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Abstract Protein phase separation is implicated in formation of membraneless organelles,

signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and

their target motifs can drive phase separation. However, forces promoting the more common

phase separation of intrinsically disordered regions are less understood, with suggested roles for

multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-

separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-

interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are

widespread, underestimated by force-fields used in structure calculations and correlated with

solvation and lack of regular secondary structure, properties associated with disordered regions.

We present a phase separation predictive algorithm based on pi interaction frequency, highlighting

proteins involved in biomaterials and RNA processing.

DOI: https://doi.org/10.7554/eLife.31486.001

Introduction
Protein phase separation has important implications for cellular organization and signaling

(Mitrea and Kriwacki, 2016; Brangwynne et al., 2009; Su et al., 2016), RNA processing

(Sfakianos et al., 2016), biological materials (Yeo et al., 2011) and pathological aggregation

(Taylor et al., 2016). For some systems, multivalent interactions between modular binding domains

and cognate peptide motifs underlie phase-separation (Li et al., 2012; Banjade and Rosen, 2014).

However, many phase-separating proteins contain large intrinsically disordered protein regions

(IDRs) with low complexity sequences that do not form stable folded structure (reviewed in

[Mitrea and Kriwacki, 2016; Chong and Forman-Kay, 2016]), including the Nephrin intracellular

domain (NICD) (Pak et al., 2016), polyglutamine tracts (Crick et al., 2013), tropoelastin (Yeo et al.,

2011), FUS (Burke et al., 2015; Kato et al., 2012), Ddx4 and the homologous LAF-1 (Nott et al.,

2015; Elbaum-Garfinkle et al., 2015) and FG-repeat nucleoporins (Frey et al., 2006). The underly-

ing physical principles and chemical interactions that drive phase separation in these IDRs are not

well understood. Multivalent (Li et al., 2012; Pierce et al., 2016) electrostatic (Pak et al., 2016;

Lin et al., 2016) and cation-pi (Nott et al., 2015; Kim et al., 2016; Sherrill, 2013) interactions and

the hydrophobic effect (Yeo et al., 2011) have all been proposed to contribute to IDR phase separa-

tion, the latter suggested to be dominant for tropoelastin (Luan et al., 1990). For Ddx4, electrostatic

interactions between charge blocks has been demonstrated (Nott et al., 2015; Lin et al., 2016).

The abundance of Phe-Gly/Gly-Phe and Arg-Gly/Gly-Arg dipeptides in Ddx4 and the fact that Phe

to Ala mutations inhibit phase separation also point to pi-pi and/or cation-pi interactions. The Phe-

Gly repeats in FG nucleoporins similarly indicate pi-pi interactions, but the lack of aromatics in elas-

tins and designed phase-separating sequences (Quiroz and Chilkoti, 2015) seems to suggest that

they are not essential. Clearly, a number of physical interactions may be sufficient for driving phase
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separation without being universally necessary, and a better understanding of these interactions is

needed to define the balance of forces biological systems use for driving protein phase transitions.

Although pi-pi interactions are commonly associated with aromatic rings, where interaction

energy is thought to involve induced quadrupolar electrostatic interactions (Sherrill, 2013), p (pi)

orbitals of bonded sp2-hybridized atoms are also found in peptide backbone amide groups and

sidechain amide, carboxyl or guanidinium groups. Sidechains with pi bonds include Tyr, Phe, Trp,

His, Gln, Asn, Glu, Asp and Arg. Small residues with relatively exposed backbone peptide bonds

include Gly, Ser, Thr and Pro. Notably, low complexity IDRs implicated in phase separation of FUS,

EWS, hnRNPA1, TIA-1, TDP-43 and the RNA Pol II C-terminal domain (CTD) (Mitrea and Kriwacki,

2016; Taylor et al., 2016; Kato et al., 2012) are very enriched in these residues that have high

potential for formation of pi-pi interactions, relative to average occurrence in the proteome. Even

elastins, which lack sidechain pi groups but have Val-Pro-Gly-Xxx-Gly repeats (Yeo et al., 2011), are

highly enriched in Pro and Gly residues with exposed pi-containing peptide backbones.

Given the high frequency of aromatic residues, arginine and glutamine in many phase-separating

sequences, we were motivated to investigate the structural behavior of pi-pi interactions in order to

better understand how their observed physical behavior relates to their potential role in phase sepa-

ration. We first characterized the frequency and correlations of pi interactions in a non-redundant

protein set from the RCSB protein data bank (PDB) of folded proteins (Berman et al., 2000). We dis-

covered that planar pi-pi contacts involving a non-aromatic group, including those involving the

backbone amide group, are the predominant form of pi-pi interaction, and we showed that planar

pi-contact rates can be predicted from sequence. Then, we tested the relevance of these planar pi-

pi interactions to phase separation by training a phase separation predictor using only these

expected pi-contact rates. We then demonstrated that three of the predicted proteins, FMR1, a mul-

tifunctional RNA-binding protein and a neuronal granule component (El Fatimy et al., 2016),

engrailed-2, a DNA

-binding homeobox protein, and the pAP isoform of the Human cytomegalovirus capsid scaffold-

ing protein phase separate in isolation in vitro. Analysis of predictions for the full human proteome

suggests strong phase-separation propensities for proteins involved in biomaterials and RNA proc-

essing, with likely regulation by splicing and post-translational modifications (PTMs).

Results

Prevalence of Pi contacts in the PDB
To determine the frequency of pi-pi interactions and better understand their nature and physical

properties, we performed a bioinformatics analysis of folded proteins. We searched the PDB for pi-

pi interactions by measuring contact distances between planar surfaces and comparing planar orien-

tations (see Materials and methods), choosing to focus on interactions involving pi-orbital planar sur-

faces as this category shows the most enrichment over expectations, both in terms of overall

frequency (Appendix 1—figure 1) and in relation to resolution. Face-to-face planar pi-pi contacts

were defined using a simple distance- and orientation-based metric designed to consistently capture

this enrichment across diverse sp2-containing groups (Appendix 1—figure 1A,B,C).

Our analysis was originally intended to explore the known interactions of aromatic sidechains with

each other and with arginine, but in order to provide a control group we defined our contact param-

eters in a way that allowed us to treat all sp2 groups in the same fashion. In high-resolution (�1.8 Å)

and low R-factor (�0.18) protein crystal structures (N = 5718), we found that planar pi-pi stacking

interactions involving non-aromatic atoms outnumber aromatic-aromatic stacking interactions by

approximately 13 to 1 (Figure 1A and Appendix 1—table 1) suggesting that, while aromatic side-

chains may be enriched in stacking interactions relative to their frequency, there is a more general

role for pi-contacts that involve non-aromatic atoms. The vast majority of planar pi-orbital contacts

in proteins involve one of five non-aromatic sp2-hybridized sidechains or the peptide bond itself.

Fully 36% of observed pi-pi stacking interactions do not involve an aromatic partner, with face-to-

face planar contacts between different backbone peptide bonds occurring as often as aromatic face-

to-face contacts (Figure 1A). Across the high-resolution set, we observe that 58% of heavy atoms

are sp2, of which 10.5% are involved in pi-stacking. Furthermore, 28% of heavy atoms that are not

directly involved in pi-stacking are found within van der Waals (VDW) contact distance (4.9 Å) of
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Figure 1. PDB statistics for planar pi-pi interactions. (A) Average number of sp2 groups involved in planar pi-pi

contacts per 100 protein residues binned by crystal structure resolution. Values are shown for contacts defined by

the nature of the involved sp2 groups, with all groups in black, aromatic to non-aromatic sp2 in blue, non-aromatic

to non-aromatic in pink, backbone to backbone in gray, and aromatic to aromatic in orange. Error bars show

Figure 1 continued on next page
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atoms that are. Thus, planar pi-pi interactions form a common feature of the protein chemical envi-

ronment. Comparisons to previous work showing that aromatic-aromatic interactions in proteins are

instead biased toward face-to-edge or parallel displaced geometries (Hunter et al., 1991;

Martinez and Iverson, 2012) are complicated by the observations that VDW contacts between aro-

matic sidechains coincide with face-to-face pi-pi stacking to a third sp2-hybridized group 49% of the

time, and that parallel displacement often accommodates an additional non-aromatic pi-contact to

the same planar surface.

Analysis of protein structures showed that the frequencies of planar pi interactions strongly corre-

late with the power of the experimental data to constrain the structure and with the fit to the data.

We identified a linear relationship between contact frequencies and the resolution of crystal struc-

tures (Figure 1A). We identify a similar dependence of contact frequency on the relative number of

sidechain-specific distance constraints in NMR structures (Appendix 1—figure 2A) and confirm that

the dependence on resolution persists for identical sequences solved multiple times at different res-

olutions (Appendix 1—figure 2B). These data suggest that the relative importance of pi-pi interac-

tions are underestimated in the force-fields that are used in the structure calculations and thus

appear more frequently in structures that are heavily constrained by experimental observations. In

addition, pi-pi contact frequencies for amino acid and other small sp2-containing ligands bound to

proteins (including non-aromatic ligands) are higher than the frequencies observed for the same

chemical group found within proteins, despite or perhaps because of their relative freedom of move-

ment (Appendix 1—table 2).

To examine whether sp2-containing sidechains engage in stacking behavior beyond what could

be expected for average contact frequencies and overall packing considerations, we determined

sidechain contacts to backbone peptide groups, focusing on the percentage of VDW contacts (with

two or more pairs of atoms within 4.9 Å) which satisfy our planar-pi criterion, and then compared the

frequencies observed for sp2 sidechain groups to those observed for planar surfaces on the terminal

end of sp3 sidechains, using atom groups as listed in the Materials and methods section. This metric

addresses the issue of amino acid composition effects by taking advantage of the even distribution

of backbone groups and allows for normalization of contact frequency for sidechains of different

size. Enrichment of sp2 planar contacts relative to sp3 is clearly observed for all sp2 sidechains except

Asn and Gln, which our previous analysis showed are more likely to form contacts with their back-

bone than with their sidechains (Figure 1—figure supplement 1). Further analysis of the relative fre-

quency of planar pi VDW contacts to other VDW contacts as a function of resolution demonstrates

that for some contact types the increased pi-contact frequencies with increasing resolution (lower

values in Å) are at the expense of decrease in other VDW contacts, suggesting that these contacts

represent a specific geometric constraint present in the experimental data, rather than an overall

increase in VDW contact frequency at higher resolution (Figure 1—figure supplement 2).

Aromatic groups are known to have favorable interactions with other aromatics, with the peptide

backbone (Tóth et al., 2001), and with charged groups. We observed that the guanidine group of

arginine is either the first or second most likely planar pi-stacking partner for any given aromatic

Figure 1 continued

bootstrap SEM. (B) Planar pi-pi contact interaction frequencies for each residue type, with the average across all

residue types shown as a red line, and (C) frequency of each residue type in contributing to planar pi-pi

interactions, with bars showing overall frequency colored proportionally by the nature of the contact partners.

Figure 1—source data 1 and 2.

DOI: https://doi.org/10.7554/eLife.31486.002

The following source data and figure supplements are available for figure 1:

Source data 1. Pi-Pi contact annotations for the full PDB set.

DOI: https://doi.org/10.7554/eLife.31486.005

Source data 2. Residue and amino acid counts for the full PDB set.

DOI: https://doi.org/10.7554/eLife.31486.006

Figure supplement 1. Proportion of sidechain to backbone VDW contacts that satisfy planar contact criterion.

DOI: https://doi.org/10.7554/eLife.31486.003

Figure supplement 2. Selected sidechain-to-sidechain contact frequencies by resolution.

DOI: https://doi.org/10.7554/eLife.31486.004
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sidechain, a phenomenon previously described as cation-pi (Sherrill, 2013; Martinez and Iverson,

2012). However, we also observed planar stacking interactions between non-aromatic groups of all

kinds, including both anion-to-anion and cation-to-cation, with relative frequencies shown in

Figure 1B,C. Surprisingly, 3.6% of arginine sidechains are found in direct, parallel pi-stacking contact

with another arginine, despite repulsive charges (Figure 1—figure supplement 2), suggesting that

these guanidinium interactions are better described as pi-pi, rather than cation-pi (example shown in

Figure 2A).

Modeling and analysis of protein structures typically involves the use of coarse-grained energy

functions. To test the degree to which contact frequencies in solved structures derive from experi-

mental constraints, rather than the force fields used, we explored how well planar pi interactions are

captured by the simple energy functions used in certain protein modeling protocols. We examined a

few different modeling protocols by either running available methods or downloading pre-computed

datasets (see Materials and methods). In general, planar pi-pi contacts were lost during simulations

(Appendix 1—figure 3A) and energy minimization (Appendix 1—figure 3B). In one older molecular

dynamics simulation of folded proteins, made available for 100 proteins via Dynameomics

(Kehl et al., 2008), 90% of the planar pi-pi contacts found in the starting structures were lost during

simulation, with the majority being lost within the first few simulation steps. Similarly, modeling of

the energetic effect of mutations, the DDG of unfolding, using both FOLDX (Schymkowitz et al.,

2005) and Rosetta (Kellogg et al., 2011), shows decreased prediction accuracy at positions involved

in pi-contacts (Appendix 1—figure 3C-F), based on comparison to a reference set of DDG measure-

ments (Bava et al., 2004). These observed issues in modeling pi-contacts may be overcome by

more recent and sophisticated energy functions, but our results are consistent with the inherent

energetic importance of planar pi interactions, rather than their observation being due to simple

force fields used in refining protein structures.

Enrichment of pi-pi contacts in catalytic, capping and RNA-binding sites
For exploring the contribution of pi contacts to general structural and functional properties of pro-

teins, we examined contact enrichment for sp2 groups found in a diverse range of interactions. We

observe increased frequency of pi-pi contacts at positions with known catalytic function

(Furnham et al., 2014), with enrichment of 1.87 ± 0.07 overall and 1.42 ± 0.07 when normalized by

residue type (Appendix 1—table 3), with pi-pi contacts often playing a role in defining the geome-

try of the active site (Figure 2B) or forming networks of pi-pi contacts. We find that hydrogen bond

frequency increases at sp2 sidechains involved in pi-contacts (Appendix 1—figure 4), and when sp2

groups hydrogen bond each other we observe increased frequencies of a third sp2 group being

found in simultaneous pi-stacking to both the donor and acceptor groups of the hydrogen bond

(Appendix 1—figure 1F and Figure 2C), suggesting potential cooperativity via the electrostatic and

geometric stabilization of the bond. We also observe up to 20-fold enrichment at the ends of sec-

ondary structure elements, relative to the median backbone contact rate of 1.7%, with enriched

positions often involving the last hydrogen bond made within a helix or at the end of a strand

(Figure 2D and Appendix 1—figure 5), commonly placing them in the context of local capping

motifs thought to stabilize secondary structure (Richardson and Richardson, 1988). Finally, we find

that protein-RNA interactions typically involve pi-pi contacts, especially with arginine. A detailed

description of these observations is included in Appendix 1.

Correlation of pi-pi contacts with solvation and lack of regular structure
Interactions at the surface of a protein are typically in competition with solvent and their enthalphic

contribution often decreases with solvent exposure, as for protein-protein hydrogen bonds

(Efimov and Brazhnikov, 2003). Planar pi-pi interactions, in contrast, cannot be formed with water,

but often involve groups with hydrogen bond acceptors and donors; thus, we predicted that the fre-

quency of pi-pi interactions in proteins could be increased in more solvated environments. To test

this, we identified high-resolution structures with an abundance of solved water and then counted

the observed solvent interactions by the number of water oxygen atoms within a broad VDW contact

radius (4.9 Å) to each residue. We saw an unambiguous positive correlation between the number of

water contacts and the probability that a residue is involved in a planar pi-pi-contact, with a signifi-

cant increase in average probability observed for each additional water contact (Figure 3A,B),
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climbing even as the average number of protein:protein VDW contacts declines. This relationship is

true for the general case (unspecified residue identity) and is also individually true for each of the

Figure 2. Examples of planar pi-pi contacts in folded protein structures. Pi-pi interactions shown using rods to

describe the normal vector of the plane. Rods extend to a carbon VDW radius of 1.7 Å, colored by category with

sidechain groups in purple, backbone in blue, small molecule ligands in orange, and RNA in gray. Ligand

molecules are green, with relevant water molecules shown as red spheres and hydrogen bonds as yellow lines. (A)

Arginine ladder motif in Porin P (PDB:2o4v). (B) Catalytic site from arginine kinase (PDB:1m15). (C) Network of

interactions in nitrogenase (PDB: 3u7q). (D) Backbone/sidechain contacts at the ends of secondary structure

elements (PDB:4b93). (E) RNA-binding interactions (PDB: 4lgt). (F) Interaction network stacked between disulfide

bonds (PDB: 4v2a).

DOI: https://doi.org/10.7554/eLife.31486.007
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nine residues with pi orbital-containing sidechains. However, both the contact frequencies and the

amino acid frequencies themselves increase with a greater dependence on solvation for non-aro-

matic residues, especially for the charged amino acids Arg, Glu and Asp, such that non-aromatic

contacts become the dominant form of interaction at high solvation levels (Figure 3—figure supple-

ment 1). The relative increase is highest for contacts involving sidechains of like-charge, especially

Figure 3. Correlation of planar pi-pi interactions with solvent and lack of secondary structure. (A) Contact frequency for sidechain groups (red) and

backbone (blue) increases with the total number of solved water molecules within 4.9 Å of the residue, based on structures with >1 water oxygen per

residue, including all molecules within 8 Å of the chain of interest, including symmetry partners. (B) Representative example of a pi-stacked sidechain in

contact with 11 water molecules (PDB:4u98), showing how the interaction does not appear to compete with solvent. (C) Mean contact frequency vs.

sequence distance from regular secondary structure and loop/turn regions. (D) Example of the range of interactions found >10 residues from helix/

strand secondary structure (PDB:4b4h).

DOI: https://doi.org/10.7554/eLife.31486.008

The following figure supplements are available for figure 3:

Figure supplement 1. Effect of solvation on pi-pi category frequencies.

DOI: https://doi.org/10.7554/eLife.31486.009

Figure supplement 2. Enrichment of pi-pi contacts, relative to overall VDW contacts, as a function of the number of interactions with water.

DOI: https://doi.org/10.7554/eLife.31486.010
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arginine (Figure 3—figure supplement 2), suggesting that solvation plays a role in the strength of

the interactions.

Of relevance to intrinsically disordered protein regions that mediate interactions, we find that pla-

nar pi-pi interactions occur more often at positions with properties associated with disorder; they

are more prevalent in proteins having overall less rigid secondary structure (with contacts for coil/

loop/turn > strand > helix), especially disulfide bond containing proteins (Figure 2F), and in sequen-

ces that are locally enriched in residue types associated with backbone flexibility or breaking second-

ary structure (Gly, Ser, Thr, Pro) (Appendix 1—figure 6). Considering planar pi-pi contact

frequencies as a function of the sequence position relative to secondary structure elements, we find

that the frequency is highest in long loops, showing a sigmoidal relationship when transitioning from

order to disorder that goes from 9.5% probability for residues >7 positions away from the closest

loop/turn to 16% for residues >7 positions away from the closest helix/strand (Figure 3C,D).

Pi-pi contacts in protein interactions
To test whether these interactions are compatible with the multivalent interactions involved in phase

separation, we examined contact statistics for protein interactions, comparing sidechain pi-pi inter-

action frequencies within a chain to those between chains. We classified interfaces as sequence- or

complex-specific (between different chains of a crystal structure) and opportunistic (at crystal pack-

ing interfaces). In both cases, we defined interface residues as those with sidechains having at least

one VDW contact to any atom in a different chain. We found that both the overall contact frequen-

cies at interface positions and local (<5 residue) contact frequencies remain similar to the frequen-

cies observed at non-interface positions, but that there is a significant exchange of long-range (�5

residue sequence separation) inter-chain to intra-chain contacts (Figure 4). This exchange is also

observed for the residues in interfaces involved in crystal packing interaction, demonstrating that

long-range planar pi interactions are not specific to particular protein folds, but are common fea-

tures of protein-protein interactions. These results suggest that non-local pi-pi contact propensity

could play a general role in mediating protein interactions, including those driving phase separation.

Importance of pi-pi contacts for phase separation
In our bioinformatics analyses, we identified a type of interaction, planar pi-pi, which is more preva-

lent for solvated residues, RNA-binding interactions and regions lacking regular secondary structure.

These properties are also associated with the emerging functional class of intrinsically disordered

phase-separating proteins that coalesce through fluid, multivalent interactions to form protein-dense

cellular bodies or membraneless organelles involved in RNA processing (Mitrea and Kriwacki,

2016), the nuclear pore (Frey et al., 2006) and extracellular biological materials (Yeo et al., 2011).

The currently known phase-separating proteins are diverse, both in sequence and function

(Mitrea and Kriwacki, 2016; Chong and Forman-Kay, 2016), but many are enriched in motifs we

can now associate with high planar pi-pi contact frequencies (i.e. Pro-Gly, Phe-Gly, Ser-Arg, Tyr-Gly

and Arg-Gly repeats) (Mitrea and Kriwacki, 2016; Nott et al., 2015; Schmidt and Görlich, 2015).

While phase separation of some proteins has been suggested to be driven by the potential for

multivalent aromatic stacking and cation-pi interactions (Nott et al., 2015; Brangwynne et al.,

2015), our observations show (i) that planar pi-pi interactions are a much more broadly distributed

phenomenon in proteins than previously considered, especially in solvated protein regions, (ii) that

aromatic residues are not required, (iii) that backbone pi groups make significant contributions, and

(iv) that protein sequence can have distinct effects on both long-range contact propensity and local

contact propensity. These led us to hypothesize that the number of pi orbitals available to make

long-range multivalent contacts is an important feature in determining whether a disordered protein

region can phase separate and, thus, that the sp2-hybridization of the arginine sidechain is more

important to phase separation than its charge. We tested this hypothesis using the N-terminal 236

residues of Ddx4, an intrinsically disordered region that contains both Arg-Gly and Phe-Gly dipep-

tide sequences and that can phase separate (Nott et al., 2015). We removed pi-character while

leaving charge intact by replacing all 24 Arg residues with Lys. Matching our expectation, this pro-

tein region fails to phase separate under the conditions characterized for the wild-type Ddx4

sequence, even at concentrations of 400 mg/ml, 200 times higher than the lowest concentration for

which phase separation is observed for the wild type, and four times higher than observed for
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constructs with an equivalent mass change from mutating nine phenylalanine residues to alanine

(Appendix 1—table 4). We note that arginine is likely key for the phase-separation, association and

toxicity of C9orf72, which can encode Gly-Arg and Pro-Arg dipeptide repeat sequences (Lee et al.,

2016).

Prediction of phase separation using pi-pi contacts
Given this supportive experimental evidence for the role of pi interactions in phase separation and

our observation that opportunistic non-local pi interactions are commonly found at protein crystal

contacts, we chose to test the importance of these interactions for phase separation by determining

the degree to which it is possible to predict general phase separation behavior using solely the pi-pi

contact propensity of a protein sequence. We recognize that multiple physical interactions can con-

tribute to driving phase separation (Brangwynne et al., 2015), but our goal was not to predict sub-

tle differences in phase separation propensity or quantitative phase diagrams. Instead, we aimed to

merely classify proteins as having the potential to self-associate under particular biological condi-

tions or not, as a test of our hypothesis of the involvement of planar pi interactions. In this exercise,

we define phase-separating proteins as those that for presumed functional reasons self-associate in

a way that is at least transiently reversible and dynamic, allowing for the protein to self-concentrate

as a function of available protein concentration, temperature or other condition. This basic definition

does not cover the complexity of the phase diagram, merely the ability to reversibly self-concen-

trate, and does not consider competing transitions, such as irreversible aggregation and

Figure 4. Sidechain contacts at interface positions. Contact frequencies are shown for the nine sp2-containing

sidechain types, split into three bars based on interface proximity. From left to right, these bars are i) no other

chain within 4.9 Å of any sidechain atom, ii) within 4.9 Å VDW contact distance of any atoms in a different chain

within the unit cell of the crystal, iii) within 4.9 Å of any atoms in a chain from a neighboring unit cell, as

determined by crystal symmetry data. Bars are colored by the proportion of total contacts contributed by three

categories, bottom/black corresponding to local (sequence separation �4 residues) intrachain contacts, middle/

blue to non-local intrachain contacts, and top/pink to interchain contacts, showing that overall contact frequencies

and local contact frequencies remain similar and that the non-local contacts do not discriminate between intra and

interchain.

DOI: https://doi.org/10.7554/eLife.31486.011
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precipitation, which have typically been selected against in the natural sequences on which the pre-

dictor is designed to be used.

Using this definition, we applied a constrained training approach divided into two stages. In the

first stage, we required accurate prediction of contact propensities for folded proteins, using

sequence propensities for both local and non-local contacts. For this aim, we developed a statistical

method for predicting the expected number of contacts given a protein sequence, using frequencies

taken from the PDB, splitting observations by distinct residue pairs with varying sequence separation

and applying a statistical comparison of the full list of pairs associated with a given sp2 group to cal-

culate expectations (see Materials and methods). The reliability of these predictions against folded

proteins is given in Figure 5A. We then predicted the number of pi-pi contacts for a list of 11 pro-

teins containing IDRs that have been shown to be sufficient for phase separation behavior in vitro

(Figure 5—source data 1A), finding that 8 out of the 11 have a predicted number of planar pi-pi

contacts per residue in the 99th percentile relative to folded proteins found in the RCSB PDB

(Figure 5B).

For the second stage, we developed a phase separation predictor that ranks sequences only by

the weighted combinations of pi-contact frequency predictions, without any other interaction or

observational data. We used a stochastic optimization approach to find optimal weights and

sequence window normalizations for converting pi-contact frequency predictions into a score func-

tion able to discriminate known phase-separating proteins from sequences found in the PDB. The

individual components weighted and normalized include: (i) short- and long-range contacts as

defined by residue pair sequence separation �4 or >4, respectively, (ii) sidechain groups vs. the

backbone peptide bond, (iii) absolute predicted frequency vs. normalized frequency compared to

the specific group, and (iv) number of carbon atoms in the specific group. In constraining this stage

of the test, we defined the fixed goal for optimization as the PDB normalized z-score difference

between the highest scoring 1% of the PDB and the lowest scoring member of the phase separation

training set. We then trained until reaching a plateau, and at that point we finalized the score, run-

ning a single validation test against a testing set of 62 proteins directly associated with phase sepa-

ration in the literature. This testing set can be divided into three subsets by the nature of the

evidence available: (i) sufficient for in vitro phase separation as a purified single component (which

matches the training set), (ii) evidence of in vitro phase separation involving a multi-component sys-

tem (e.g., phase separates on the addition of RNA), without evidence of independent phase separa-

tion, and (iii) direct evidence of in cell phase separation (where the protein itself has been labeled

and dynamic exchange demonstrated by FRAP or similar methods) without evidence of in vitro

phase separation or sufficiency.

We used receiver operating characteristic (ROC) plots comparing predictions of phase-separating

proteins within the test set against predictions of phase-separating proteins in the human proteome

to assay the ability of the predictor to rank known positives against the members of a set that we

assume is primarily negative; the area under the curve (AUC) measurement describes the ability to

discriminate between sets. For the human proteome as the negative set, we show an AUC of

0.88 ± 0.02 measured using the entire testing set as a positive, 0.93 ± 0.01 if we exclude sequences

which only phase separate in complex with other polymers, and 0.96 ± 0.01 if we restrict to the 32

test set sequences that match the sufficiency criteria used for selecting the training set (Figure 5C

and Appendix 1—figure 7A). These measurements are complicated by the potential for homology

between test set and training set proteins. To control for this, we also measured discrimination using

another positive set of the 59 artificial sequences designed and shown to phase separate by the Chil-

koti lab (Quiroz and Chilkoti, 2015; MacEwan et al., 2017; Simon et al., 2017) (details in Fig-

ure 5—source data 1C), showing an AUC of 0.86 ± 0.03 against the human proteome as a negative

set (Appendix 1—figure 7B).

Interpreting these AUC values is complicated by the fact that the true positive rate of the human

proteome is unknown, and our analysis will treat unknown phase-separating proteins as false posi-

tives, inaccurately decreasing the AUC. Similar analysis against protein sets with less expected phase

separation results in higher AUCs, going from 0.88 ± 0.02 for human to 0.92 ± 0.01 for Caenorhabdi-

tis elegans, 0.93 ± 0.02 for Saccharomyces cerevisiae, 0.98 ± 0.01 for Escherichia coli, and

0.97 ± 0.01 for our PDB testing set. Within the comparisons to E. coli and S. cerevisiae proteomes,

we show examples of the proteome-dependent score distributions underlying the analysis (Appen-

dix 1—figure 7C,D). Using a defined standard confidence threshold of �4.0 standard deviations
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from the PDB average for the propensity score (PScore) captures 0.3%, 2.2%, and 5.1% of the E.

coli, S. cerevisiae, and human proteome sets, respectively, as compared to 0.1% of our full PDB set

and 81% (26/32) of the self-sufficient for in vitro phase separation test set (dropping to 36/62 for the

entire proteomic test set and to 35/59 for the synthetic test set).

Figure 5. Prediction of phase separation based on planar pi-pi interactions. (A) Reliability plot showing average predicted and observed contact

frequencies for percentile bins by pi-pi contact prediction for proteins in the PDB, with PDB sequences used for training in blue and the leave out set in

red. Bars show SEM. (B) Highest number of contacts predicted, by window, for two phase separation predictor training sets and three test sets, for the

unoptimized predictor. (C) Modified ROC curve showing the final predictor’s performance on three test sets vs. the human proteome, with the full set in

pink (N = 62), the full set minus the insufficient for phase separation set shown in green (N = 44), and the sufficient for phase separation set in blue

(N = 32). (D) Results for the final predictor (as for panel b) plotted with the predictor’s phase separation propensity scores (PScore). Data underlying B-D

included in Figure 5—source data 1 and Figure 5—source data 2.

DOI: https://doi.org/10.7554/eLife.31486.012

The following source data and figure supplements are available for figure 5:

Source data 1. Phase separation training, testing and designed protein test sets.

DOI: https://doi.org/10.7554/eLife.31486.015

Source data 2. Additional phase separation propensity scores used in final ROC analysis.

DOI: https://doi.org/10.7554/eLife.31486.016

Figure supplement 1. Contrasting behavior of disorder prediction algorithms and the phase separation prediction.

DOI: https://doi.org/10.7554/eLife.31486.013

Figure supplement 2. Comparison of scores used in generating phase separation predictions.

DOI: https://doi.org/10.7554/eLife.31486.014
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When compared to the unweighted pi-contact predictions, the trained PScore confirms the train-

ing results, with the number of test set proteins that fall within or above the top 1% range of the

PDB increasing from 11/30 to 29/30 (Figure 5D). This increase is matched by an increase in the per-

centage of human proteins in the same range, from 2.3% to 13.1%. Even though the score is trained

for discrimination against folded proteins, we do not see a systematic increase in the scores of all

disordered human proteins. Comparison against a top performing sequence homology-based disor-

der predictor (Disopred3, [Jones and Cozzetto, 2015]) and a physics-based disorder predictor

(IUPRED-Long [Dosztányi et al., 2005a]) shows that disorder predictors are better at discriminating

disordered proteins from the PDB and the human proteome, while the PScore is consistently better

at identifying phase-separating proteins (Appendix 1—table 5). The majority of the proteins in our

phase separation test set show disordered character, and the analysis shows that, while PScore does

correlate with disorder, it only highlights a subset of disordered proteins and does not reflect a gen-

eral disorder prediction (Figure 5—figure supplement 1). As a direct test of this discrimination, we

find that using the subset of human proteins with known intrinsic disorder (Piovesan et al., 2017) as

the phase separation negative set shows similar results as using the human proteome as the nega-

tive, at AUC:0.84 ± 0.03 for the full test set and AUC:0.93 ± 0.02 for the in vitro sufficient set.

We note that the optimization methodology used for developing our predictor, specifically train-

ing for discrimination against the PDB, was intended to exclude phase separation involving multiva-

lent binding properties of folded proteins with multiple binding surfaces (Pierce et al., 2016;

Marzahn et al., 2016) or multiple folded modular binding domains that interact with multiple linear

sequence motifs (Li et al., 2012; Banjade and Rosen, 2014). Thus, we expect and find a lower suc-

cess rate for prediction of phase separation of proteins using these mechanisms. We also note that

the goal of the prediction experiment is to see whether observed phase separation can be predicted

exclusively from contact probabilities as a test of the hypothesis that pi interactions are important

for phase separation, but that our method uses probabilities found in the PDB, was trained on natu-

ral sequences, and was tested using sequences that are either found in nature or were designed

based on sequences that are. The ability to predict contacts is expected to decrease for sequences

not observed in nature and for sequences relying to a greater degree on other energetic

contributions.

Mechanistic implications of the optimized phase separation predictor
In order to identify the contact features that play the largest role in the optimized predictor, we did

a retrospective analysis testing the predictive power of different scoring algorithms produced during

the training process, and explored potential mechanistic implications by testing the power of individ-

ual score components, grouping contact predictions into long-range vs. short-range and backbone

vs. sidechain (Appendix 1—table 6). Our analysis shows that, while training did improve the predic-

tor, a comparable result can be obtained by using only the long-range contact rate predictions for

the peptide backbone (Figure 5—figure supplement 2, as further described in Appendix 1). This

property significantly upweights the role of residues, especially Gly and Pro, that are associated with

high overall backbone pi-pi contact frequencies and with lower short-range contact frequencies for

local sidechain groups, and is especially important for predicting elastin-like proteins, which often

have very few sp2-containing sidechains. Thus, these results highlight the increased availability of sp2

groups for non-local pi-interactions as a key driving force behind the phase separation predictions

and is consistent with highly multivalent weak interactions leading to phase separation, both in non-

polar structural proteins like elastin and highly charged RNA-binding proteins like FUS or Ddx4.

Many high contact frequency residue types are also associated with disordered proteins in gen-

eral, so to control for that potential role we took a selection of 3501 human proteins predicted to

have long disordered regions (as described in the methods), split them by PScore into high

(PScore �4) and low (PScore <1) subsets, and compared the sequence characteristics distinguishing

high PScore and low PScore sequences (Appendix 1—figure 8A). We find that non-phase-separat-

ing intrinsically disordered proteins are actually depleted in Gly and Pro, especially relative to the

enrichment seen in phase-separating sequences and sequences predicted to phase separate. Con-

versely, they are most enriched in Lys, which on average is depleted in phase-separating sequences.

While the division of the predictor into two distinct protocols was used to avoid scores that sim-

ply describe sequence similarity to the training set, it is still possible that the training process picked

up on specific sequence features in the training set. To explore the contribution of sequence
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similarity to the score, we made a measurement of sequence profile similarity based on dipeptide

composition (neighboring residue pair frequencies). We compared the high scoring regions selected

by the predictor to each of the sequences used in the training set (Appendix 1—table 7, see Materi-

als and methods). This analysis, shown in Appendix 1—figure 8B, finds that high scoring (PScore

�4.0) human proteins are, on average, more similar to the training set than are human proteins in

general, but that the majority fall within the normal range. Comparison to a set of 1000 BLAST-level

sequence homologs of the training set suggests that the majority of the similarity is compositional

preference, not homology.

Both sequence similarity and compositional behavior can also be related to the bias toward disor-

der regions observed in phase-separating proteins. To characterize this, we again took the high and

low PScore subsets of our set of 3501 human proteins predicted to have long disordered regions

and then compared their sequence profiles. It has previously been observed that disordered pro-

teins have a Shannon entropy (a measurement of sequence complexity) that is lower, but significantly

overlapping with ordered proteins (Romero et al., 2001). We find here that the high PScore set has

a Shannon entropy that is far lower than the range seen for low PScore disordered proteins, which

have Shannon entropies that fall in the range observed for folded proteins (Appendix 1—figure

8C). Comparing our phase separation test set with the human disprot set we can confirm that this

bias toward lower complexity sequences is observed in known phase-separating sequences.

Analysis and validation of predictions of phase separation
Given the favorable characteristics of our predictor, we investigated correlations of phase separation

scores with protein interactions, various biological mechanisms that may regulate phase separation

and gene ontology (GO) terms. The principle of sequences with high propensity for non-local pi-pi

contact being more likely to self-associate implies that different proteins with high phase separation

propensity scores would be more likely to interact with one another. By comparing score pairs from

protein interactions taken from the I2D metadatabase (Niu et al., 2010), we confirm that high-scor-

ing proteins and low-scoring proteins are both over two-fold more likely to interact with proteins of

similar score, relative to expectations (Figure 6A). This holds true even when comparing interactions

between largely hydrophobic or cytoskeletal proteins (such as elastin and collagen) and highly polar

RNA-binding proteins (like Ddx4 and FUS).

This like-score interaction propensity is predicted by a model of phase separation in which multi-

valent but individually low-affinity interactions between proteins of similar character coordinate the

formation of large, dynamic complexes. To test this aspect of the score, we looked at large complex

formation and interaction propensity by examining the background ‘contamination’ rates observed

in affinity purification coupled with mass spectrometry (AP-MS). Large complex formation is mea-

sured by the number of negative control experiments in which each human protein appears, over a

set of 411 experiments involving non-specific affinity purification steps performed without the spe-

cific affinity tag (Mellacheruvu et al., 2013). Within this dataset, we observe that 26/28 of our known

human phase-separating proteins show up as a contaminant in at least one experiment (O/E = 3.51),

and 17/28 show up more than 10% of the time (O/E = 14.9), confirming that phase-separating pro-

teins show the expected behavior. By binning proteins by prediction scores, we show that this is also

a trend for high PScore proteins in general (Figure 6B), suggesting that the pi contacts driving this

score may play a general role in localizing proteins to large complexes.

Phase separation behavior could potentially be modulated by the addition, modification, or

removal of even small segments with high phase separation propensity, leading to regulation of

phase separation by alternative splicing and post-translational modification (Romero et al., 2006;

Hegyi et al., 2011). To test the possible regulation by splicing, we ran our predictor against human

sequences in the UniProtKB/Swiss-Prot (Magrane et al., 2011) variable splicing database. We found

that 40 ± 2% of included proteins strongly predicted to phase separate (PScore �4) have alternative

splice variants which either remove the prediction or significantly change the score (DPScore >1),

often having multiple splice variants spanning a wide range of scores (Figure 6C). By comparison, an

overall rate of significant changes in score (DPScore >1) of 23.0 ± 0.4% is observed for all proteins in

the set.

To examine post-translational modifications (PTMs), we analyzed our scores against the database

of known PTMs curated by PhosphoSitePlus (Hornbeck et al., 2012). We tested the relationship

between predicted propensities and number of PTM sites, controlling for protein length by taking
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PTM counts from the maximum number of annotations observed for any 100 residue window in a

sequence. By comparing populations with an above average number of sites (greater than the aver-

age plus one standard deviation) against the baseline frequency, we see enrichment in high PScores

(�4) for a variety of PTM site annotations, including literature annotations of disease relevance and

known regulatory function (Appendix 1—table 8). We also observe that for phosphorylation and

methylation the absolute number of PTMs correlates with the average PScores observed, with meth-

ylation having a stronger effect than phosphorylation, and ubiquitination shown as a negative control

(Figure 6D).

Next, we compared our phase separation predictions to known localization or function, as anno-

tated in the GO database (Figure 7A,B,C). Ranking GO terms by enrichment of proteins with predic-

tion values above our threshold (PScore �4) enabled us to generate a list of terms associated with

significant enrichment of pi-pi contacts (p<0.000001 and 5–50 fold observed over expected); this list

includes 4.1% of the 27342 GO terms tested. This subset of the GO database demonstrates enrich-

ment for phase separation propensity in known phase-separated compartments (stress granules,

Cajal bodies, post-synaptic density [Zeng et al., 2016]), in RNA processing (transcription, splicing,

modification, transport, and stability), in the assembly and plasticity of structural components (cyto-

skeletal organization, extracellular matrix assembly), and in signaling, regulation, and development

Figure 6. Association of phase separation propensity scores with protein interactions, splice isoforms, PTMs, and GO localization, process, and function

terms. (A) Protein-protein interaction enrichment by the PScore of partner 1 vs. the PScore of partner 2. The color gradient shows the natural logarithm

of the observed over expected ratio. (B) Percentage of human proteins at each PScore range that are detected in more than 10% of AP-MS negative

control experiments. (C), Score ranges for alternative splicing variants shown as vertical lines sorted by reference sequence values. (D), Number of PTMs

vs. average relative PScore, with methylation shown in red, phosphorylation in green, and ubiquitination in blue.

DOI: https://doi.org/10.7554/eLife.31486.017
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(Notch signaling, NF-kB, Wnt). We note that the sequence property predicted here is a physical

behavior that occurs on a cellular scale, so the observation of a similar score distribution for a

Figure 7. PScore enrichment by gene ontology annotation for subcellular localization (A), biological process (B),

and molecular function (C). The color gradient shows the natural logarithm of the observed over expected ratio.

Heatmaps show enrichment in vertebrate sequences across six defined score ranges, with the highest score range

(PScore �4) labeled with human enrichment values calculated using PANTHER (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.31486.018
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specific biological process, as observed for annotations involving localization to known phase-sepa-

rating bodies, is an implicit prediction that phase separation is one of the physical mechanisms

involved in the process. Consistent with that, we see similar score distributions for many processes

involving organization of structural components, signaling, and cell-fate commitment. The property

of phase separation is also strongly associated with the regulation and development of multicellular

cooperation and neurogenesis. In contrast, the vast majority of GO terms (77.2%) show no enrich-

ment in phase separation propensity, with significantly lower enrichment in categories involving met-

abolic processes and enzymatic catalysis. A selection of high-scoring human proteins associated with

enriched functions is shown with per-residue scores and PTM annotations in Appendix 1—figure 9,

with examples chosen from the highest scoring protein in any given gene ontology function/localiza-

tion annotation related to neuronal plasticity or behavior in A, cytoskeletal biomaterials in B, signal-

ing in C, and extracellular biomaterials in D.

Within the testing set, there exist some proteins which have not been shown to be capable of

independent phase separation (Han et al., 2012), and which may associate with phase-separated

bodies without sharing the same behavior. One of these, synaptic functional regulator FMR1

(El Fatimy et al., 2016), also known as fragile X syndrome protein FMRP, has a PScore of 4.7, and is

involved in RNA binding, neurological development and regulation of translation, all GO terms

enriched in high PScores. FMR1 is a multifunctional polyribosome-associated protein, which is highly

expressed in the brain and in the testes, and is known to localize to granular bodies with two other

proteins (FXR1 and FXR2) (El Fatimy et al., 2016) that are also predicted with high PScores (at 2.9

and 5.3). In order to validate that high PScore predicts sufficiency for phase separation and not asso-

ciated properties like miscibility in the separated phases of other proteins, or other interactions with

phase-separating proteins, we purified the highest scoring region (residues 445–632) and confirmed

the ability to spontaneously undergo liquid phase separation at low temperature and high concen-

trations in physiological buffer conditions (Figure 8A). The concentration required for visual confir-

mation of liquid phase separation behavior is quite high, at 1 mM FMRP-LCR, but can be reduced

through the use of crowding reagents (Figure 8—figure supplement 1A). To confirm the relevance

of pi-character, we then replaced all 28 Arg residues with Lys, which resulted in a loss of phase sepa-

ration behavior (Appendix 1—table 4).

To test whether or not the predictor is applicable to sequences that do not share motifs or func-

tions with any of our training set proteins, we did a manual search for predictions with sequence

properties and functions dissimilar from the training set proteins and selected two proteins, human

engrailed-2 (UID: P19622, PScore 5.0), a DNA-binding homeobox protein, and the pAP isoform of

the Human cytomegalovirus capsid scaffolding protein (UID: P16753-2, PScore 3.8), a protein that

plays an essential structural role in assembling the viral capsid, a novel function relative to those

known to involve phase separation. Both sequences have little overlap with any of the sequence

motifs found in our training set (Appendix 1—table 7), aside from general enrichment in glycine

and proline residues. Experimentally, we observe reversible liquid phase separation of pAP protein

with increasing temperature, with viscoelastic properties similar to the coacervation of elastins

(Figure 8C). We did not observe phase separation of engrailed-2 under the same buffer conditions,

even at 1 mM protein concentration, but did observe temperature-dependent liquid droplet forma-

tion in the presence of a crowding reagent (20 mg/ml ficol) (Figure 8—figure supplement 1B).

While these observations do not represent a robust or comprehensive test of prediction quality,

they do suggest that the predictions provide a useful tool for selecting natural proteins capable of

self-sufficient liquid demixing.

Discussion
We tested the potential role played by pi-contacts in mediating phase separation by using the single

property of pi-contact frequency to train a simplistic predictor of phase separation behavior found in

natural sequences, finding that the single property of long-range pi-contact propensity is sufficient

for marking the majority of known phase-separating proteins as outliers relative to the proteome,

supporting the hypothesis that this sequence property is commonly associated with phase-separat-

ing proteins. While this association is demonstrably useful for identifying phase-separating proteins

in proteomic datasets, these contacts may not be the predominant interaction driving the physical

process of phase separation for each case, and could instead reflect a modulatory role since it is not
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exclusive of other interactions like hydrogen bonds and charge interactions. However, tests showing

that arginine to lysine mutations abrogate phase separation behavior do provide evidence of the

importance of planar sp2 groups for phase-separating systems.

The finding that a single contact potential can generate a reasonably accurate classifier of phase

separation behavior suggests that a sequence-based prediction of phase separation behavior is a

tractable problem, and that future development of an algorithm that can predict the complexities of

the phase transition, environmental effects and concentration requirements is a reasonable goal.

This goal could potentially be addressed by introducing the range of phase separation associated

sequence properties that were intentionally excluded by our empirical test of the pi-contact associa-

tion, including the electrostatic effects of charge patterning (Nott et al., 2015; Lin et al., 2016;

Das and Pappu, 2013), multivalency of PTM sites and PTM-binding motifs, and transient structural

interactions, including strand formation (Murray et al., 2017) and helical interactions

(Conicella et al., 2016). There is also a role for incorporating predictions of competing states, the

irreversible aggregation propensity of a sequence or its amyloidogenic potential. Incorporating

annotation data associated with phase-separating proteins could be another avenue for generating

a physiological classifier in a more comprehensive predictor.

The physical nature of pi-pi contacts and their underlying mechanistic relationship to phase sepa-

ration are not revealed by the simple contact frequency measurements used in our predictions.

These contacts are observed in folded proteins, both internally and near solvated interfaces and,

while that suggests they play a general role in the energetics of protein-protein interactions, the

nature of that role is not clear. There is potential for electrostatic or induced dipole and quadrupolar

interactions, especially in the context of other dipole interactions and hydrogen bonds, but the flat

surfaces of sp2 groups could also enable solvation to drive contacts and lead to entropic contribu-

tions due to the relative freedom of movement inherent in packing flat plates, compared to the

more rigid shape complementation involved in packing aliphatic groups. It is interesting to note that

Figure 8. Visual confirmation of phase separation. (A) Test tubes containing transparent or turbid solutions of 1 mM FMR1 C-terminus (residues 445–

632) along with their corresponding DIC microscopy images taken at room temperature or 4˚C, respectively. (B) 1 mM FMR1 C-terminus forms droplets

exhibiting liquid fusion properties at 4˚C. (C) 40 mM solutions of Human Cytalomegalovirus pAP along with corresponding microscopy images taken at

room temperature or 80˚C, respectively.
DOI: https://doi.org/10.7554/eLife.31486.019

The following figure supplement is available for figure 8:

Figure supplement 1. Visual confirmation of phase separation, using 20 mg/ml ficol as a crowding agent.

DOI: https://doi.org/10.7554/eLife.31486.020
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these proposed mechanisms could be affected by temperature in opposite ways, and that our pre-

dictor using pi-contact frequencies is useful in identifying phase-separating proteins regardless of

whether they associate more readily as temperatures decrease (such as Ddx4) (Nott et al., 2015) or

increase (such as elastin) (Yeo et al., 2011).

As part of characterizing the proteomic associations highlighted by our empirical prediction test,

we point out that manual inspection of our prediction results across the human proteome suggests

that planar pi-contact associated phase separation likely facilitates a wide range of cellular functions.

To highlight this, we selected a range of examples by taking the highest scoring member of gene

ontology categories we found to be generally enriched in high PScore proteins. We see enrichment

of phase separation propensity in proteins associated with cytoskeletal organization. These include

proteins with known structural roles such as the cytoskeletal intermediate filament proteins desmin

and vimentin (PScores 4.3 and 4.4), as well as keratins 8 and 18 (PScores 5.9 and 5.4), with scores

deriving primarily from the disordered head and tail domains (Appendix 1—figure 9). Intermediate

filaments form through dynamic processes (Yeo et al., 2011) consistent with a model in which phase

separation-induced condensation concentrates proteins prior to the formation of (often fibrillar)

structure (Yeo et al., 2011). Interestingly, helical domain mutations impeding structure formation

cause these four proteins to instead accumulate in protein-rich membraneless inclusions such as Mal-

lory-Denk bodies (Strnad et al., 2008; Goebel and Bornemann, 1993; Ogrodnik et al., 2014). We

also predict high PScores for non-structural proteins involved in regulating cytoskeletal organization

and in binding some of the previously mentioned cytoskeletal proteins, including focal adhesion

kinase 1 (PScore 4.2) and DNAJB homolog 6 (PScore 8.8), the latter of which is also a chaperone

that can prevent huntingtin aggregation (Chuang et al., 2002; Hageman et al., 2010; Gillis et al.,

2013).

Many of the high PScore predictions involve proteins that are both involved in signaling pathways

and known to either localize to membraneless organelles or interact with phase-separating proteins.

For example, adenomatous polyposis coli protein (APC) (PScore 3.2) and axin1 (PScore 2.2), involved

in the Wnt signaling pathway, interact in a dynamic fashion in the large and multimeric b-catenin

destruction complex (Pronobis et al., 2015), and we find high PScores for other critical members of

the complex, including b-catenin (PScore 5.5) and GSK3a (PScore 6.4). The b-catenin destruction

complex formation is regulated by GSK3 phosphorylation, and we note that the predictor shows a

difference between the two human GSK3 orthologs, with GSK3b having a PScore of 2.2. These

orthologs are often functionally interchangeable (Doble et al., 2007), but there is evidence of iso-

form-specific roles for GSK3a (Ma, 2014) and the predicted differences could reflect a difference in

modulating phase-separation behavior.

In conclusion, we have shown that planar pi-pi interactions are more prevalent in protein struc-

tures than previously described, with potential roles in structural motifs, catalysis and RNA binding.

Planar pi-pi contact frequencies are increased in protein segments that lack regular secondary struc-

ture or have increased solvent exposure, pointing to their relevance for disordered protein regions.

This, together with the enrichment of pi-containing groups in protein regions known to phase sepa-

rate, provided an impetus for development of a phase-separation predictor based on the likelihood

of forming non-local planar pi-pi contacts. The performance of the predictor supports the hypothesis

that these pi-pi interactions can drive phase separation. While experimental data and computational

work suggest other contributions (Yeo et al., 2011; Pak et al., 2016; Nott et al., 2015; Lin et al.,

2016; Kim et al., 2016; Brangwynne et al., 2015), including the hydrophobic effect, electrostatics

and multivalent binding of folded protein domains, our prediction test shows that an algorithm

focused solely on pi-interactions performs well for the majority of proteins that we identified as

phase-separating from the literature (Figure 5C, Figure 5—source data 1B). These results strongly

suggest that most phase-separating proteins can make significant non-local planar pi-interactions,

even in cases where there are other dominant or required forces driving phase separation. Thus, this

represents a valuable tool for the currently expanding field of protein phase separation and its link

to biological function and disease (Mitrea and Kriwacki, 2016; Conicella et al., 2016; Patel et al.,

2015). In particular, the association of neurological diseases with proteins comprising RNA process-

ing bodies (Vanderweyde et al., 2013), including those known to phase separate, highlights the

importance of predictive methods for facilitating mechanistic studies of the underlying biology and

pathology.
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Materials and methods

Key resources table

Reagent type (species)
or resource Designation

Source or
reference Identifiers Additional information

Recombinant DNA reagent His-SUMO-Ddx4 1-236 PMID 25747659 Expression vector (His-Sumo tagged)
for Ddx4 residues 1–236, sequence from
UID: Q9NQI0-1 (uniprot identification)

Recombinant DNA reagent His-SUMO-Ddx4 1-236(9FtoA) PMID 25747659 Expression vector (His-Sumo tagged) for
Ddx4 residues 1–236, sequence from
UID: Q9NQI0-1, 9 out of 14 phenylalanines mutated to alanine

Recombinant DNA reagent His-SUMO-Ddx4 1-236(14FtoA) PMID 28894006 Expression vector (His-Sumo tagged) for
Ddx4 residues 1–236, sequence from
UID: Q9NQI0-1, all phenylalanines mutated to alanine

Recombinant DNA reagent His-SUMO-Ddx4 1-236(RtoK) PMID 28894006 Expression vector (His-Sumo tagged) for
Ddx4 residues 1–236, sequence from
UID: Q9NQI0-1, all arginines mutated to lysine

Recombinant DNA reagent His-SUMO-FMR1445-632 This paper Expression vector (His-Sumo tagged) for
FMR1 residues 445–632, sequence
from UID: Q06787-1

Recombinant DNA reagent His-SUMO-FMR1445-632(RtoK) This paper Expression vector (His-Sumo tagged) for
FMR1 residues 445–632, sequence from
UID: Q06787-1, all arginines mutated to lysine

Recombinant DNA reagent His-SUMO-pAPA341Q This paper Expression vector (His-Sumo tagged) for
SCAF isoform pAP, sequence from UID: P16753-2,
alanine 341 mutated to glutamine

Recombinant DNA reagent His-SUMO-EN2 This paper Expression vector (His-Sumo tagged)
for Engrailed-2, sequence from UID: P19622-1

Analysis of pi-pi interactions
Structures used for primary analysis
Protein structures determined by X-ray crystallography were downloaded from the PDB based on

lists compiled using the Pisces web server (Wang and Dunbrack, 2003), May 7 2015, which identi-

fied 23074 non-redundant chains based on cutoffs of <60%,<5.0, and <0.5 for sequence identity,

resolution, and R-factor, respectively. For calculating statistics, high-resolution structures were

defined as a subset of 5718 structures with resolution �1.8 and R-factor �0.18. For structures deter-

mined using distance restraints from nuclear magnetic resonance spectroscopy, we took the full list

of 2949 PDBs with distance constraints available from the BMRB (Ulrich et al., 2008) database of

converted restraints (DOCR) (Doreleijers et al., 2005) as of July 3rd, 2015.

Contact definition
To probe contact geometries we read each set of coordinates into custom python scripts, filtering

input data by ignoring sp2 systems that lack any of the expected heavy atoms (<0.1%) and only tak-

ing the first set of coordinates when represented by multiple conformations. The sp2 systems were

defined by atom names for each of nine sidechain groups (from W,F,Y,H,R,Q,N,E,D), the backbone

peptide bond, and the C-terminal carboxyl group. Planar axes were defined as normal vectors by

using the cross product method against defined lists of three sequential atoms. VDW contacts

between sp2 groups were determined by the full set of heavy atom (C, N, O) distance measure-

ments, using a threshold of �4.9 Å to define contacts. This represents the upper range of VDW con-

tacts between sp2 groups (Appendix 1—figure 1E), because we intended to compare contact

frequencies by data resolution and did not want to introduce arbitrary energetic cutoffs for atoms

with potentially unreliable positions.

In analyzing the planar orientations of sp2 groups found in VDW contact, we found enrichment of

in-plane contacts, predominantly face-to-face, so we devised a simple system for identifying them

that can be generalized across groups with variable numbers of atoms. These planar surface contacts

were defined first by requiring at least two different pairs of atoms to be in VDW contact. Contact

distances were further restricted by requiring that surfaces 1.7 Å above the sp2 plane be �1.5 Å
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apart (as shown in Appendix 1—figure 1B). This planar-surface distance requirement is used to

ensure contacts that put the pi-orbitals in proximity to one another, and we note that while this

threshold will accept atom-atom contacts as far as 4.9 Å apart the majority end up below 4.0 Å

(Appendix 1—figure 1E, in purple). To restrict contacts to planar contacts, the dot product of the

planar normal vectors were required to have an absolute value �0.8 (equivalent to an orientation dif-

ference from 0˚ to ~37˚). This threshold retains >80% of the contacts identified by distance, and was

chosen because interactions between planar groups show a noticeable enrichment relative to ran-

dom orientation in this range (Appendix 1—figure 1D).

Annotation data for the full non-redundant set of PDBs analyzed are included in files Figure 1—

source data 1 and 2, and scripts for creating contact annotations from a PDB are included in supple-

mental file Source code 1.

Planar pi-pi contact frequency
Comprehensive lists of planar pi-pi contacts were computed for each chain and were stored in a

database. Contact frequencies were calculated as the total number of observed contacts divided by

the total number of residues considered. Residues were counted only for each non-redundant chain,

and contacts include both the ones made within that chain and the ones that chain makes to any

other chains present in the PDB (except when noted otherwise). Contacts to crystal symmetry part-

ners were also measured but were kept separate and, except where specifically investigated to

probe inter-chain contacts, were excluded from analysis based on the observation that VDW con-

tacts made to symmetry partners can contain a small (<1%) population of extreme clashes (atoms <1

Å from one another).

Pi-contact frequency vs. resolution
PDBs were sorted into 77 non-overlapping bins first by exact resolution and then by rolling any bins

with less than 100 PDBs into the next acceptable bin within 0.25 Å. This method rounds up the small

populations of resolution values while retaining as much resolution information as possible. Correla-

tion values and lines of best fit were estimated using linear regression (inherited from the scipy

python package, version 0.12.1) against bin averages, with bins weighted by sample size.

Involvement of amino acid types in planar pi-pi contacts
In order to compare frequency of contacts involving all 20 common amino acids, we defined involve-

ment based on the participation of any atom from that residue in a planar contact. For most

sequence positions, this means at least one contact made to either one of the flanking peptide

bonds or, for the nine amino acids that have them, the sidechain group. By this definition, backbone

planar contacts involve both flanking residues.

Sp3controls
To provide a prior expectation control for enrichment of planar pi-pi contacts, we took the terminal

heavy-atom planar surfaces from fully sp3 hybridized sidechains, using the following PDB atom

names to define each planar group: Leucine: CD1, CG, CD2; Valine: CG1, CB, CG2; Methionine: CE,

SD, CG; Isoleucine: CD1, CG1, CB; Cysteine: SG, CB, CA; Serine: OG, CB, CA; Threonine: OG1, CB,

CG2; and Lysine: NZ, CE, CD.

Small molecule datasets
The PDB was screened for crystallographic structures containing either amino acids or other small

molecules as free ligands, with the other small molecules being restricted to those that (1) are pres-

ent in more than 100 structures, (2) have a single sp2 group, and (3) have all heavy atoms (C,N,O)

falling within the sp2 plane. These structures were then filtered for resolution (�3.0 Å) and redun-

dancy (�90% identity) by using the Pisces web server. Contact frequencies were determined across

the full list of ligands in these non-redundant sets, with contacts to amino acid ligands being divided

into backbone carboxyl and sidechain sp2 groups. As an internal control for amino acid contact fre-

quencies, contact frequencies were determined for each amino acid based on the same set of struc-

tures used to define the ligand frequency. For sidechain groups, the controls are their direct
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equivalents found within the protein, and for the amino carboxyl groups, we used the protein C-ter-

minal carboxyl groups as the control. Population statistics are summarized in Appendix 1—table 2.

Catalytic sites
We defined catalytic sites based on direct literature annotation as described in the Catalytic Site

Atlas (Furnham et al., 2014), with 2914 residue positions identified over 928 protein structures. The

full population of residues across the annotated chains was split into 40 bins according to identity

and annotation status. Relative contact involvement frequencies, catalytic vs. non-catalytic, were

obtained for each amino acid type. For each catalytic residue, we then identified the total number of

VDW contacts made to any other residue, identified which VDW contacts fall into the subset defined

by our pi-contact rules, and then, for the 2377 catalytic residues with at least one VDW contact to

another catalytic residue, we computed the frequency of VDW contacts that are also pi-contacts.

External measurements and secondary structure
Hydrogen bond data were calculated using PHENIX (Adams et al., 2010), with amino sidechains

allowed to flip 180 deg to maximize the number of donor/acceptor pairs. DSSP (Kabsch and

Sander, 1983) was used to define backbone secondary structures. Water contacts were defined by

direct distance measurements, with the full set of water molecules, including symmetry partners,

extracted using the SYMPEXP function from pymol (Schrodinger LLC, 2015). NMR restraints were

obtained for 2949 structures from the Database Of Converted Restraints (Doreleijers et al., 2005).

For defining short secondary structure motifs, we used the simplified one letter definitions provided

by DSSP (‘H’, ‘B’, ‘E’, ‘G’, ‘I’, ‘T’, ‘S’, and ‘‘), in order to maintain adequate sample size when compar-

ing enrichment across motifs. For comparing ordered and disordered residues, clear helices and

strands (‘H’ for a-helix, ‘G’ for 310 helix, and ‘E’ for b-strand) were defined as the ordered assign-

ments, representing regular secondary structure.

Predictor training and bioinformatics
Pi-contact prediction for structures in the PDB
We trained a statistical potential for predicting pi-contact frequency from protein sequence for indi-

vidual sp2 groups, with contacts split by sequence separation into short-range (�4 residues apart)

and long-range (�5 residues apart, or different chains). We trained against an 80% random cut of

the 17388 proteins in our non-redundant crystal structure subset of the PDB, leaving the remaining

20% as a testing set for a single final test of the predictor. The final predictor, covered in detail in

Appendix 2, operates by first averaging the frequencies observed for sp2 groups found in specific

sequence contexts (with context defined as all residues within 40 amino acids of a given residue) and

then comparing the average values to the distributions observed for sp2 groups with the same

sequence identity (with nine sequence identities for sidechain sp2 systems, and 400 distinct identities

for the peptide backbone), where the final prediction is the contact frequency observed at matching

positions in the PDB.

Phase separation prediction benchmark
To develop a predictor for the phase separation propensity of a given protein sequence, we started

by defining a set of 11 proteins which have been shown, in the literature, to phase separate in vitro

as single purified components due to interactions involving intrinsically disordered regions of the

protein. We also defined a leave out set of 62 proteins associated with phase separation in the litera-

ture by combining proteins matching three distinct criteria: ‘in vitro sufficient’ (N = 32), proteins sat-

isfying the criteria used to select the test set, ‘in vitro insufficient’ (N = 18), proteins for which the

literature contains evidence of in vitro phase separation in complex with other proteins or with RNA

but phase separation as a single component not observed and ‘in cellulo associated’ (N = 12), pro-

teins without in vitro characterization, but with evidence of phase separation in live cells, as deter-

mined both by localization to a known dynamic protein body and by a direct measurement of

dynamic character, typically involving FRAP recovery of a fluorescent tag. These benchmark sets are

included in supplemental file Figure 5—source data 1A,B and C.

Over these datasets, we only found eight proteins less than 300 residues in length, with the small-

est protein sequence observed (RBM3_HUMAN) being 157 residues long. To avoid extrapolating
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our predictions onto an unobserved class of proteins, we decided to restrict testing to

sequences �140 residues in length. To define additional control and training sets, we applied this

sequence cutoff to a series of datasets, including the PDB sets used for developing the pi-contact

predictor, with 13388/17388 training set and 3406/4347 test set sequences retained after restricting

by length �140, the UniProt human reference proteome (September 2016, 18582/21047 sequences

used), and the subset of the human proteome with known disorder, as defined by the DISPROT

database (Piovesan et al., 2017) (205/249 sequences).

Phase separation predictor training
The phase separation propensity predictor starts by inheriting a table of 8 pi-contact prediction val-

ues per sp2 group in the sequence, splitting contacts by i) short-range (�4 sequence separation) vs.

long-range (>4), sidechain vs. backbone, and absolute predicted frequency vs. relative difference

from sp2 groups with the same identity (with nine sidechain sp2 groups and 400 backbone groups,

split by their associated sequence). Sequences are then scored by a series of weighted sequence

window averages. Weights, window length, and normalization parameters were refined using a sto-

chastic optimization process to maximize the score difference between the lowest scoring member

of our 11 member training set, and the average score of the highest scoring 1% of the PDB training

set. A full training history and details of the final predictor are described in Appendix 2. AUC values

at different stages of training the predictor are tabulated in Appendix 1—table 6. Standard error of

the mean values for AUC calculations were estimated by bootstrap using sampling with replacement

(10,000 iterations) against both the test and human sets.

The final predictor consists of a single python script and associated database files, with the state

at time of submission included in supplemental file Source code 1.

Proteome analysis
Phase separation scores for analyzed proteins were considered with respect to known interactions,

and functional annotations, using the gene ontology database (release Oct-04–2016), UniProt’s

Swiss-Prot and TREMBL sequence databases, including the reference proteome annotations, verte-

brate protein sequence list, and variant splicing data (release 11-May-2016) (Magrane et al., 2011;

Pundir et al., 2017; Huntley et al., 2015; Suzek et al., 2007), PTM data from PhosphoSitePlus

(release Dec-16–2011) (Hornbeck et al., 2015), human protein-protein interactions collated under

the Interologous Interactions Database (I2D) (version 2.9) (Brown and Jurisica, 2007), and back-

ground AP-MS detection rates from the Contaminant Repository for Affinity Purification Mass Spec-

trometry Database (CRAPome version 1.1) (Mellacheruvu et al., 2013).

GO term enrichment data over the full range of propensity scores were analyzed against all pro-

teins with UniProt codes contained within both the vertebrate reference sequences and the gene

ontology database. Enrichment scores and p-values for individual GO terms were obtained for a

defined four sigma cut against the human proteome by using PANTHER (Thomas et al., 2003;

Mi et al., 2017; Mi et al., 2016) analysis.

Disorder prediction
Per residue disorder predictions were obtained using Disopred3.16 (Jones and Cozzetto, 2015)

(standard command line and Refseq database) and IUPRED-Long (Dosztányi et al., 2005a;

Dosztányi et al., 2005b) against the phase separation test and training sets, the PDB test set, the

human Disprot set, and a random selection of 7397 sequences from the human proteome. To con-

vert these into per-sequence scores for comparison to the PScore, we then used the optimized win-

dow averaging method developed during training of the predictor, where the window is defined as

all residues within five sequence positions of the highest scoring sixty. These scores can be used to

classify whether or not a given sequence has a number of disordered residues comparable to the

length of a folded domain, either concentrated in a single large region or distributed throughout the

sequence.

Sequence analysis
Sequence similarity to the proteins within the training set was measured by computing dipeptide

sequence profiles (the frequencies of all 400 possible i,i + 1 amino acid combinations in a sequence),
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calculating block L1 distances between a query dipeptide profile and each of the training set pro-

files, and then returning the lowest observed distance. Comparison to the sequence similarity of

direct homologs was observed against a set of 1100 sequences obtained via BLAST by using the

phase separation training set sequences used as queries against the seq database (E = 0.0000001).

Shannon entropy values were calculated for amino acid profiles of sequences by the standard

equation (Shannon, 2001), and comparisons of high and low scoring disordered proteins were

obtained from the subset of human sequences with Disopred3 predictions > 0.80, using the window

averaging method described previously (N = 3501 out of 7397 sequences). High and low PScore

sets were defined by PScore �4.0 (N = 310) and PScore <1.0 (N = 1044), corresponding to our stan-

dard phase separation confidence threshold and scores less than one standard deviation above the

PDB average, respectively.

Experimental methods
Protein expression and purification
Ddx4: Constructs for Ddx4 1-236 wild type sequence (UID: Q9NQI0-1) and mutants were synthesized

and subcloned into a pET Sumo vector (Genscript) to produce His-SUMO-Ddx41-236 (Nott et al.,

2015), His-SUMO-Ddx41-236(9FtoA) (Nott et al., 2015), His-SUMO-Ddx41-236(14FtoA) (Brady et al.,

2017), and His-SUMO-Ddx41-236(RtoK) (Brady et al., 2017). Protein was overexpressed in E. coli and

purified as described previously (Nott et al., 2015). Phase separation was induced at 24˚C by dialy-

sis of a high concentration of Ddx4 in 20 mM Na2PO4, 1 M NaCl, 5 mM TCEP, pH 6.5 into a buffer

containing 20 mM Na2PO4, 100 mM NaCl, 5 mM TCEP, pH 6.5. Concentrations were measured by

spectrophotometry, using an extinction coefficient of 23950 M�1cm�1 at 280 nm.

FMR1: His-SUMO-FMR1445-632 (FMR1 from UID: Q06787-1) and His-SUMO-FMR1445-632(RtoK) were

transformed into E. coli BL21-CodonPlus(DE3) RIL cells. Bacteria were grown in Luria Both at 37˚C
and protein expression was induced with 0.5 mM IPTG at OD600 nm of ~0.6–0.8, followed by over-

night growth at 24˚C. Cells were harvested by centrifugation and pellets were stored at �20˚C. Pro-
tein pellets were re-suspended in lysis buffer containing 50 mM NaPO4 pH 8.0, 6 M guanidinium

chloride (GdmCl), 500 mM NaCl, 20 mM imidazole and 2 mM DTT. Cells were then lysed via sonica-

tion and lysates were cleared by centrifugation at 39,000 g for 30 mins at 4˚C. The supernatant was

loaded onto a HisTrap column equilibrated with the lysis buffer followed by extensive washing with

the same buffer (10 CV). The GdmCl was removed by washing the column with buffer containing 50

mM Na2PO4 pH 8.0, 500 mM NaCl, 20 mM imidazole and 2 mM DTT (10 CV). The protein was then

eluted in the same buffer supplemented with 300 mM imidazole. The His-SUMO tag was cleaved

with the SUMO protease, Ulp, while dialyzing against 50 mM NaPO4 pH 8.0, 500 mM NaCl, 20 mM

imidazole, and 10 mM DTT at 4˚C over night. The dialysate was loaded again onto a HisTrap column

equilibrated with dialysis buffer to separate the His-SUMO tag and the His-tagged Ulp from the

FMR1445-632 protein. All fractions were analyzed by SDS-PAGE, and fractions containing the protein

of interest were combined and concentrated with ultrafiltration. Concentrated samples were passed

over a Superdex 75 gel filtration column into a final buffer of 50 mM NaPO4 pH 8.0, 2 M GdmCl,

200 mM NaCl, and 2 mM DTT. Protein identity was confirmed by mass spectrometry and frozen at

�80˚C until use. Concentrations were determined from the absorbance at 280 nm using a molar

extinction coefficient of 9970 M�1cm�1.

pAP: His-SUMO-pAPA341Q (SCAF Isoform pAP from UID: P16753-2, with a single mutation

A341Q added to confer protease resistance (Brignole and Gibson, 2007)), was transformed, grown,

induced, and purified following the protocol for FMR1, but with growth post-induction done for 4 hr

at 37˚C, and with an additional Superdex 75 gel filtration step added between the first HisTrap step

and the Ulp cleavage step. Concentrations were determined from the absorbance at 280 nm using a

molar extinction coefficient of 35870 M�1cm�1.

Engrailed-2: The expression and purification steps of engrailed-2 (UID: P19622) from His-SUMO-

EN2 were similar to the protocols used for FMR1, but with growth post-induction done for 4 hr at

25˚C, and addition of a HiTrap SP XL (GE Healthcare) ion exchange chromatography step between

the Ulp cleavage step and a Superdex 75 gel filtration step for removing His-SUMO by increasing

NaCl concentration from 50 to 1000 mM in 50 mM NaPO4, 2 mM DTT at pH 7.4. Concentrations

were determined from the absorbance at 280 nm using a molar extinction coefficient of 22460

M-1cm-1.
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Phase separation test and differential interference contrast imagining
For Figure 8A, concentrated FMR1 protein samples were dialyzed against 20 mM NaPO4 pH 7.4

and 2 mM DTT overnight at 4˚C and then diluted with the same buffer to the desired protein con-

centrations for imaging. Samples were incubated on ice for 5 min before placing them onto a glass

cover slip. For Figure 8—figure supplement 1A, FMR1 protein samples were instead dialyzed

against 100 mM NaCl, 20 mM NaPO4 pH 7.0 and 5 mM DTT, with 20 mg/ml ficol added prior to

imaging.

Concentrated pAP and engrailed-2 protein samples were dialyzed against 100 mM NaCl, 20 mM

NaPO4 pH 7.0 and 5 mM DTT overnight at 4˚C and then either diluted with the same buffer to the

desired protein concentrations for imaging (pAP, Figure 8C) or with the addition of 20 mg/ml ficol

(engrailed-2, Figure 8—figure supplement 1B). Droplet images were acquired using differential

interference contrast with 40X, 63X or 100X objectives on either a Zeiss Axiovert 200M Epifluores-

cence microscope or a Zeiss Axio Observer. Temperatures were controlled using a PE100-ZAL

inverted Peltier system from Linkam Scientific.

Statistical analysis
Standard error estimated for measured population parameters was obtained by bootstrap analysis

using random sampling with replacement, with 10,000 iterations. For measurements involving popu-

lations of features found within the PDB, we split observation data into dependent blocks by sam-

pling against the list of PDBs used in calculating the parameter rather than by against the list of

observed features. Statistics for many of these calculations are tabulated in Appendix 1—table 1.

ROC curves were calculated as non-parametric step functions by empirical cumulative distributions,

and AUC was estimated by direct measurement of the AUC, without smoothing. AUC values are

tabulated in Appendix 1—table 6.
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Supplementary results

Catalytic sites
To investigate the functional relevance of planar pi-pi interactions, we examined the contact

frequencies at positions with known enzymatic function. We observe that residues in our non-

redundant protein set which are annotated as being catalytic in the Catalytic Site

Atlas (Furnham et al., 2014) (N = 912 PDBs, 2914 catalytic residues) are more likely to be

involved in planar pi-pi contacts than expected by the contact frequency of the given residue

type, at 1.87 ± 0.07 times expectation overall and 1.42 ± 0.07 when normalized by catalytic

residue frequency (Appendix 1—table 3), with Glu, Gln, Asn, and Asp having the largest

increases, going from 12–19% average contact frequency to 21–39% in catalytic positions. In

addition, by normalizing contact frequency by the number of van der Waals contacts each

residue is involved in we observe that catalytic residues are 2.1 ± 0.2 times more likely to have

pi-pi stacking interactions with their VDW contacts that are also annotated as being catalytic

than they are to non-catalytic neighbors, suggesting that the contacts themselves play a role

in defining the constrained geometries of the active site. This analysis only covers the protein-

protein interactions made within the binding pocket, and does not cover the nature of the

contacts made by catalytic residues to ligands, which, judging from our small molecule binding

data (Appendix 1—table 2), could significantly increase the overall rate. (An example of a

catalytic side with both protein-protein and protein-ligand pi-pi contacts is shown in

Figure 2B.). We note that the effect of these interactions may involve some energetic

cooperativity with other interactions, as they are often found in large networks, and commonly

involve sidechains stacked simultaneously to both the donor and acceptor groups of an sp2-

sp2 hydrogen bond (Figure 2C).

Backbone interactions
Roughly half of the observed pi-pi contacts involve the peptide backbone and seem to be

particularly important in defining structure at the termini of strands and helices (Figure 2D).

We found that contact frequency increases at backbone positions located at the transition

points between different types of secondary structure, with up to a 3–4 fold increase in

contact frequency around the terminal positions in strands and helices (Appendix 1—figure 5)

primarily involving local sidechain contacts to the last peptide bond involved in hydrogen

bonding. We further observed that many of these contacts are directly involved in motifs

known to be important for stabilizing secondary structure during folding, including b-hairpins

and helix-caps (Serrano and Fersht, 1989; Trevino et al., 2007). These interactions have

previously been recognized for aromatic sidechains (Tóth et al., 2001), but we find that non-

aromatic sp2 sidechains are, in aggregate, more likely to form these backbone contacts

(Figure 1C).

To examine the relevance of these backbone contacts in defining structural motifs we searched

for examples of specific motifs with exceptionally high contact frequencies. We present our top

examples in Appendix 1—figure 5. Appendix 1—figure 5A shows a b-hairpin with DSSP

assignment (Kabsch and Sander, 1983) ‘ETTTTE’, a motif found in 14.4 ± 0.5% of the structures in

our high resolution PDB set (N = 822/5718). Across these observations we find a planar pi-pi

contact frequency at the peptide position involved in the hydrogen bond defining the turn 38 ± 2%

of the time (N = 401/1051),~22 times the median contact frequency (of 1.7%) over all backbone

groups, suggesting that these pi-pi contacts play a role in defining the motif.

As a way of providing a sidechain specific test that excludes aromatic interactions and cation-pi,

we looked at arginine residues and found that when arginine is in a helix (�4 residues from the

N-terminal position, by DSSP) the sidechain group forms a pi-pi contact to the peptide bond
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between residues i-3 and i-2 on average 9.2% of the time (N = 18507), where the arginine is

effectively stacking to the surface of the helix. When looking at sidechains found closer to the helix

N-terminus we find that this frequency increases to 13.6% for the position where the i-3/i-2 peptide

group forms the terminal hydrogen bond (N = 2495), and then drops to 0.14% when it is no longer

part of the helix (N = 1438).

RNA binding
We also examined the planar pi-pi contact frequencies in RNA/protein complexes, using 94 X-ray

structures with at least 10 RNA bases from our non-redundant proteins set. Overall, 9.2 ± 1.4%

(N = 3847) of RNA bases in these RNA/protein complexes form planar pi-pi interactions with

protein. This is heavily biased towards bases that are not already stacking to other bases. Thus,

bases that have no base stacking interactions (16.2 ± 1.8% of all bases) have planar pi-pi contacts to

protein 31.2 ± 4.4% of the time, and those that only stack to RNA on one side (17.3 ± 1.1% of all

bases) have planar pi-pi contacts to protein 17.7 ± 2.6% of the time. This often situates the protein/

RNA interface at positions for which the RNA secondary structure is disrupted.

Arginine sidechains are the largest contributor to RNA/protein planar pi-pi interactions, found in

35.0 ± 3.3% of cases, compared to 34.7 ± 4.0% involving any of the four aromatic sidechains (Phe,

Tyr, His, Trp) and 21.9 ± 2.8% the peptide backbone. Arginine’s role in binding RNA is well known

and can also be explained by its abilities to form charge interactions with the phosphate backbone

and hydrogen bonds to base pairs. We observe that arginine residues in VDW contact with RNA

form planar pi-pi interactions 28% of the time, and that planar pi-pi contacts are, relative to other

arginine to RNA VDW contacts, more likely to be found in simultaneous contact to the phosphate

group. Thus, arginine in VDW contact with RNA has a 36% and 9% chance of being in contact with

PO4 or hydrogen bonded to a base, respectively, while arginine with a pi-pi contact to RNA has a

63% and 15% chance of being in contact with PO4 or hydrogen bonded to a base, demonstrating

that these interactions do not compete and may be synergistic or cooperative (Figure 2E).
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Appendix 1—figure 1. Contact definitions. (A) Contacts are identified first as sp2 planes in

which at least two pairs of atoms come within 4.9 Å of one another, and then by restricting to

the subset with (B) planar surfaces (at the carbon VDW radius of 1.7 Å) with points along the

planar normal vectors coming within 1.5 Å of one another and (C) a planar orientations for

which the absolute value of the dot product of normal vectors is �0.8. (D) Shows the rationale

for these restrictions, where binning sidechain-sidechain interactions by the relative orientation

between planes shows that planar (same-orientation) interactions, primarily in the 0.8 to 1.0

range (angles between the planes from 0 deg to 36 deg), show enrichment relative to the

uniform distribution expected for random orientations. Of these, interactions with only one

atom-atom pair within VDW contact (shown in blue) have no bias. Enrichment comes entirely

from contacts with either two pairs of planar surfaces within 1.5 Å of each other (shown in

purple) or two distinct pairs of atoms within 4.9 Å but without the planar surface contact

(shown in green). (E) Minimum distance measurements between pairs of atoms found in

separate sp2 groups, measured from the closest pairing for each atom. Gray shows all

sidechain-sidechain measurements, and green/purple show distances corresponding to the

groups in D. (F) Representative examples of sidechain-sidechain and sidechain-backbone pi-

contacts are shown as sticks (PDB: 1gde), with carbon atoms in gray, oxygen in red, and

nitrogen in blue. Planar normal vectors extended to the carbon VDW radius, representing pi-

orbital locations, are shown as purple rods for sidechain groups and blue rods for backbone

groups, and the yellow line denotes a hydrogen bond where both donor and acceptor atoms

are in pi-contact distance to a third sidechain. (G) A space-filling representation of the sp2

atoms in F, with gray lines between normal vector rods used to show the planar surface

measurements taken for defining pi-contacts.

DOI: https://doi.org/10.7554/eLife.31486.025
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Appendix 1—figure 2. Cross validation against NMR restraints and X-ray structure resolution.

(A), The relationship between contact frequency and experimental data quality is not unique

to crystallography, as shown by the effect of increasing the number of restraints on sidechain

specific contact frequencies over 2589 structures solved by NMR. For each sidechain/protein

combination we calculated the average number of distance restraints involving sidechain

atoms (from the first sp2 atom onward), and then binned residues into five categories, with red

for structures without any sidechain distance restraints for that residue type, and ranking

quartiles from light gray to black by order of increasing restraints, where the consistent

increase in contact frequency from left to right confirms that more restraints result in higher

planar pi-contact frequencies. For Glu and Asp, less than 1% of the structures were derived

using distance restraints to the carboxyl’s lone carbon atom so we did not split them into

quartiles. (B), To control for potential sample bias we also tested the relationship between

resolution and contact frequency for crystallographic structures that have been solved at least

three different times at different resolutions, with bars showing contact frequencies over

identical populations of residues for the highest (blue), median (black), and lowest resolution

(red) structures. Error bars show standard error of the mean (SEM).

DOI: https://doi.org/10.7554/eLife.31486.026
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Appendix 1—figure 3. Pi-pi interactions underestimated by some energy functions. (A),

Contact frequency during molecular dynamics simulations of 100 proteins, made available

through Dynameomics (Kehl et al., 2008), shows a rapid initial loss of >80% of sidechain pi-

contacts which continues to decline throughout the simulation (blue points). By comparison,

sidechain hydrogen bonding shows a stable loss of only 20% of interactions (red points). (B),

Minimization of 762 crystal structures against the Talaris2014 energy function by Rosetta3.4

(Leaver-Fay et al., 2011; O’Meara et al., 2015), with starting contact frequencies (left bars)

decreasing after minimization (right bars). (C–F), Analysis of the relationship between the

energetic effects of point mutations (DDG) and pi-contacts for experimental DDGs (blue bars)

and DDGs predicted by simulation against the FOLDX force field (Schymkowitz et al., 2005)

(C,E) and Rosetta (D,F). Panels C,D show predicted DDG values vs. observation for residues

that are not involved in pi-contacts in black, and residues that are involved in pi-contacts in

blue, with lines of best fit colored the same. Panels E,F show how correlation values change as

outliers are removed, with correlation consistently worse for mutations involving pi-contacts

(blue lines) relative to those that don’t (black lines).

DOI: https://doi.org/10.7554/eLife.31486.027
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Appendix 1—figure 4. Hydrogen bonding correlates with planar-pi contacts. Percentage of

sidechains involved in at least one hydrogen bond is shown for sidechains that are not in a

planar-pi contact in black, and for sidechains that are in a planar-pi contact in green, with

panel (A) showing the hydrogen bond frequency across all groups, including ligands and

water, (B) showing the hydrogen bond frequency to backbone atoms, and (C) showing the

frequency of hydrogen bonding to a sidechain. Hydrogen bond frequency consistently

increases with planar pi-pi contacts for all sidechains but Trp and Tyr.

DOI: https://doi.org/10.7554/eLife.31486.028

Appendix 1—figure 5. Backbone pi-pi contacts in secondary structure motifs. Examples of

secondary structure motifs showing enrichment for local backbone pi-contacts (contacts made

to sidechains within 5 residues of the peptide bond) are displayed. Bar graphs show contact

frequency at each position in a motif, as defined by DSSP (Kabsch and Sander, 1983)

abbreviated residue class (’E’, ’S’, ’T’, ’H’, ’G’, and ’ ’), with bars colored by the associated

residues, with green for peptide bonds between two residues classified as turns, blue for

bonds in strands, red in helices, and black for bonds that are either unclassified or present at

the transition point between classifications. Gray horizontal lines represent the decile values

across all backbone contact frequencies, showing that the bonds most likely to end up in the

top decile come primarily from transition points between secondary structures (ranging from
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2x to 20x enrichment, relative to the median of 1.7%). Protein structures show representative

examples of each motif with contacts found at the most enriched position, taken from (A),

PDB:1aap, (B), PDB:1gte, (C), PDB:1k5c, (D), PDB:1nhc, (E), PDB:1k3i, (F), PDB:1i8k, (G),

PDB:2c4w, and (H), PDB:1kwf.

DOI: https://doi.org/10.7554/eLife.31486.029

Appendix 1—figure 6. Peptide sequence effects on contact frequency. Heatmaps show

enrichment in the total proportion of planar pi-pi contact involvements observed for peptide

bonds between two residues (the first, N-terminal residue on the x-axis and the second,

C-terminal residue on the y-axis) relative to the proportion of peptide bonds. Enrichment for

(A) short-range contacts (sequence separation <5) and (B) long-range contacts (separation �5

or a different chain), respectively, to the peptide bond itself. (C), Enrichment for finding

residues within 5 residues of a sidechain that makes a pi-contact to any group in the structure,

demonstrating general sequence effects on the contact propensity of neighboring residues.

The color gradient shows the natural logarithm of the observed over expected ratio.

DOI: https://doi.org/10.7554/eLife.31486.030

Appendix 1—figure 7. Phase separation propensity predictor testing. (A), ROC curve

comparisons of predictor quality for scores made at different points during the training

process, measuring ranking against the full test set (N = 62) vs. the human proteome (only

sequences with length �140) with green showing the results for the highest number of pi-

contacts predicted for any 100 residue window, without any weighting for type

(AUC:0.82 ± 0.03), pink and orange showing the same measurement split between long-range

(AUC:0.85 ± 0.03) and short-range contacts (AUC:0.62 ± 0.04), respectively, and blue showing
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the final predictor, which uses weighted combinations of both short- and long-range contact

predictions (AUC: 0.88 ± 0.02). (B), the final score tested against 59 phase-separating

sequences designed by the Chilkoti lab (Quiroz and Chilkoti, 2015; MacEwan et al., 2017;

Simon et al., 2017) (detailed in Figure 5—source data 1C), with comparisons against the full

set shown (N = 59) in blue (AUC: 0.86 ± 0.03), and then split into green for 18 proteins shown

to phase separate from soluble to insoluble as temperature decreases (AUC:0.99 ± 0.01) and

pink for the remaining 41 proteins which phase separate from soluble to insoluble as

temperature increases (AUC:0.80 ± 0.04). (C), Fraction of sequences at or above a given

PScore, with the combined pool of phase separation test set proteins (N = 121), in black,

being compared to three reference proteome sets, with human in pink, S. cerevisiae in blue,

and E. coli in green. (D), Enrichment plot for data shown in (C), with �PScore frequency for the

test set shown relative to proteome frequencies. Analysis based on Figure 5-source data 1

and 2.

DOI: https://doi.org/10.7554/eLife.31486.031

Appendix 1—figure 8. Sequence comparisons of high PScore proteins. Panel (A) shows

compositional bias, relative to the human average, for the high PScore disordered proteins (x-

axis) and low PScore disordered proteins (y-axis) used in panel B. High PScore disordered

proteins are enriched primarily in Pro and Gly, while low PScore disordered proteins are not

enriched in either, but enriched primarily in Lys and Glu, matching our observation that Arg to

Lys mutations abrogate phase separation propensity. Panel (B) shows similarity to the training

set measured by minimum dipeptide profile distance to any training set protein, as described

in the methods. High PScore (�4.0) human sequences (in pink) are on average closer to the

training set than are all human proteins (in black) or PDB sequences (in green), but the range

overlaps with both, and is distinct from the similarity seen in blast level homologs of the

training set (in blue). Panel (C) shows Shannon entropy distributions of the human proteome

(in black), the PDB (in green), and of a set of human proteins proteins predicted to have long

stretches of disorder (Disprot3 �0.8) split into those with high PScore (�4, N = 310) (in pink)

and low PScore (<1.0, N = 1044) (in orange), showing that PScore but not disorder results in a

bias towards lower sequence entropy, suggesting a compositional bias in phase-separating

sequences. Panel (D) shows Shannon entropy values for our natural-protein phase separation

test set (N = 62) in pink and the disorder-containing human proteins found in Disprot
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(N = 205) in orange, confirming the observation in panel C that lower Shannon entropy

sequences are associated with phase separation.

DOI: https://doi.org/10.7554/eLife.31486.032

Appendix 1—figure 9. Prediction examples. Per-residue PScores used to calculate the final full

sequence PScore are shown for a selection of human proteins, with residues colored from

purple (PScore � �2) to white (PScore = 0) to green (PScore �4.0). Black triangles denote

residues annotated by PhosphoSitePlus as targets of PTMs, blue triangles denote modification

sites with known regulatory significance, and red circles denote modification sites with known

disease relevance. Proteins are annotated with the percentage of GO terms (with at least 10

human proteins) and high PScore-enriched GO terms (Panther analysis, PScore �4, with O/

E > 1) of which the protein is a member, as well as the total number of each for which the

annotated protein has the highest PScore in the set. Examples are grouped by (A),

involvement in synaptic plasticity and neuronal behavior, showing synaptic functional regulator

FMR1, and synaptophysin; (B), intracellular biomaterials and related structural proteins,

showing focal adhesion kinase 1, vimentin, and keratin type I cytoskeletal 10; (C), proteins

involved in signaling pathways, showing CCR4-NOT transcription complex subunit 3, b-

catenin, vitamin D3 receptor, and Smoothened homolog; and (D), proteins involved in

extracellular biomaterials, showing fibrinogen alpha chain and dentin sialophosphoprotein. (E)

The cystic fibrosis transmembrane conductance regulator is shown as an example of a

negative prediction, even though containing a large region of intrinsic disorder

(residues ~650–840).

Appendix 1—table 1. Contact statistics in high resolution, low R-factor protein structures.

Measurement Value N

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Measurement Value N

Contacts per 100 residues

Pi-Contacts per 100 residues,
averaged over PDBs

6.06 � 2.5* 5,718 PDBs

Pi-Contacts per 100 residues,
averaged over all residues

6.27 � 0.03 1,384,228 residues

Atom Contact Probabilities (%)

Heavy Atoms in a Pi-Contact 6.10 � 0.03 10,836,487 atoms

sp2 Heavy Atoms in a Pi-Con-
tact

10.52 � 0.05 6,283,150 atoms

Heavy Atoms within 4.9 Å of
any Pi-Contact

32.1 � 0.1 10,836,487 atoms

Sidechain-Sidechain Contact Proportions (%) 25,930 contacts

Aromatic to Aromatic 24.73 � 0.29 “

Aromatic to Non-Aromatic 53.24 � 0.33 “

Non-Aromatic to Non-Aro-
matic

22.03 � 0.28 “

All Contact Proportions (%) 86,860 contacts

Sidechain to Sidechain 29.85 � 0.17 “

Aromatic Sidechain to Back-
bone

40.41 � 0.20 “

Non-Aromatic Sidechain to
Backbone

22.80 � 0.16 “

Backbone to Backbone 6.94 � 0.09 “

Aromatic to Aromatic 7.38 � 0.10 “

outnumbered
by Aromatic to
Non-Aromatic

7.6 � 0.1 to 1 “

outnumbered
by Non-Aro-
matic to Non-
Aromatic

3.9 � 0.1 to 1 “

Arginine Sidechain Contacts (per 100 resi-
dues)

61,877 residues

Contact to Aromatic 9.74 � 0.13 “

Contact to Backbone 10.6 � 0.13 “

Contact to Glutamine/Aspara-
gine Sidechain

1.96 � 0.06 “

Contact to Glutamate/Aspar-
tate Sidechain

1.49 � 0.05 “

Contact to Arginine Sidechain 3.63 � 0.11 “

*This error range shows the standard deviation between PDBs; other error ranges show standard error of the

mean for averages computed over all PDBs.

DOI: https://doi.org/10.7554/eLife.31486.034

Appendix 1—table 2. Small molecule contact frequencies.

Amino acid
sp2group*

#
PDBs

# Ligand
Groups

Ligand
Pi-Pi Contact
Frequency (%)

#
Protein
Groups

Protein contact
frequency (%)

O/E
(Ligand/
Protein)

GLU Sidechain 84 209 16.3 � 4.1 5353 5.0 � 0.4 3.3 � 0.8

HIS Sidechain 36 80 42.5 � 8.0 530 17.4 � 2.7 2.4 � 0.7

Appendix 1—table 2 continued on next page
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Appendix 1—table 2 continued

Amino acid
sp2group*

#
PDBs

# Ligand
Groups

Ligand
Pi-Pi Contact
Frequency (%)

#
Protein
Groups

Protein contact
frequency (%)

O/E
(Ligand/
Protein)

PHE Sidechain 36 93 53.8 � 9.0 1389 28.4 � 2.3 1.9 � 0.3

ARG Sidechain 61 145 43.9 � 6.0 2878 15.9 � 0.9 2.8 � 0.5

TYR Sidechain 30 68 58.8 � 12.2 806 19.9 � 1.9 3.0 � 0.7

GLN Sidechain 21 50 22.0 � 8.9 800 13.0 � 2.3 1.8 � 0.8

ASP Sidechain 39 86 3.5 � 2.0 2153 4.5 � 0.8 0.8 � 0.5

TRP Sidechain 43 109 50.5 � 8.0 377 28.9 � 2.3 1.7 � 0.3

ASN Sidechain 11 32 6.3 � 7.3 466 8.6 � 1.9 0.7 � 0.9

Amino Car-
boxyl

688 1704 8.9 � 1.1 976 5.7 � 1.2 1.5 � 0.4

Small mole-
cule†

#
PDBs

# Free Li-
gands

Ligand
Pi-Pi Contact Fre-
quency (%)

# sp2

Atoms
RCSB Ligand ID

Isomeric
SMILES

Ethanal 44 76 3.9 � 2.9 2 ACE CC = O

Formic Acid 444 2093 11.0 � 0.8 3 FMT OC = O

Acetate Ion 1664 4794 12.9 � 0.6 3 ACT
CC([O-])
=O

Acetic Acid 403 1133 13.5 � 1.5 3 ACY CC(O)=O

Nitrate Ion 225 852 15.3 � 1.7 4 NO3
[O-][N+]
([O-])=O

Guanidine 32 115 15.7 � 4.7 4 GAI NC(N)=N

Urea 23 91 16.5 � 4.0 4 URE NC(N)=O

Imidazole 279 684 26.6 � 2.4 5 IMD
C1C[NH+]
C[NH]1

*Entries containing amino acids or small sp2 containing planar molecules as free ligands were downloaded

from the PDB (filtered to maximum sequence redundancy of 90% and 3 Å resolution) and pi-pi contact fre-

quencies for ligands and their corresponding protein based equivalents were determined.

The majority of amino acids are more likely to form pi-pi contacts to protein when found as non-covalently

bound ligands, rather than as residues within a protein, confirming that pi-pi contacts are a consistent prop-

erty of amino acid interactions involving protein.
†In order to avoid bias due to the constrained geometries of functional binding sites we also analyzed the

contact frequencies of a variety of common buffer components, with contact frequencies found to increase

with number of sp2-hybridized atoms.

Ranges show standard error of the mean.

DOI: https://doi.org/10.7554/eLife.31486.035

Appendix 1—table 3. Pi-pi contact enrichment for catalytic residues. Frequency of

involvement in contacts, at either backbone or sidechain sp2 groups, is shown for individual

residue types, residue independent (ANY), and residue type normalized (AVG), where catalytic

residue contact frequency shows values for residues annotated as catalytic in the catalytic site

atlas (Furnham et al., 2014) and non-catalytic residue contact frequency shows values for all

other residues in the same structures. To normalize for possible differences in the number of

contacts made by catalytic residues we also show number of pi-pi contacts divided by total

number of VDW contacts, labeled as percent of VDW, and the percent of VDW ratio shows

enrichment by dividing the catalytic percent of VDW value by the non-catalytic value. Error

values are obtained by our standard bootstrap analysis (see Materials and methods), and

enrichment values of greater than two standard deviations are shown in bold.
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Residue
type

Non-
catalytic
contact
frequency
(%)

Catalytic
residue
contact
frequency
(%)

N
catalytic Enrichment

Non-
catalytic
percent of
VDW (%)

Catalytic
residue
percent of
VDW (%)

Percent of
VDW ratio
(cat./non)

ANY 13.1 � 0.1 24.5 � 0.9 2914 1.87 ± 0.07 1.91 � 0.09 3.94 � 0.40 2.06 ± 0.23

HIS 31.9 � 0.9 35.9 � 2.3 471 1.12 � 0.06 3.01 � 0.26 4.33 � 0.84 1.45 � 0.31

ASP 12.9 � 0.5 21.2 � 2.0 448 1.65 ± 0.14 1.71 � 0.22 3.08 � 0.81 1.83 � 0.54

GLU 11.7 � 0.4 32.2 � 2.5 370 2.75 ± 0.18 2.44 � 0.31 6.57 � 1.38 2.74 ± 0.71

ARG 26.7 � 0.8 30.3 � 3.2 287 1.14 � 0.12 1.77 � 0.29 7.85 � 1.48 4.57 ± 1.26

LYS 6.2 � 0.4 9.7 � 2.0 259 1.56 � 0.35 0.82 � 0.20 0.37 � 0.37 0.48 � 0.52

TYR 36.1 � 1.2 30.4 � 3.7 171 0.84 � 0.10 2.69 � 0.39 4.62 � 1.38 1.75 � 0.59

SER 8.8 � 0.5 13.0 � 2.6 169 1.48 � 0.28 0.83 � 0.23 1.39 � 0.70 1.84 � 1.20

CYS 8.5 � 1.3 14.7 � 2.9 150 1.73 ± 0.26 1.45 � 0.33 0.92 � 0.66 0.68 � 0.54

ASN 18.9 � 1.1 26.6 � 4.3 109 1.41 ± 0.20 1.88 � 0.42 6.11 � 1.76 3.42 � 1.29

GLY 12.0 � 0.7 16.2 � 4.5 99 1.35 � 0.41 1.26 � 0.48 5.87 � 1.92 5.72 � 4.33

THR 6.8 � 0.6 4.7 � 2.3 86 0.69 � 0.38 0.34 � 0.18 0.88 � 0.87 3.42 � 4.17

GLN 18.0 � 1.6 40.3 � 7.3 62 2.24 ± 0.34 3.12 � 0.53 1.88 � 1.30 0.61 � 0.44

ALA 7.8 � 0.9 7.0 � 3.3 57 0.91 � 0.48 0.85 � 0.43 1.28 � 1.28 2.04 � 2.75

PHE 34.2 � 2.1 35.9 � 7.1 53 1.05 � 0.23 2.52 � 0.64 4.92 � 2.39 2.10 � 1.27

TRP 46.2 � 3.2 45.1 � 7.5 51 0.98 � 0.14 3.57 � 0.73 2.88 � 2.00 0.87 � 0.68

AVG 18.7 � 0.4 24.2 � 1.2 N/A 1.42 ± 0.07

DOI: https://doi.org/10.7554/eLife.31486.036

Appendix 1—table 4. Effect of sp2 sidechain mutations on phase separation. Phase

separation critical concentration values for the N-terminus (1-236) of human Ddx4 and three

mutants, 9FtoA and 14FtoA, as reported in (Nott et al., 2015), and RtoK, where all arginine

residues have been mutated to lysine (Brady et al., 2017), as well as for the C-terminus (445-

632) of human FMR1 and one mutant with all arginine residues mutated to lysine.

Sample

Concentration at which phase separation is
observed
(conditions) # F # R Total #

Mw
(Da)

Ddx4 1–236 (24˚C, 20 mM Na2PO4 pH 6.5, 100 mM NaCl)

WT �2 mg/mL 14 24 236 25430

9FtoA �100 mg/mL 5 24 236 24745

14FtoA �350 mg/mL 0 24 236 24364

RtoK Not observed up to 400 mg/mL 14 0 236 24758

FMR1 445–
632

(4˚C, 20 mM Na2PO4 pH 7.4, 2 mM DTT)

WT �16 mg/mL 2 28 188 20573

RtoK Not observed up to 216 mg/mL 2 0 188 19789

DOI: https://doi.org/10.7554/eLife.31486.037

Appendix 1—table 5. Comparison of phase separation prediction and disorder prediction.

Two disorder predictors were tested on matched positive and negative sets to the phase

separation predictor, comparing the relative discrimination of known phase-separating and

known disordered proteins from the PDB, the human proteome, and the same set of known

disordered proteins. AUC values are highlighted in blue for AUC >0.8, and red for AUC <0.7.

Error values were obtained by bootstrap analysis.

Vernon et al. eLife 2018;7:e31486. DOI: https://doi.org/10.7554/eLife.31486 41 of 48

Research article Structural Biology and Molecular Biophysics Computational and Systems Biology

https://doi.org/10.7554/eLife.31486.036
https://doi.org/10.7554/eLife.31486.037
https://doi.org/10.7554/eLife.31486


Positive set
AUC
(vs. PDB)

AUC
(vs. Human)

AUC
(vs. Disprot)

Disopred3 (Disorder Predictor)

Phase Separation Test Set 0.982 � 0.005 0.72 � 0.03 0.58 � 0.02

Disprot Set 0.977 � 0.007 0.66 � 0.03 N/A

IUPRED-Long (Disorder Predictor)

Phase Separation Test Set 0.893 � 0.007 0.70 � 0.03 0.60 � 0.02

Disprot Set 0.89 � 0.01 0.64 � 0.03 N/A

PScore (Phase Separation Predictor)

Phase Separation Test Set 0.961 � 0.005 0.88 � 0.01 0.84 � 0.01

Disprot Set 0.79 � 0.02 0.58 � 0.03 N/A

DOI: https://doi.org/10.7554/eLife.31486.038

Appendix 1—table 6. Retrospective analysis of predictor quality at different stages during the

training process. AUC values for distinguishing proteomic phase-separating sequences from

the human proteome are shown for prediction scores made from pi-contact frequencies

(average contacts predicted per residue) obtained at each training step of the protocol in order

of their sequential development, with prediction scores calculated as the highest number of

contacts predicted for any given 100 residue window in each sequence. Analysis of the relative

effects of different contact types was added by excluding contacts from each score and

retesting. Standard error of the mean (SEM), by bootstrap analysis, is consistently in the range

from 0.021 to 0.039.

Training step

AUC at
training
step

Sidechain
contacts
only

Backbone
contacts
only

Short-
range
sidechain
only

Long-
range
sidechain
only

Short-
range
backbone
only

Long-
range
backbone
only

(1) Baseline
Frequencies

0.57 0.51 0.84 0.52 0.50 0.73 0.80

2) Context-
Averaged Fre-
quencies

0.57 0.51 0.86 0.53 0.51 0.77 0.83

(3) Smoothed
Frequency
Predictions

0.82 0.64 0.89 0.59 0.65 0.71 0.85

(4) Weight
Optimized
Final Predictor

0.88 N/A N/A N/A N/A N/A N/A

DOI: https://doi.org/10.7554/eLife.31486.039

Appendix 1—table 7. Sequence similarity comparison. Frequencies of dipeptides (pairs of

neighboring amino residues) were computed for phase-separating proteins and the human

proteome, and enrichment was measured by the percentage of human proteins with lower

frequency than found in a given sequence. The fifteen dipeptides enriched (�99%) in the most

sequences within the phase separation test sets are shown in the table vs. enrichment values

obtained for the phase separation training set and three experimentally verified proteins.

Values in the top fifth percentile are shown in bold.

Protein
Name

Dipeptide enrichment (Percentage of human proteome with lower frequency)

GV VG VP PG FG RG GR GG YG GS SG GA GF GD DS

Training Set Proteins

Elastin 100 100 100 100 97 31 32 99 99 20 20 100 89 38 30

Nsp1 30 34 31 26 100 31 30 75 52 90 38 99 60 66 68

TIA1 73 75 46 26 86 31 86 77 99 29 53 26 84 54 30

Appendix 1—table 7 continued on next page
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Appendix 1—table 7 continued

Protein
Name

Dipeptide enrichment (Percentage of human proteome with lower frequency)

GV VG VP PG FG RG GR GG YG GS SG GA GF GD DS

LAF1 30 78 65 29 67 99 99 100 77 88 97 65 78 97 32

EIF4H 30 65 31 52 98 99 95 99 52 99 42 79 99 98 89

Ddx3x 51 70 34 43 89 98 97 96 93 93 95 68 96 59 78

hnRNPA1 30 55 31 44 100 99 99 100 99 99 98 44 99 60 79

DDX4 33 77 48 53 98 96 91 89 59 87 96 29 98 96 45

FUS 30 31 31 83 78 100 99 100 100 98 99 33 93 91 57

EWS 52 31 35 97 51 100 99 100 100 72 61 30 97 91 48

TAF15 36 38 31 30 53 100 99 100 100 92 99 26 71 100 94

Experimentally Verified Proteins

FMR1 69 89 93 44 43 96 94 83 62 62 34 70 48 41 67

SCAF pAP 75 50 89 91 43 49 73 97 75 92 96 96 40 36 44

Engrailed-2 30 31 31 97 70 78 90 100 52 99 91 99 40 95 97

DOI: https://doi.org/10.7554/eLife.31486.040

Appendix 1—table 8. High PScore enrichment for human proteins with a greater than

average number of post-translational modification (PTM) site annotations in Phosphosite+.

PTM counts are controlled for protein length by taking the maximum number observed in any

100 residue window, and the threshold for an above average PTM count is defined as greater

than the average plus one standard deviation. Errors show SEM by bootstrap analysis.

Phosphosite+
PTM annotation type PTM count threshold Above threshold (N)

PScore > 4
(%) Enrichment

O-GlcNAc 1 158 17 � 3 3.4

Methyl 2 2051 13.3 � 0.7 2.7

Phosphate 10 2485 10.8 � 0.8 2.2

O-GalNAc 1 456 10.1 � 0.1 2.0

Sumo 1 1999 9.0 � 0.7 1.8

Acetyl 3 1543 8.0 � 0.7 1.6

Ubiquitin 4 1875 6.3 � 0.5 1.3

Disease Relevant 1 298 11 � 2 2.1

Regulatory Function 2 1087 7.6 � 0.8 1.5

Database Baseline 0 18582 5.0 � 0.2 1.0

DOI: https://doi.org/10.7554/eLife.31486.041
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Appendix 2

DOI: https://doi.org/10.7554/eLife.31486.042

Prediction experiment

Experimental design
The protocol for developing the final phase separation predictor was conceived as an empirical

test of the hypothesis that pi-contacts have relevance to phase separation, with the logic being that

if pi-contacts play a functional or energetic role in mediating protein phase separation then an

accurate prediction of pi-contact rates (contacts formed per residue) should often be sufficient for

predicting phase-separation behavior. To this end, we defined strict training sets, with 11 phase-

separating sequences as the positive standard and sequences in our PDB sets as our negative

standard, we kept the testing sets internally blind until choosing an arbitrary point to finalize the

predictor, and we intentionally excluded any analysis of sequence features, such as charge

patterns, amyloid propensity, and direct homology, that could improve predictor quality without

testing this hypothesis.

Our protocol was split into four design steps and one test step, as follows. (1) We defined

sequence dependent contact rates for different sp2 groups by taking statistics from the PDB,

(2) we measured average frequencies observed for groups found in specific sequence context,

(3) we used the context data to train a sequence-based pi-contact rate predictor against the

PDB, (4) we then optimized a weighting function for combining pi-contact predictions against

the ability to discriminate the phase separation training set proteins from the PDB, and (5) we

finalized the weight optimized predictor and tested it against the phase separation test set

and proteomic test sets a single time, shown in the main text, with supplemental analysis of

predictor quality throughout the design process done as a retrospective analysis.

Step 1: Pi-contact rate measurement
From the non-redundant PDB chains previously used for structure analysis, we selected

nonredundant structures into the training set by randomly selecting 17388 structures. The

remaining 4347 structures were taken as the leave out set, being removed and held for the final

testing step. Independence of the two sets is restrained only by the 60% identity cutoff used in

obtaining the full list, which prevents broadly identical proteins from showing up in both sets. The

ability to further guarantee independence is limited by the nature of homology, and was

considered outside of the scope of this manuscript.

Sequences were extracted from the PDB REFSEQ annotations and then mapped to

residues found in the structure, with missing density annotated as such. Pi-contact

observations were then mapped to their involved residues with contacts split by sequence

separation into long-range (�5 or different chain) and short-range (�4 residue). Contact rates

were determined for individual sp2 groups using nine residue identities for the sidechain

groups and 400 residue identities for backbone groups, with backbone groups defined by

both flanking residues. To measure local sequence effects we also calculated rates for non-

flanking residue pairs, up to 40 residues apart, which when combined with the backbone

groups produced 16400 residue pair types (20 n-terminal residues x 40 sequence separation

distances x 20 C-terminal residues), which are observed in the training set at a median sample

size of N = 8622, ranging from N = 563 to N = 41796 from the least to most populated.

Step 2: Pi-contact averaged frequencies
For the initial sequence-based pi-contact predictor contact rate, observations for pairs of

residues found within a fixed window length were averaged to produce a context-dependent

estimate. To account for sampling error in rare sequence pairs we estimated the standard

error of these measurements by a limited bootstrap analysis, using 200 randomly sampled
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(without replacement) 70% cut subsets of the training set. To average observation values, a

given sp2 system was first defined by its residue type (a single amino acid for sidechain groups

or the sequential amino acids for backbone groups). Next, residues less than 40 residues away

in the primary sequence (both sides) were compared to our precomputed database, to obtain

a comprehensive list of rate values for all residue-distance-residue pairings found in this

window. These values were then averaged using a sampling error correction, intended to

weight observations by confidence, using the following equation, where R is the error

weighted contact frequency at position x as obtained by averaging over the closest l positions,

P is the database frequency observed for x a given residue pair (x and x + y), and s is the

standard error of the mean obtained for that database frequency.

Rx;l ¼
X

�l� y� l

y 6¼ x

Px;y

sP;x;y
=

X

�l� y� l

y 6¼ x

1:0

sP;x;y
(1)

This average value, which represents a very limited sequence-based prediction, does not

contain information on whether or not local sequence increases or decreases the group’s

contact rate relative to what is expected by the nature of the group on its own. This was

calculated by comparing it against values obtained by Equation 1 for every instance of the

matched system found in the training set, using the precomputed data to convert the average

into a z-score.

Zx;l ¼ Rx;l�
�RDB
x;l

� �

=sDB
�R
x;l

(2)

We next tested the effect of sequence window size on the ability to predict total number of

contacts for a given sequence by iteratively adding twomore adjacent flanking residues in order to

find an optimal window.While analyzing these scores for their ability to predict contact rates, we

observed that the separate z-scores for long-range and short-range contacts, each derived from

distinct non-overlapping sets of observations, are not independent; they each contain information

on the probability expectation of the other, with sequence dependent correlations that could

contain data on competition and cooperation.

Step 3: Pi-contact predictor
To capitalize on the observation that short-range and long-range contact rates carry

information on each other, we added an additional rate prediction step where the previous

averaged rates are used in tandem short-range/long-range pairs to extract matching

observation data from the original rate database. To do this we created a system of lookup

tables in which our training set observations are tallied in two-dimensional arrays by half

z-score bins. To obtain frequency values using these lookup tables we calculate the pair of

z-scores for the query group and match them to a corresponding bin in the lookup tables.

Splitting observations into bins is problematic at extreme z-scores, as it significantly

increases sampling error. To address this problem, we developed a smoothing method

involving iterative sampling across a range of window-length dependent tables in order to use

the natural random variance of the database to average the observations.

This method starts with the initial z-score calculation on a window of sequences covering the

group itself and up to one flanking residue on either side, collecting values for observed contacts

and total number of database entries from a look up table built using the same window size. We

then add additional flanking residues, re-calculate the corresponding z-scores for the new window

length, and then add the observed contacts and total entry numbers for that window size to the

previous observation. From here, additional residues are added iteratively, one flanking residue

and window specific score calculation at a time, up to a maximum window length of 40 residues on

either side. The final frequency is determined by the total number of pi-contacts observed for

similar groups in the database, summed over all windows, divided by the total number of similar

groups found in the database. This is defined in the following equation, where F is the contact

frequency for position x,O is the number of database pi-pi contacts observed within a bin defined
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by a pair of long-range (LR) and short-range (SR) z-scores (Z) calculated for window length i, and T

is the total number of groups observed for the same bin.

Fx ¼
X

40

i¼1

O ZLR
x;i ;Z

SR
x;i

� �

=
X

40

i¼1

T ZLR
x;i ;Z

SR
x;i

� �

(3)

Our selection criterion in developing this method, for determining scores, window lengths,

grid spacing, and other details, was to test options against one another by filling statistical

databases from defined 70% cuts of the training set and then testing how well the sum of

frequency predictions made for each protein in the remaining 30% correlated with the total

number of contacts found in each protein. Once our final pi-contact rate prediction method

was selected we then filled our final databases using the full training set and did a single

prediction quality test against the leave out database.

Step 4: Phase separation prediction
As a starting point, we ran the pi-contact predictor developed for the PDB on each sequence

in the PDB and in our 11 protein phase-separating protein training set and returned the

highest number of contacts predicted for any 100 residue window. These contact frequency

predictions showed a reasonably normal distribution for the PDB (skew and kurtosis of 0.22

and 0.62, as calculated using the scipy.stats python package) and above PDB-average

predictions for our set of 11 phase-separating proteins (8/11 in the 99th percentile). Additional

analysis showed that this enrichment was higher for long-range contact predictions than for

short-range contacts. As an aside, the phase-separating protein with the lowest contact

frequency, elastin, also has fewer sidechain groups and a lower average mass per residue.

However, elastin still has a predicted contact frequency greater than the PDB average because

of very high contact frequency predictions for its backbone.

Since different categories of contacts utilized in our predictor could have different effects

on phase separation propensity, we trained a phase separation predictor by optimizing

contact prediction weights and normalization methods against the ability to discriminate the

lowest scoring member of the phase separation training set from the highest scoring members

(the top percentile) of the non-redundant PDB set, by using a single score value per protein,

as defined in the following equation where D is the relative discrimination score and S is the

score function being tested.

D¼
min Sps
� 	Nps

ps¼1
��Spdb

� �

s�Spdb

�
�Spdbtop1%� �Spdb
� �

s�Spdb

(4)

We then ran the pi-contact predictor on every sequence with �140 residues (based on the

length of the smallest phase-separating protein in our training set) and stored prediction

values for four contact frequencies (long-range/short-range vs. sidechain/backbone) and four

corresponding relative frequencies (the average identity normalized z-scores produced as

intermediate values during the contact prediction protocol).

To optimize weights against these eight values, we built a machine learning toolbox for

stochastic optimization against our discrimination function. Both random and manual sampling

of score functions and weights were tested, with weights determined by brute force sampling

against a Metropolis Monte Carlo acceptance criterion, and score function changes tested by

branching the weight optimization into parallel runs tested against the same criterion.

In terms of the general flow, we started with score functions that were a weight averaging

of contact predictions over fixed window sizes throughout each sequence with the sequence

score being the highest score observed. We used the optimization toolbox to test window

sizes against one another, with each weight starting at the same value and allowed to deviate

by sequential rounds of small random additions and subtractions. In order to avoid scoring the

full set of PDB sequences for every small weight change we added fast diversification

screening steps, where we introduced sub-optimization rounds against a small select subsets
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of the PDB (100–2000 sequences), returning new weight sets to the primary optimization

protocol for re-scoring against the full PDB and the primary acceptance/rejection step.

After the first few thousand rounds this results in a diverse population of weights

associated with similar performance, which can be mined to capture the range of values that

are acceptable for any given weight. At this point, we introduce weight changes using random

selections from that population, instead of by random addition and subtraction, which allows

for more aggressive sampling (how many weights can change per step, and how far they can

change) at a lower observed rejection rate. This weight resampling method also allowed for

better parallel computing, as the most successful weight combination were able to

automatically propagate between processes.

During this process weight optimization was entirely stochastic, but we also tested a variety

of score formulations and window lengths by parallel competition. This branched optimization

strategy added a series of changes to the base protocol, including normalizing window

averages by the number of carbon atoms in the window, adding multiple overlapping window

lengths to allow for weights to differ by sequence distance, and finally, by changing how the

final score is determined per sequence, which went from the top scoring position in the

sequence, to the top decile position, and then to an average over all positions within 5

residues of the top scoring 60.

The final propensity score can be described as the following steps. Raw contact prediction

numbers are generated for each residue in the sequence as an initial step. For every residue in

the sequence, we then start iterating over the flanking residues while summing up values for

eight contact prediction terms (long/short-range vs. backbone/sidechain vs. frequency/z-score)

as well as one residue-based term (number of carbon atoms), with final sums being kept for

three windows, defined as the closest 40, 80, and 120 flanking residues. Each set of window

sums is then scored by the following equation, using the final set of 27 optimized weights,

where S is the window score associated with residue x, spanning the closest residues from

i = x to i = N, w is a weight constant, C is the number of carbon atoms in a residue, and F and

Z are the pi-contact frequency and z-score values from Equations 3 and 2.

SN;x ¼
X

a¼LR;SR

X

b¼BB;SC

wf ;a;b

X

N

i¼1

Fi;a;b

 !

þ
X

a¼LR;SR

X

b¼BB;SC

wz;a;b

X

N

i¼1

Zi;a;b

 ! !

=
X

N

i¼1

Ci

 !wc

(5)

Finally, the full list of scores is then sorted, the top scoring 60 residues are identified, and

an average score (T) for regions of the sequence associated with this high-scoring subset is

obtained by summing over all positions found within 5 residues of the top 60. This value is

then scaled by conversion to a z-score relative to our non-redundant PDB set.

PScoreseq ¼
Tseq � �Tpdb
� �

s�Tpdb

(6)

Step 5: Retrospective analysis
One of the key limitations in designing the predictor is that phase separation in biological

systems is not a fully defined phenomenon, and calculating true/false positive or negative

rates are limited by the fact that there are very few gold standard positives to train against

and there is no gold standard negative set. The vast majority of proteomic sequences are

simply untested. Our experimental design attempts to address this by limiting training to a

single test approach, validated against proteomic data a single time, but this setup meant that

many design decisions were made blind, and the relative final impact of the different steps in

the protocol remain untested.

To address this, we went through each step, creating matched predictors using the

frequency and weight data available at the time, with new score functions returning the

highest contact prediction sum observed over any 100 residue window. Results are shown in

Appendix 1—table 6, demonstrating an increase in performance against the final test set for

each training step.
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We then compared the relative effects of different types of contacts, short-range vs. long-

range and sidechain vs. backbone, by testing scores made from each side of the comparison,

excluding the contact rates from the other. This analysis, also shown in Appendix 1—table 6,

identifies baseline backbone pi-contact rates as being sufficient for the majority of the

predictions, where the baseline observed rates for our 400 backbone peptide group

definitions split the phase separation test set from the human proteome at an AUC of

0.841 ± 0.027, compared to 0.881 ± 0.021 for the final predictor. Score distributions

demonstrating the sufficiency of long-range backbone contact predictions in recapitulating the

phase separation predictions of the final predictor are shown in Figure 5—figure supplement

2, with panels A and B corresponding to training step 3, short-range backbone only and long-

range backbone only, respectively, and panel C corresponding to the final predictor.
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