Equation (7)) as the metric to evaluate the

accuracy of different methods for each transcript over replicates,

and Figure 4a shows a box plot of the distribution of ARD values

over the 30 simulations.

As we expect, Salmon-U generally yields the largest ARDs, fail-

ing to utilize the information contained in the conditional fragment

probabilities. Salmon generally performs better, suggesting that,

even in this complex scenario, the aggregate weight maintained in

the rich equivalence classes helps to recover some (but not all) of the

fidelity of the full model. However, Salmon-RF, while only slightly

increasing the number of equivalence classes considered, produces

ARDs very close to those of RSEM, eXpress (þ50) and Salmon-FM.

This suggests that, even in this adversarial scenario, the range-based

equivalence classes allow us to recover the inferential accuracy of

the full model.

To further explore difficult abundance estimation scenarios, we

consider the case of the presence of high abundance isoforms from

more than one gene in the reference. Therefore, in the second set of

experiments we consider four paralogs of RAD51 (RAD51, RAD51B,

RAD51C and RAD51D). We extract all transcripts corresponding to

these genes and we run the same simulation as above with respect to

all of these transcripts. Evaluation of ARDs for every transcript in

all genes is displayed in Figure 4b. The results in this case are similar

to what was observed in the single gene experiment. In some cases,

like transcript ENST00000553595 from RAD51B (which is dis-

played as t10 in Fig. 4b), both Salmon-U and Salmon fail to estimate

an accurate abundance. In other cases Salmon performs better than

Salmon-U, e.g. transcript ENST00000585947 from RAD51D (dis-

played as t50 in Fig. 4b). For almost every transcript, Salmon-RF,

Salmon-FM, eXpress (þ50) (eXpress under default settings performs

a bit worse) and RSEM all perform similarly and better than the

methods that adopt a purely compatibility-based factorization of

the likelihood. As this simulation contains a large number of tran-

scripts, we plot, in Figure 4b, the box plots for only every tenth

transcript to make the plot more interpretable. The complete plot

containing the ARD values for all transcripts of this paralogous

family is provided in Supplementary Figure S1. Supplementary

Figure S2 shows gene specific performance of methods for all tran-

scripts of RAD51C and RAD51D in this experiment. For transcripts

of RAD51C, all factorizations (even the basic rich equivalence

classes of Salmon) perform relatively well compared to Salmon-U.

For accurately estimating the abundances of transcripts from

RAD51D, however, improved factorizations (Salmon-RF) seem to

be essential.

We ran quantification tools in non-alignment mode on both

RAD51’s transcripts and also all transcripts from the same RAD51 ’s

paralog set we consider above (Supplementary Fig. S3). We also per-

formed similar simulations at three different depths from the gene

SEZ6 and its paralogs (SEZ6L and SEZ6L2) and followed the same

set of steps to compare the performance of different tools in non-

alignment mode, the result for this gene are presented in

Supplementary Figure S4.

4.2 Transcriptome-wide analysis on synthetic data
To assess the performance of the proposed model on a large dataset

of RNA seq reads, we generate synthetic data using RSEM-sim,

and adopting the procedure used by Bray et al. (2016). RSEM

model parameters were generated by running RSEM on sample

NA12716_7 from the GEUVADIS (Lappalainen et al., 2013)

study. Using these model parameters, RSEM-sim was then used to

generate a sample consisting of 30M 75 bp paired-end RNA-seq

reads.

(a)

(b)

Fig. 4. Applying different methods of transcript abundance estimation in alignment mode on two sets of data in 3 depth of fragment sequencing. Top (a) are all

isoform transcripts of gene RAD51. The bottom (b) is from transcripts of four different paralogs of RAD51, RAD51B,RAD51C, RAD51D. In each row the left most

plot refers to experiment with counts of 1X coverage, the middle one to 10X and the most right plot refers to the experiment with fragment counts of 100X

coverage
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Again, we explore the performance of RSEM, eXpress (both in

default mode and with 50 rounds of batch EM) and four different

variants of Salmon (Salmon-U, Salmon, Salmon-RF and Salmon-

FM). We compute the Spearman correlation and MARD metrics of

each of these methods compared with the true (i.e. simulated) abun-

dances. As we observe in Table 1, discarding all weight information

in equivalence classes (Salmon-U) causes a drop in performance

compared to the case with a single scalar per equivalence class-

transcript pair (Salmon). Using the range-factorization proposed in

this paper improves both the correlation and MARD measures even

further, and brings its accuracy on par with that of RSEM and

Salmon-FM, which adopt no factorization and run an EM algorithm

that scales in the number of alignments in each iteration. In the de-

fault mode (i.e. using a single online pass), eXpress produces a larger

MARD and lower correlation than any of the tools that run the

batch EM until convergence. With 50 extra batch EM rounds

(eXpress (þ50)), eXpress performs more similarly to the other tools.

We note that, in this data, the number of equivalence classes pro-

duced by the range-based factorization is �586 000, only �150 000

greater than the �438 000 compatibility-based equivalence classes.

Both of these numbers are orders-of-magnitude smaller than the �
100 000 000 distinct alignments for this dataset. The number of

equivalence classes for all methods (sequenced fragments for

Salmon-FM) is shown in Table 2. This table also reports the number

of ‘hits’. The number of hits is the sum, over each equivalence class,

of the number of transcripts in this equivalence class—i.e.P
F q 2C jXðF q Þj. This is the total number of items processed during

each round of the EM algorithm. This small number of equivalence

classes and hits allows the Salmon-RF model to run as fast as

Salmon, which runs considerably faster than Salmon-FM, which, in

turn, runs considerably faster than RSEM. With the exception of

eXpress, which implements a constant-memory algorithm by design,

the memory usage profiles for these different tools track the timing

results (as expected). For more details, refer to Supplementary

Figures S5 and S6.

Though we observe an improvement for Salmon-RF and

Salmon-FM over Salmon and especially Salmon-U in this case, we

note that it is relatively small in scale. This is because, while the ag-

gressive compatibility-based factorizations do give up information,

common expression patterns may not be complex or difficult

enough to be greatly affected by the lossy factorization of the likeli-

hood. Also, however, these aggregate metrics are computed over the

entire transcriptome, and so, difficulties of these factorizations in

deconvolving particularly complex scenarios may become lost in the

noise of the vast number of good predictions.

To focus on the more difficult cases, we computed our accuracy

metrics on a subset of the simulated data. Specifically, retaining the

original abundance estimates over the entire transcriptome, we re-

stricted our analysis to those transcripts for which RSEM obtained

an ARD between 0.25 and 0.75. The motivation for choosing these

values is to discard the particularly ‘easy’ to quantify transcripts

(where the full model is likely neither necessary nor particularly

helpful) as well as the ‘hopeless’ transcripts (those where the infer-

ence exhibits significant error even under the reference implementa-

tion of the full model). The results of this analysis are shown in

Table 3. While the trend is similar to that observed on the full data,

the difference between methods (and the impressive performance of

Salmon-RF) becomes more clear. Specifically, we observe that

Salmon outperforms Salmon-U, but this time the gap between

Salmon and Salmon-RF, Salmon-FM and RSEM is larger. This is

most likely because this particular subset of transcripts presents a

more difficult inference challenge, where the conditional

probabilities provide useful evidence. In the case of these transcripts,

running the EM algorithm until convergence seems particularly im-

portant, as we observe that eXpress (and even eXpress (þ50)) trail

the other methods, especially in terms of the MARD. This makes it

evident that further refinement of the abundance estimates (i.e.

more rounds of the EM) over a representation of the data encoding

conditional fragment probabilities (as done in RSEM, Salmon-FM

and Salmon-RF) is necessary to obtain improved accuracy on these

transcripts.

We further investigate the performance of tools in non-

alignment mode as well. Spearman correlation and MARD of tran-

script quantification with different tools on RSEM simulated data is

presented in Supplementary Tables 1 and 2.

4.3 Transcriptome-wide analysis on experimental data
Finally, we explore the effect of our data-driven factorization

method with the different versions of Salmon using experimental

data from the SEQC(MSEQ-III) consortium (Consortium et al.,

2014) (NCBI GEO accession SRR1215996 - SRR1217002).

Specifically, the library is prepared on Universal Human Reference

RNA (UHRR) from Stratagene and ERCC Spike-In controls and

consists of �11M 100 bp, paired-end reads sequenced on an

Illumina HiSeq 2000 platform. The experiment consists of seven

replicates with the same flowcell and barcodes but on different

lanes.

As described previously in section 4 we compare the perform-

ance of Salmon, Salmon-FM, Salmon-RF, Salmon-U, eXpress,

eXpress (þ50) with RSEM. However, unlike in previous sections,

Table 1. Spearman correlation and MARD of quantification results

compared to true abundances for synthetic data on all transcripts

MARD Spearman

Salmon-U 0.24 0.80

Salmon 0.22 0.81

Salmon-RF 0.21 0.83

Salmon-FM 0.21 0.83

eXpress 0.29 0.78

eXpress (þ50) 0.23 0.83

RSEM 0.21 0.82

Table 2. The number of equivalence classes and hits, in the simu-

lated data, under different likelihood factorizations

Salmon-U Salmon Salmon-RF Salmon-FM

# eq. classes 438 393 438 393 625 638 29 447 710

# hits 5 986 371 5 986 371 8 212 669 103 663 423

Table 3. The performance of different methods when restricted to

the subset of transcripts where RSEM’s ARD is in ½0:25; 0:75�

MARD Spearman

Salmon-U 0.46 0.56

Salmon 0.43 0.58

Salmon-RF 0.41 0.64

Salmon-FM 0.41 0.65

eXpress 0.53 0.54

eXpress (þ50) 0.48 0.59

RSEM 0.41 0.65
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here, we lack a ground truth. Thus, we measure the accuracy of each

method on the estimated number of reads, treating RSEM’s estima-

tions of the number of reads for each transcript (which is observed

to be among the most accurate on synthetic data in previous sec-

tions) as the truth. We perform a comparison across all seven repli-

cates and consider the Spearman correlation and MARD metrics.

Since these are technical replicates, we expect the performance over

each replicate to be very similar, though we plot the results as a dis-

tribution in Figure 5a and b. The results on experimental data follow

the same trend as we observed on synthetic data. That is, Salmon-

FM correlates well with RSEM (as expected) because of the avail-

ability of full fragment level transcript probabilities. Likewise, we

again observe that our proposed data-driven factorization method,

Salmon-RF, performs essentially the same as the full model. Both of

these methods agree more closely with RSEM than does Salmon,

and again, Salmon-U, ignoring all fragment-level conditional proba-

bilities, is further from RSEM’s results. The number of equivalence

classes for each factorization are shown in Table 4. We also observe

that eXpress, in its default mode, performs most differently from

RSEM of the methods we considered. As expected, running add-

itional rounds of the batch EM (eXpress (þ50)) increases the simi-

larity of eXpress ’ estimations with those of RSEM; though it is still

less similar than the other methods.

5 Conclusion

While compatibility-based equivalence class factorizations (Bray

et al., 2016; Nicolae et al., 2011; Patro et al., 2014; Srivastava et al.,

2016; Turro et al., 2011) have paved the way in terms of substan-

tially improving the efficiency of the iterative optimization proced-

ures used for transcript-level quantification from RNA-seq data,

they nonetheless make sacrifices in modeling fidelity to achieve this.

While these methods generally perform adequately in terms of

transcriptome-wide assessments, there are still important situations

in which their compatibility-centric factorization of the underlying

likelihood function discards information that can be important for

accurate abundance estimates. Salmon (Patro et al., 2017) uses a

dual-phase inference algorithm that allows it to recover some of the

information discarded by other approaches. It improves upon the

approximate factorization of the full likelihood function by incorpo-

rating a notion of rich equivalence classes of fragments. In some, but

not all cases, this improved factorization is sufficient to recover the

lost accuracy of the full model.

In this paper, we have introduced a data-driven factorization

of the likelihood function that makes use of Salmon ’s dual-phase

inference algorithm (Salmon-RF). We have shown that this im-

proved factorization is able to match the accuracy of the full

model while still maintaining a reduced representation that is

orders of magnitude smaller than the total number of fragment

alignments.

We believe that this data-driven factorization represents the

right tradeoff between efficiency and accuracy. Specifically, it dem-

onstrates an almost indistinguishable sacrifice in efficiency beyond

the factorization already employed by Salmon (which, itself, is

similar in size to those employed by mmseq, Sailfish and kallisto),

while producing no perceptible loss in accuracy compared to the

full per-fragment likelihood function used by RSEM and similar

methods.

In this paper, we have focused on the effect that the adopted

factorization of the likelihood function can have on the ability of a

method to accurately estimate transcript abundance. However, we

note that there still remain small but interesting differences

between methods that employ alignment and those that rely on

mapping (i.e. quasi-mapping or pseudoalignment). Fully exploring

the nature of these differences, and how they interact with the fac-

torizations proposed herein, is an interesting direction for future

work.

Finally, while we have investigated the effect different factoriza-

tions have on maximum likelihood estimates, fully exploring the

effect they have in estimating the variance of these estimates (e.g. via

bootstrapping) or even in estimating the full posterior distribution

of abundances (e.g. via Gibbs sampling) is another interesting direc-

tion for future work.

(a) (b)

Fig. 5. Comparison of the transcript abundances in different versions of salmon on the experimental data with seven technical replicates and using rsem abun-

dance estimates as the ground truth (a) The Spearman correlation of transcripts abundance estimations with RSEM results reveals that Salmon-FM is highly cor-

related with RSEM. Very similar correlation with RSEM is observed by the proposed data-driven factorization, Salmon-RF. Salmon displays a lower correlation

than Salmon-RF, but a higher correlation than Salmon-U. The variants of eXpress show a lower correlation than Salmon-U, with the offline EM iterations increas-

ing eXpress ’ correlation considerably. (b) Comparing the MARD of estimated transcript fragment counts with respect to RSEM results shows similar trend to that

observed with the Spearman correlations; i.e. Salmon-FM has the least error rate using RSEM abundances as the truth while Salmon-RF perform equally well.

Salmon exhibits a lower MARD than Salmon-U, which is followed by both variants of eXpress

Table 4. The number of equivalence classes and hits, in the experi-

mental data, under different likelihood factorizations

Salmon-U Salmon Salmon-RF Salmon-FM

# eq. classes 427 611 427 611 624 340 9 077 708

# hits 5 737 414 5 737 414 8 318 638 50 325 595
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