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In mammals, including humans, mature oocytes are ovulated into the oviduct for
fertilization. Normally, these oocytes are arrested at metaphase of the second meiosis
(MII), and this arrest can be maintained for a certain period, which is essential for
fertilization in vivo and oocyte manipulations in vitro, such as assisted reproduction
in clinics and nuclear/spindle transfer in laboratories. However, in some species and
under certain circumstances, exit from MII occurs spontaneously without any obvious
stimulation or morphological signs, which is so-called oocyte spontaneous activation
(OSA). This mini-review summarizes two types of OSA. In the first type (e.g., most rat
strains), oocytes can maintain MII arrest in vivo, but once removed out, oocytes undergo
OSA with sister chromatids separated and eventually scattered in the cytoplasm.
Because the stimulation is minimal (oocyte collection itself), this OSA is incomplete and
cannot force oocytes into interphase. Notably, once re-activated by sperm or chemicals,
those scattered chromatids will form multiple pronuclei (MPN), which may recapitulate
certain MPN and aneuploidy cases observed in fertility clinics. The second type of OSA
occurs in ovarian oocytes (e.g., certain mouse strains and dromedary camel). Without
ovulation or fertilization, these OSA-oocytes can initiate intrafollicular development, but
these parthenotes cannot develop to term due to aberrant genomic imprinting. Instead,
they either degrade or give rise to ovarian teratomas, which have also been reported in
female patients. Last but not the least, genetic models displaying OSA phenotypes and
the lessons we can learn from animal OSA for human reproduction are also discussed.

Keywords: meiosis, cell cycle, assisted reproduction, ovarian teratoma, multiple pronuclei, aneuploidy,
metaphase arrest, triploid pronuclei

INTRODUCTION

Except some species (e.g., canine), mammalian females ovulate mature metaphase-II (MII) oocytes
into the oviduct following luteinizing hormone (LH)-triggered oocyte maturation and follicular
rupture (Cui and Kim, 2007; Duan and Sun, 2019). Normally, these ovulated oocytes can maintain
MII arrest for a certain period until fertilization occurs (Fissore et al., 2002; Yin et al., 2008).
Maintaining at MII stage is essential for not only fertilization in vivo but also oocyte manipulations
in vitro, such as assisted reproduction, nuclear transfer cloning, and other therapeutic approaches
(Sun et al., 2014; Herbert and Turnbull, 2018; Matoba and Zhang, 2018). However, in some
species and under certain circumstances, exit from MII occurs spontaneously without any obvious
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stimulation or morphological signs, which is so-called oocyte
spontaneous activation (OSA). In this mini-review, we highlight
insights gained on two types of OSA through various animal
models and discuss the effects of OSA on human fertility and
reproductive health.

FIRST TYPE OF OSA

In the first type of OSA (type-1 OSA) (Figure 1A), ovulated
mature oocytes can maintain MII arrest in vivo (in the oviduct);
however, once collected out without any obvious or artificial
stimulation, oocytes undergo OSA. In other words, these oocytes
have very limited ability to maintain the MII arrest, and only
oocyte recovery procedure itself can trigger parthenogenetic
activation in these oocytes. This type of OSA has been known and
studied in multiple species, mainly on rat (Keefer and Schuetz,
1982; Zernicka-Goetz, 1991) and golden hamster (Goud et al.,
1998; Sun et al., 2002), together with case reports from human in
vitro fertilization (IVF) clinics (Van Blerkom et al., 1994; Osman
et al., 2019; Ye et al., 2020).

Morphological and cytoskeletal changes during type-1 OSA
have been relatively well studied in rats. The initial separation
of sister chromatids is similar to normal MII-to-AII (anaphase
II) transition as seen in sperm or chemical-induced meiotic
resumption and oocyte activation (Ross et al., 2006; Cui et al.,
2012). Following this, oocytes either extrude the second polar
body (2nd PB) or just exhibit a protrusion without 2nd PB
extrusion or even no obvious change at all, depending on the
oocyte postovulatory age, rat strain, external environment, and
microtubule integrity (Zernicka-Goetz, 1991; Ross et al., 2006;
Chaube et al., 2007; Cui et al., 2012). When OSA is done
(normally around 6 h post in vitro culture), scattered chromatids
and surrounding microtubules form multiple small spindle-like
structures, reaching a new metaphase-like arrest (Zernicka-Goetz
et al., 1993; Tomioka et al., 2007; Cui et al., 2012). Because the
stimulation is minimal (oocyte collection itself and the following
in vitro culture), this OSA is incomplete/abortive and cannot
force oocytes into interphase, and therefore, no pronucleus
formation occurs after OSA. Instead, OSA-oocytes enter a so-
called “metaphase III-like” (M-III) arrest (Zernicka-Goetz, 1991).
Notably, these OSA-oocytes can be re-activated by sperm or
chemicals, and once re-activated, those scattered chromatids will
form multiple pronuclei (MPN), which may recapitulate certain
MPN and aneuploidy cases observed in human fertility clinics
(Van Blerkom et al., 1984; Dozortsev et al., 1998; Hayes et al.,
2001; Dai et al., 2017; Grigoryan et al., 2019). Different from rat,
some hamster and human OSA-oocytes can reach interphase with
visible pronuclei (Longo, 1974; Van Blerkom et al., 1994; Sun
et al., 2002; Jiang et al., 2015; Osman et al., 2019; Ye et al., 2020).

MECHANISM AND CONTROL OF TYPE-1
OSA

Although no obvious or artificial stimulation is applied on OSA-
oocytes, substantial subtle changes could happen during oocyte

collection and in vitro culture. Among all factors, exposure
to cold and prolonged retention in the oviduct after animal
sacrifice can significantly increase rat OSA (Keefer and Schuetz,
1982; Zernicka-Goetz, 1991; Kito et al., 2010). Another widely
recognized factor is postovulatory aging, which has been shown
in rat (Ben-Yosef et al., 1995; Chaube et al., 2007; Cui et al.,
2012), golden hamster (Sun et al., 2002; Jiang et al., 2015),
and human (Santos et al., 2003) to facilitate OSA (Table 1).
Same as other vertebrates, the two most critical kinases of
cytostatic factor (CSF), maturation-promoting factor (MPF), and
mitogen-activated protein kinase (MAPK), are also involved in
OSA (Tiwari et al., 2018). Previous studies revealed that rat
oocytes carry only 40% MPF kinase activity of that in mouse
oocytes (Ito et al., 2005), which could explain the susceptibility
of rat oocytes to OSA, although variation in MPF activity has
been detected among different rat strains (Hirabayashi et al.,
2003; Ross et al., 2006; Sterthaus et al., 2009). As a master
regulator of microtubule organization and spindle assembly
during oocyte meiosis, MAPK, the other pivotal CSF, has also
been studied in rat OSA. Different from sperm or chemical-
induced oocyte activation where high MAPK activity still
lasts several hours after the stimulation (Fan and Sun, 2004),
rat OSA exhibits a quick decrease in both Mos and MAPK
kinase (MEK)/MAPK (Ito et al., 2007; Table 1), which could
explain the reason underlying the disintegrated microtubules
and failure of 2nd PB extrusion during OSA in some rat
strains (Cui et al., 2012; Prasad et al., 2015). Regarding the
mechanism of re-entering the so-called M-III arrest after OSA,
a plausible scenario is that defects in attachment of kinetochores
and/or spindle assembly caused by premature MAPK decline
could activate the spindle assembly checkpoint (SAC) proteins,
which then mobilize cyclin B protein and actuate MPF activity
(Cui et al., 2012).

Similar to sperm and chemical-induced mammalian oocyte
activation (Miao and Williams, 2012; Parrington et al., 2019),
Ca2+ and calmodulin-dependent protein kinase II (CaMKII)
are also involved in OSA attributing to MPF inactivation and
probably a premature decline in Mos/MEK/MAPK (Ito et al.,
2006; Ito et al., 2007; Yoo and Smith, 2007; Table 1). It is
noteworthy that increase of intracellular free Ca2+ [(Ca2+)i]
during OSA is insufficient (Cui et al., 2012; Premkumar and
Chaube, 2013) compared with the pattern caused by sperm
or chemical, which could explain why OSA is incomplete and
abortive that cannot force oocytes into interphase to form
pronucleus. To block increase of (Ca2+)i and its cascade during
OSA, Ca2+-free medium (Hayes et al., 2001; Sun et al., 2002;
Premkumar and Chaube, 2013), Ca2+ chelator (Ito et al.,
2007), multiple Ca2+ channel blockers (Chaube et al., 2007;
Yoo and Smith, 2007), and CaMKII inhibitors (Ito et al.,
2006; Yoo and Smith, 2007) have been applied (Table 1), but
these methods cannot fully block OSA or can cause obvious
side effects [reviewed in Chebotareva et al. (2011)]. A novel
physiological method focusing on sodium/calcium exchanger-
mediated Ca2+ efflux has been demonstrated effective to block
OSA, but this method cannot override the stimulation caused
by enucleation during somatic cell nuclear transfer (SCNT)
(Cui et al., 2013). To inhibit cyclin-B degradation and MPF
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FIGURE 1 | Two types of OSA and representative animal models exhibiting OSA phenotypes. (A) In type-1 OSA, ovulated mature oocytes can maintain MII arrest
in vivo; however, once collected out without any obvious or artificial stimulation, oocytes undergo OSA. In hamster and some human IVF cases, OSA-oocytes can
extrude 2nd PB and reach interphase with visible pronucleus. In rat, OSA-oocytes either extrude 2nd PB or not, depending on the oocyte postovulatory age, rat
strain, external environment, and microtubule integrity. When OSA is finished, rat OSA-oocytes reach M-III arrest, with chromatids scattered around but no
pronucleus formation. Once re-activated, those scattered chromatids will form multiple pronuclei (MPN), which may recapitulate certain MPN and aneuploidy cases
observed in human fertility clinics. Notably, due to the nature of IVF lab protocol, only the consequence (3PN or MPN) has been reported, but information about the
process prior to MPN formation was not available. We speculate that certain cases of human 3PN and MPN, especially after ICSI, are due to OSA. (B) In certain

(Continued)
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FIGURE 1 | Continued
mouse strains, such as LT/Sv, some oocytes that have completed the first meiotic division can undergo type-2 OSA. Intrafollicular development of these parthenotes
can cause ovarian teratomas (occasionally to teratocarcinomas). Similar phenotypes have also been reported in human and dromedary camel. (C) Mos– oocytes
frequently produce large 1st PBs due to the failure of metaphase spindle movement. Ovulated MII oocytes undergo OSA to extrude 2nd PB and reach M-III, followed
by pronucleus formation and cell divisions. Unovulated OSA-oocytes can initiate intrafollicular development to form ovarian teratomas. (D) Soon after ovulation,
Erk1/2– oocytes undergo OSA and exit MII arrest with 2nd PB extruded spontaneously, reaching M-III stage but not into interphase. After fertilization, male
pronucleus formation shows severe defects. (E) Scarb1 knockout causes excess cholesterol deposition in oocytes, which does not affect oocyte maturation
significantly. However, excess cholesterol in MII oocytes can induce an elevation of (Ca2+)i, leading to OSA and extrusion of 2nd PB to M-III after ovulation.
Furthermore, this cholesterol-induced OSA can result in a further round of meiosis with extrusion of 3rd PB. (F) Btg4 knockdown immature GV oocytes under live
imaging can resume meiosis and reach MII. BTG4 deficiency causes a global delay in maternal mRNA degradation, and excess polyadenylated mRNA would
occupy the translational machinery, which then leads to an insufficient capacity of the oocyte to translate the mRNAs that are essential for MII arrest, leading to OSA
and reaching M-III. MI, metaphase of the first meiosis; MII, metaphase of the second meiosis; A/T, anaphase/telophase; PB, polar body; GV, germinal vesicle; GVBD,
GV breakdown; KD, knockdown. For clarity, only four of 40 chromatids at MII are illustrated.

TABLE 1 | Factors that are involved in type-1 OSA.

Factor Effect and how to control References

Temperature Avoid temperature change during oocyte collection from
oviduct to medium

Zernicka-Goetz, 1991; Kito et al., 2010

Time interval between animal euthanasia
and oocyte collection

Shorten the time interval and do animal sacrifice and oocyte
collection one by one instead of a batch

Keefer and Schuetz, 1982; Kito et al., 2010

Oocyte postovulatory age Avoid oocyte postovulatory aging in vivo Ben-Yosef et al., 1995; Sun et al., 2002; Santos
et al., 2003

Initial MPF level Rat oocytes carry only 40% MPF kinase activity of that in
mouse oocytes

Ito et al., 2005

Timing of MAPK decline Rat OSA exhibits a quick decrease in both Mos and MAPK
kinase (MEK)/MAPK

Ito et al., 2007

Spindle assembly checkpoint (SAC) Premature MAPK decline disintegrates microtubules and
activates the SAC proteins, which then mobilize cyclin-B protein
and bring oocytes to M-III

Cui et al., 2012

Ca2+ and calmodulin-dependent protein
kinase II (CaMKII)

Ca2+ and CaMKII cascade contribute to MPF inactivation and
premature MAPK decline. Ca2+-free medium, Ca2+ chelator,
Ca2+ channel blockers, NCX1 activator, and CaMKII inhibitors
have been applied, but these methods cannot fully block OSA
or can cause obvious side effects

Hayes et al., 2001; Sun et al., 2002; Ito et al., 2006;
Chaube et al., 2007; Ito et al., 2007; Yoo and
Smith, 2007; Cui et al., 2013

Cyclin-B degradation during OSA To inhibit cyclin-B degradation and MPF inactivation,
proteasome inhibitor MG132 was widely applied, but caution
should be exercised due to its profound side effects

Zhou et al., 2003; Ito et al., 2007; Popova et al.,
2009; Mizumoto et al., 2010; Cui et al., 2013

Rat strains Different rat strains exhibit different MPF activities and distinct
susceptibility to OSA

Hirabayashi et al., 2003; Ross et al., 2006;
Sterthaus et al., 2009

Other factors Nitric oxide, cyclin-dependent kinase 1, ubiquitin-proteasome
pathway, and reactive oxygen species.

Tan et al., 2005; Premkumar and Chaube, 2015;
Prasad and Chaube, 2016; Prasad et al., 2016a,b;
Premkumar and Chaube, 2016

inactivation, proteasome inhibitor MG132 was also widely
applied (Zhou et al., 2003; Ito et al., 2007; Popova et al.,
2009; Sterthaus et al., 2009; Mizumoto et al., 2010; Cui et al.,
2013), but caution should be exercised due to its profound side
effects [reviewed in Chebotareva et al. (2011)]. Furthermore,
other factors have also been evaluated to better elucidate type-1
OSA, such as intracellular nitric oxide (Premkumar and Chaube,
2015; Prasad and Chaube, 2016), cyclin-dependent kinase 1
(Prasad et al., 2016a,b), ubiquitin-proteasome pathway (Tan et al.,
2005), and reactive oxygen species (Premkumar and Chaube,
2016). To summarize, although more factors and pathways
involved in type-1 OSA are emerging (Table 1), the nature of
trigger and the best way to prevent the onset of OSA are still
unclear. With advancement in rat and hamster genome editing

especially under CRISPR/Cas9 system (Meek et al., 2017; Li
et al., 2018), we hope a clear picture of type-1 OSA could
be achieved soon.

“CONFUSING” TERMS

Given the theme of this mini-review and the following content
(type-2 OSA) to discuss, it seems helpful to clarify some
“confusing” terms here.

Spontaneous Meiotic Resumption
Once mammalian oocytes are separated from the antral follicles
and cultured under appropriate conditions, they can resume
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meiosis spontaneously from the diplotene stage of the first
meiotic prophase to MII, which is also called spontaneous
maturation (Liang et al., 2007; Pan and Li, 2019).

Spontaneous Ovulation
Most mammals including women display a continuous cycling
of reproductive hormones with ovulation occurring at regular
intervals, which is different from those induced ovulators (e.g.,
rabbits, cats, and camelids) that copulation is responsible for
hormone regulation and ovulation (Ratto et al., 2019).

Postovulatory Oocyte Aging vs. OSA
Normally, mature oocytes can maintain MII arrest for a certain
period in vivo or in vitro. If fertilization does not occur, oocytes
undergo postovulatory oocyte aging, and too “aged” oocytes
may GRADUALLY exit MII arrest with some initiating OSA
(Pickering et al., 1988; Xu et al., 1997; Gordo et al., 2002; Miao
et al., 2009). In short, long-time postovulatory oocyte aging
may facilitate OSA both in vivo and in vitro, but OSA can also
occur in very “young and fresh” oocytes, and OSA process is
relatively much faster and uncontrollable (discussed in section
“First Type Of OSA”).

TYPE-2 OSA AND MECHANISM

Although oocytes spend majority of their life in the ovary and
follicles, to become an embryo, it has to be ovulated from the
follicle into oviduct for fertilization with sperm. However, OSA-
induced embryogenesis is an exception. The second type of
OSA (Figure 1B) occurs in ovarian oocytes within the follicles
and it can initiate intrafollicular development to a certain stage.
For example, in LT/Sv mice, a substantial portion of oocytes
that have completed the first meiotic division can undergo
OSA (Eppig et al., 1977). Although these ovarian OSA-embryos
resemble normal until the blastocyst or even primitive streak
stage, later on, most of them become disorganized and form
ovarian teratomas (Stevens and Varnum, 1974). Usually, these
teratomas are benign, but occasionally, they grow progressively
and are malignant, containing multiple types of tissue and
proliferating pluripotent stem cells (embryonal carcinoma cells
that are called teratocarcinomas) (Stevens, 1980). Notably, these
phenotypes were also reported in humans, including ovarian
zygotes (Combelles et al., 2011), two-cell embryo (Padilla et al.,
1987), four-cell embryo (Oliveira et al., 2004), and teratomas
(Linder et al., 1975). To clarify, the existence of nuclei had been
confirmed in all blastomeres of the above-mentioned human
ovarian OSA-embryos, ruling out the possibly of cytoplasmic
fragmentation, which is a relatively common phenomenon in
aged unfertilized oocytes or during human preimplantation
development (Alikani et al., 1999; Lord and Aitken, 2013).

In addition to spontaneous ovulators, type-2 OSA and ovarian
teratoma have also been detected in induced ovulators, such
as dromedary camel (Camelus dromedarius) (Mesbah et al.,
2002, 2004). Similarly, OSA-oocytes can initiate intrafollicular
development to blastocyst stage with clear inner cell mass
and trophectoderm (Abdoon et al., 2007, 2020), suggesting

the occurrence of the first cell lineage specification in these
parthenotes (Cui and Mager, 2018; Ho et al., 2019). Although
the underlying molecular mechanism that causes type-2 OSA
is not fully understood yet, current knowledge from mouse
models suggests that type-2 OSA and teratoma formation
are multigenic traits (Eppig et al., 1996), involving genetic
background (Lee et al., 1997; Ciemerych and Kubiak, 1998;
Cheng et al., 2012; Abdoon et al., 2020), cytoskeletal arrangement
and SAC (Albertini and Eppig, 1995; Maciejewska et al., 2009),
companion somatic cells (Eppig et al., 2000), AMPK signaling
(Downs et al., 2010; Ya and Downs, 2013), and hormonal
regulation (Speirs and Kaufman, 1988).

GENETIC MODELS DISPLAYING OSA
PHENOTYPES

With success in embryonic stem cell (ESC)-mediated gene
targeting and CRISPR/Cas9-mediated genome editing,
more engineered animal models have been generated
for studying mammalian oocyte meiosis. Here, we briefly
review some examples.

Mos knockout female mice can produce MII oocytes; however,
these oocytes cannot arrest at MII stage (Figure 1C). For
those ovulated MII oocytes, they will spontaneously extrude
2nd PB and reach M-III, followed by pronucleus formation
and cell divisions. Meanwhile, unovulated OSA-oocytes can
initiate intrafollicular development, which then causes ovarian
teratomas (Colledge et al., 1994; Hashimoto et al., 1994; Araki
et al., 1996). In addition, Mos– oocytes frequently produce large
first polar bodies (1st PBs) due to the failure of metaphase
spindle movement (Choi et al., 1996; Verlhac et al., 1996).
Given the phenotypes detected from the knockout mice, these
models are valuable for studying human ovarian pathology
and teratogenesis.

Although MOS/MEK/ERK cascade has been relatively well
studied in oocyte meiosis, the explicit role of extracellular signal-
regulated kinase (ERK) in vivo was not clear. Through the
knockout of both Erk1 and Erk2 in mouse oocytes (Figure 1D),
data indicates that Erk1/2– oocytes exit MII arrest and extrude
2nd PB spontaneously, reaching M-III stage. Different from
Mos– oocytes, Erk1/2– MII oocytes do not exhibit large 1st
PBs, and subsequent M-III oocytes display low frequency of
pronucleus formation, explaining why ovarian teratomas were
not detected in the females. Interestingly, ERK1/2 deletion also
severely prevents male pronucleus formation after fertilization
(Zhang et al., 2015), representing another major contributing
cause of female infertility.

Female fertility can be affected by many factors, including diet
and nutrient metabolism. Two recent studies using genetically
modified mice revealed that maintenance of cholesterol within a
physiological range during oocyte development and maturation
is essential for female fertility. Excess cholesterol deposition in
MII oocytes can induce an elevation of (Ca2+)i, which then
triggers reduction in both MPF and MAPK, leading to OSA and
extrusion of 2nd PB to M-III (Figure 1E). Different from all the
above-mentioned OSAs, this cholesterol-induced OSA can result
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in multiple cell cycles, including execution of the third meiosis
with extrusion of 3rd PB (Yesilaltay et al., 2014; Quiroz et al.,
2020), which was found in partially activated oocytes (Kubiak,
1989). Importantly, this excess-cholesterol-induced OSA can
be reversed both in vivo and in vitro (Yesilaltay et al., 2014;
Quiroz et al., 2020), highlighting the possibility that cholesterol
metabolism may underlie some woman infertility of unknown
etiology and this could be cured with appropriate treatments.

In mammals, oocyte meiotic maturation not only produces
a haploid gamete but also initiates maternal mRNA transition
from stable to unstable (Wu and Dean, 2016; Sha et al.,
2019), serving as a prolog to maternal-zygotic transition (MZT)
which involves maternal mRNA destabilization and degradation.
Recently, three laboratories independently identified BTG4 as a
key mediator that links mRNA decay machinery and meiotic
cell cycle progression, and loss of BTG4 causes a global delay
in maternal mRNA degradation (Liu et al., 2016; Pasternak
et al., 2016; Yu et al., 2016). In addition, BTG4 was also
identified as essential for MII arrest (Figure 1F), because excess
polyadenylated mRNA caused by Btg4 knockdown could occupy
the translational machinery, which then leads to an insufficient
capacity of the oocyte to translate the mRNAs that are essential
for MII arrest (e.g., mRNAs encoding EMI2), and all of this finally
resulted in OSA to M-III (Pasternak et al., 2016). Interestingly,
this OSA phenotype was not detected in knockout models, which
could be due to the environment (in vitro live imaging vs. in vivo)
and/or methodologies (difference in genetic compensation and
specificity between knockdown and knockout).

DISCUSSION

We reviewed two types of OSA and representative animal
models exhibiting OSA phenotypes due to genetic defects.
Regarding type-1 OSA (in vivo to in vitro), we propose that more
caution should be exercised during assisted human reproduction,
as many steps could trigger OSA, such as oocyte retrieval
(Muechler et al., 1989), cryopreservation (Gook et al., 1995),
and intracytoplasmic sperm injection (ICSI) (Sultan et al., 1995).
Furthermore, as learned from rat OSA, certain OSA-oocytes
could show minimal morphological signs (e.g., sister chromatids
separated or even scattered in cytoplasm but without 2nd PB
or pronucleus formation). Therefore, we propose OSA should
be considered for those unexplained abnormal fertilization with
repeated triploid pronuclei (3PN) (Grigoryan et al., 2019) or even
more pronuclei (e.g., up to 8PN) (Dai et al., 2017) after ICSI.
Other lessons we can learn from animal models and issues that
should be addressed are as follows: (1) time interval between
oocyte pickup and IVF/ICSI. Currently, there is no consensus
among clinics about this interval, and 2–6 h are widely accepted
for a better cytoplasmic maturity but without aging (Van de
Velde et al., 1998; Garor et al., 2015). This routine interval seems
fine for most patients; however, for those that cannot achieve
pregnancy after multiple cycles and especially with repeated 3PN
or MPN, this interval probably needs to be avoided as OSA
could be the reason that is much faster than natural aging. (2)
Make everything ready for a rapid ICSI. For oocytes that are

susceptible to OSA (Dozortsev et al., 1998; Morishita et al., 2019),
all things should be well prepared before oocyte retrieval; right
after which, a careful and rapid oocyte denudation and ICSI
should follow to mitigate OSA-induced abnormal fertilization
and possible aneuploidy.

A substantial number of patients cannot achieve successful
pregnancy after multiple IVF cycles, and it is generally believed
that genetic defects underlie many of these unrecognized
pathologies (Conti and Franciosi, 2018; Cui, 2020). Dissecting
the association between genetic variants and human OSA is
challenging because the etiology is highly heterogeneous and
patients have different genetic predispositions and epigenetic
modifications (Marshall and Rivera, 2018; Ou et al., 2019),
ages and lifestyles (Qiao et al., 2014; Grondahl et al., 2017),
and exposures to diverse environments and pollutants (Peretz
et al., 2014). To gain a better understanding of human oocyte
meiosis and idiopathic infertility, animal models have been
generated to define key factors and pathways involved in meiotic
cell cycle regulation. Although more than 400 mutant mouse
models with reproductive phenotypes have been established
(Matzuk and Lamb, 2008), many genes and pathways regulating
oocyte meiosis and OSA are still not fully delineated due to
insufficient models and possible limitations when translating
the information from mice to humans. With more mouse
models being generated by the Knockout Mouse Program and
the International Mouse Phenotyping Consortium1 and recent
application of CRISPR/Cas9 in other species that can bypass
barriers of ESCs and SCNT, we believe more essential genes
will be screened out and more appropriate animal models
(e.g., point mutation by knock-in) will be generated. We hope,
with more precise animal models available, more sophisticated
clinical protocols (Sachs et al., 2000; Socolov et al., 2015), faster
genetic tests in clinics, more advanced assisted reproductive
technologies (Smith and Takayama, 2017; Belli et al., 2019;
Hawkins et al., 2021), and genetic diagnosis in preimplantation
embryos, we will fully understand the underpinnings of human
OSA, an overlooked meiotic instability problem that requires
global attention (Premkumar et al., 2020).
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