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Heatmap analysis for artificial intelligence explainability in diabetic 
retinopathy detection: illuminating the rationale of deep learning 
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Background: The opaqueness of artificial intelligence (AI) algorithms decision processes limit their 
application in healthcare. Our objective was to explore discrepancies in heatmaps originated from slightly 
different retinal images from the same eyes of individuals with diabetes, to gain insights into the deep 
learning (DL) decision process.
Methods: Pairs of retinal images from the same eyes of individuals with diabetes, composed of images 
obtained before and after pupil dilation, underwent automatic analysis by a convolutional neural network for 
the presence of diabetic retinopathy (DR), output being a score ranging from 0 to 1. Gradient-based Class 
Activation Maps (GradCam) allowed visualization of activated areas. Pairs of images with discordant DL 
scores or outputs within the pair were objectively compared to the concordant pairs, regarding the sum of 
activations of Class Activation Mapping (CAM), the number of activated areas, and DL score differences. 
Heatmaps of discordant pairs were also qualitatively assessed.
Results: Algorithmic performance for the detection of DR attained 89.8% sensitivity, 96.3% specificity and 
area under the receiver operating characteristic (ROC) curve of 0.95. Out of 210 comparable pairs of images, 
20 eyes and 10 eyes were considered discordant according to DL score difference and regarding DL output, 
respectively. Comparison of concordant versus discordant groups showed statistically significant differences 
for all objective variables. Qualitative analysis pointed to subtle differences in image quality within discordant 
pairs.
Conclusions: The successfully established relationship among objective parameters extracted from 
heatmaps and DL output discrepancies reinforces the role of heatmaps for DL explainability, fostering 
acceptance of DL systems for clinical use.
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Introduction

Artificial intelligence (AI) has recently gained public 
prominence with the advent of deep learning (DL) models, 
which correspond to computational models with multiple 
processing layers that learn representations of data with 
multiple levels of abstraction (1). Such models have shown 
promising performance in areas such as image and speech 
recognition, as well as natural language processing (2-4). In 
medicine, one of the areas with notable advances involving 
AI is the screening of diabetic retinopathy (DR), a leading 
cause of vision impairment and blindness worldwide. 
Despite the efficacy of screening programs, aimed at early 
DR detection, and mostly based on the analysis of fundus 
photographs, their widespread implementation faces several 
challenges; many established screening systems rely on 
human graders, a costly and limited resource (5-8). DL 
algorithms have emerged as a promising solution, offering 
diagnostic performance for the detection of DR comparable 
to experts and the potential to scale up screening programs 
efficiently (7,9). AI-assisted DR screening has been 
considered a successful and cost-effective strategy for 
the increasing demand brought by the growing global 
prevalence of diabetes (8).

However, implementation of AI in healthcare also faces 
significant challenges, including ethical, technical, and 
human-centered considerations; one of such challenges is 
related to explainability, or the ability to summarize the 
reason for an AI behavior (10,11). Transparency in DL 
decisions is fundamental for building trust, as it allows 
stakeholders to gain familiarity with AI decision processes; 

explainability is also an important consideration when 
clearing autonomous diagnostic AI products (5). However, 
due to the nature of DL itself, the estimated function 
relating inputs to outputs is not understandable at an 
ordinary human comprehension level, due to the large 
number of parameters, their complex combinations, or their 
nonlinear transformations, among other causes (12). Such 
opaqueness, also referred to as the “black box” nature of DL 
algorithms, limits their application in health care (12-15). 

To address the challenge of opaqueness and contribute 
to the explainability of DL systems, techniques such as 
the Gradient-based Class Activation Map (GradCam) 
have emerged. The GradCam is a class-discriminative 
localization technique which generates visual explanations 
for convolutional neural networks, allowing a visual display 
of a DL system output while unveiling the most important 
regions within an image that contribute to the algorithm 
decision-making process (8,16). By providing clinicians 
with visualizations which are aligned with their expertise, 
it is assumed that they will more likely trust DL systems 
and eventually adopt them (5). Since convolutional layers 
retain spatial information, which is lost in fully connected 
layers, the last convolution layers are expected to have the 
best compromise between high-level semantics and detailed 
spatial information; in that sense, values obtained on the last 
convolutional layer are employed in GradCam to generate a 
heatmap which highlights the most important discriminatory 
regions (8,16). Heatmaps may be visualized as color maps 
which may be superimposed on retinal photographs. 

Recently, we collected a dataset of retinal images from 
individuals with diabetes from three Brazilian centers: 
the Department of Ophthalmology and Visual Sciences 
and the Diabetes Center, both at the Federal University 
of Sao Paulo (Sao Paulo State), and also from Hospital 
de Olhos de Sergipe, in Aracaju (Sergipe State); fundus 
images were obtained before and after pupil dilation and 
underwent further analysis with a DL system. In some 
cases, DL outputs were different for images of the same 
eye, obtained under slightly different conditions (before and 
after mydriasis). We believed that, in trying to understand 
why the different outcomes were produced, we had an 
opportunity to gain insights into the DL decision process, 
since a system should ordinarily generate similar outputs for 
similar inputs (12).

Thus, our objective was to explore qualitative and 
quantitative discrepancies in GradCam visualization 
heatmaps between pairs of retinal images from the same 
eyes, obtained under varying conditions, from a dataset 
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composed of fundus images of individuals with diabetes, to 
gain insights into the DL decision process.

Methods

This retrospective study evaluated a dataset of retinal fundus 
photographs, consisting of images from 327 patients with 
diabetes. Each image was composed of 1,600 × 1,600 pixels 
and was captured using a portable retinal imaging device 
(Eyer, Phelcom LLC, Boston, MA, USA). Ethical approval 
for data collection was obtained from the Institutional 
Research Ethics Committee of the Federal University of 
Sao Paulo (No. 33,842,220.7.1001.5505) and informed 
consent was obtained from all individual participants, 
adhering to the tenets of the Declaration of Helsinki (as 
revised in 2013). All participating institutions were informed 
and agreed on the study.

The database had the following frequencies according 
to DR severity, in the patient-level classification: 44% had 
no retinopathy, 26.47% had non-proliferative DR, and had 
29.31% proliferative DR. All images were anonymized, 
de-identified, and reviewed to ensure the removal of any 
personal health information. Written informed consent 
was obtained from all participants prior to data collection. 
The details of the dataset and of the sample are described 
elsewhere. Briefly, patients had a mean age of 57 years 
(standard deviation 16.82, range, 9–90 years) and 45.3% were 
men. Race distribution was as follows: 40.7% mixed, 32.7% 
White, 21.4% Black, 3% Asian and 1% Indigenous (17).

The present study was based on the analyses of pairs of 
images from the same eye. Each pair was composed of a 
macula-centered image obtained without pharmacological 
mydriasis and the respective image acquired after pupil 
dilation. In order for each pair to be analyzed, both non-
mydriatic and mydriatic images had to be deemed gradable 
as per the expert evaluation (17). Moreover, we included only 
pairs composed of comparable images, determined through 
expert evaluation for coincidental framing and the presence 
of noise and artifacts in the images, such as shadows, over, or 
underexposure. Pairs with framing differences that omitted 
a significant part of the image or had shadows or artifacts 
hindering comparison were excluded. 

Automated detection of DR 

We employed a DL system which performs image 
identification into classes, the Diabetic Retinopathy 
Alteration Score (DRAS), which utilizes a modified version 

of the EfficientNetV2S convolutional neural network, with 
distinct input and output parameters, while maintaining 
the same intermediate convolutional layers. Input was 
modified to receive images of size 599 × 599 × 3 red, green 
and blue (RGB) channels. Additionally, the last three layers 
were dropped, and new layers of convolutional, batch 
normalization, activation, global average pooling, dense, 
and output layers were added. The DL system training 
process allowed its internal parameters to be progressively 
adjusted to obtain an output from the last layer that 
closely aligns with the corresponding image class. For 
training purposes, transfer learning was employed using 
the EyePACS dataset along with an internal Phelcom 
dataset comprising 17,330 DR images captured exclusively 
using the Eyer device (resolution 1,600 × 1,600 × 3 RGB). 
For validation purposes, 30% of these images were used 
to periodically evaluate the performance of the network. 
To add more diversity, data augmentation was applied to 
images, with rotation, width and height shift, zoom, and 
brightness values randomly applied. Ground truth data 
relied on DR severity level classification determined by 
expert reading, performed independently by two masked, 
certified ophthalmologists, with a third senior retinal 
specialist adjudicating in discordant cases (17). 

DL analysis was conducted for all  images from 
comparable pairs, both non-mydriatic and mydriatic. The 
output was represented numerically, indicating the absence 
or presence of DR, with scores ranging from 0 (absence) to 
1 (presence) for each image. 

Explainability analysis

We separated all pairs of comparable images into two 
categories—concordant pairs and discordant pairs—
according to the following parameters: DL score (ranging 0 
to 1) and DL output (DR presence or absence). Regarding 
DL score, we arbitrarily chose a score difference of 0.1 as 
the threshold: pairs were considered “discordant” if the 
absolute score difference among images within a given 
pair exceeded 0.1. We named the classification according 
to DL score difference as “Scenario A”. Regarding DL 
output (presence or absence of DR), pairs in which the 
output diverged among corresponding images—i.e., the 
output for non-mydriatic images was different from the 
respective output of the same eye for the mydriatic image—
were considered “discordant”. We named the classification 
according to DL output divergence as “Scenario B”.

For objective comparison among concordant and 
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discordant pairs, grayscale heatmaps were automatically 
generated for each image (Figure 1). Heatmap images 
were divided into 10,000 segments (areas), each pixel 
within a segment receiving the average score value of 
the entire segment (ranging 0 to 1); the resulting images 
were normalized. Two variables were extracted from 
grayscale heatmaps for objective comparison: (I) the 
sum of activations of Class Activation Mapping (CAM), 
corresponding to the summation of every activated pixel in 
the grayscale heatmap (18); and (II) the number of activated 
areas, corresponding to the numerical sum of all areas with 
an average value greater than 0, corresponding to all areas 
of heatmap activation. 

Then, we performed the subtraction of these objective 
variables for each pair, considering the individual values 
of images within the pair, in order to obtain (I) the sum of 
activations difference, corresponding to the mydriatic sum 
of activations minus the non-mydriatic sum of activations; 
and (II) the number of activated areas difference, 
corresponding to the mydriatic number of activated areas 
minus the non-mydriatic number of activated areas. In 
addition, we calculated the DL score differences among 
images from each pair, by performing the subtraction of the 
mydriatic image DL score minus the non-mydriatic image 
DL score, as seen in Eq. [1].

differences mydriatic non-mydriaticDL score DL score DL score= −
 
 [1]

This latter calculation was performed only for Scenario 
B since, by definition, concordant and discordant pairs from 
Scenario B should necessarily differ regarding DL score. 
Since our intention was to measure the absolute difference 

between the parameters of each image within the pairs, 
absolute results of the subtractions were considered for the 
comparisons. After obtaining the absolute differences for 
the above-mentioned parameters, we performed a statistical 
analysis to determine if concordant pairs were different 
from discordant pairs according to those parameters. 

In addition to the objective comparisons, we also 
performed a qualitative sub-analysis of heatmaps differences 
for each image within the discordant pairs. A retina specialist 
examined whether heatmap-highlighted regions coincided 
in both images of each given pair, and also identified the 
heatmap-highlighted areas on the respective raw images, to 
ascertain if heatmaps accurately corresponded to regions with 
DR lesions (Figure 1). Due to the potential of bias related 
to subjective evaluation, such qualitative comparison was 
performed only for discordant pairs.

Statistical analysis

Data were compiled in MS Excel 2010 files (Microsoft 
Corporation, Redmond, WA, USA). Statistical analyses 
were performed using IBM SPSS Statistics for Windows, 
version 29 (IBM Corp.,  Armonk, NY, USA). The 
Kolmogorov-Smirnov and Shapiro-Wilk tests were used to 
check for normal distribution. The Mann-Whitney test was 
employed for comparison of variables among both groups. 
A significance level of 5% was applied for all analyses.

Results

After excluding ungradable images, we obtained 351 pairs of 

Figure 1 Fundus image showing signs of diabetic retinopathy, with the respective color heatmap and grayscale heatmap. (A) Raw image depicting 
microaneurysms, hard exudates and retinal hemorrhages; (B) color heatmap combined with raw image; (C) grayscale heatmap. The parameters 
for this mydriatic image are as follows: sum of activations =133,812,700; number of activated areas =14,653; deep learning score =1.0.

A B C
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images (351 eyes); algorithmic performance for DR detection 
at the image level was as follows: sensitivity 89.78%, 
specificity 96.26%, area under the receiver operating 
characteristic (ROC) curve 0.952, for mydriatic images. 

Out of those 351 pairs of images, 210 pairs (420 images) 
were considered comparable, after qualitative assessment 
by a retinal specialist (F.K.M.) who determined which pairs 
had images with equivalent framing and/or coincident areas 
of relevance, not compromised by shadows or artifacts 
that would preclude comparison with the respective image 
within the pair. 

Discordant pairs analysis 

In Scenario A, a total of 20 (out of 210) eyes showed a DL 
score difference greater than 0.1 among scores of non-

mydriatic and mydriatic images. The comparison of those 
20 discordant pairs versus the remaining 190 pairs was 
performed regarding the sum of activations and the number 
of activated areas; averages were compared among groups. 
For both variables tested, differences were statistically 
significant: the sum of activations (P<0.001) and the number 
of activated areas (P<0.001). The differences in the analyzed 
variables for discordant cases in Scenario A are displayed in 
Table 1; no linear relationship was found among the values 
of different parameters for each case.

In Scenario B, a total of 10 (out of 210) eyes showed 
different DL outputs considering non-mydriatic and mydriatic 
images within the same pair. The comparison of those 10 
discordant pairs versus the remaining 200 pairs was performed 
regarding the sum of activations, the number of activated 
areas and the DL score; averages were compared between 
groups. For all variables tested, groups were significantly 
different: the DL score (P<0.001), the sum of activations 
(P<0.001) and the number of activated areas (P=0.005). The 
differences in the analyzed variables for discordant cases in 
Scenario B are displayed in Table 2; no linear relationship was 
found among the values of different parameters for each case; 
DL output difference occurred even in cases where DL score 
differences were smaller than 0.1.

Qualitative sub-analysis

In all discordant cases, qualitative expert analysis pointed 

Table 1 Discordant pairs in Scenario A (absolute values)

Patient 
identification

Laterality
Difference 
of sums of 
activations

Difference of 
number of 

activated areas

Score 
difference

20 RE 11,546,300 3,398 0.43

20 LE 2,778,800 305 0.29

40 RE 6,366,200 1,370 0.21

67 LE 5,556,200 1,094 0.12

70 LE 4,607,800 64 0.62

75 RE 15,403,500 2,368 0.41

111 RE 8,998,400 977 0.37

132 RE 5,973,200 1,055 0.5

136 RE 1,321,400 1,087 0.19

168 RE 10,836,200 2,077 0.65

209 RE 13,947,400 5,074 0.34

224 LE 23,224,300 4,108 0.81

226 RE 9,814,400 1,247 0.37

226 LE 11,049,800 4,094 0.88

229 LE 13,937,200 2,142 0.43

282 RE 13,572,000 1,891 0.67

298 LE 10,181,900 1,627 0.87

300 LE 6,852,400 667 0.12

305 RE 15,929,400 2,332 0.92

321 RE 11,916,200 3,968 0.85

RE, right eye; LE, left eye.

Table 2 Discordant pairs in Scenario B (absolute values)

Patient 
identification

Laterality
Difference 
of sums of 
activations

Difference of 
number of 

activated areas

Score 
difference

74 RE 8,064,500 237 0.01

75 RE 15,403,500 2,368 0.41

111 RE 8,998,400 977 0.37

209 RE 13,947,400 5,074 0.34

224 RE 1,622,100 539 0.04

224 LE 23,224,300 4,108 0.81

229 LE 13,937,200 2,142 0.43

300 RE 16,917,600 2,069 0.08

300 LE 6,852,400 667 0.12

321 RE 11,916,200 3,968 0.85

RE, right eye; LE, left eye.
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to subtle differences in image quality within each pair, 
related to focus and image sharpness. Of note, all images 
were considered gradable as per the inclusion criteria. In 
addition, not every AI-highlighted area corresponded to a 
DR lesion in some images; that was the case in 15 images 
from Scenario A (out of a total of 40 images) and also in 
10 images from Scenario B (out of a total of 20 images). In 
some cases, there was no coincidence of highlighted areas 
in the respective images within a pair; that was observed in 
3 cases from Scenario A and 5 cases from Scenario B. Two 
discordant cases are displayed in Figures 2,3. 

Discussion 

Comparison among discordant and concordant groups, 
using objective variables extracted from heatmaps, pointed 
to significant differences among groups for both the sum 
of activations and the number of activated areas. Our 

findings point to the consistent role of GradCam heatmaps 
in explaining DL outputs, thus helping to shed light on the 
algorithmic decision process. Of note, the selected pairs 
corresponded to exceptions in a system with a considerably 
high performance: out of a sample of 210 eyes, in Scenario 
A we found only 20 discordant cases, while in Scenario B we 
found only 10 discordant cases. Figure 4 depicts an example 
of a concordant pair. We believe that subtle differences in 
image quality, likely related to image focus, sharpness, or 
illumination conditions, and sometimes corresponding to 
a few pixels, may have occurred in images obtained under 
slightly different conditions, resulting in different DL 
outputs in a small fraction of the studied dataset.

Understanding DL systems’ decisions is important for 
clinical decision support (14), as trust is often grounded 
in the system’s ability to generate consistent results (13). 
Explainability also fosters accountability and enhances 
physicians’ autonomy, enabling them to evaluate the decisions 

A

C

B

D

Figure 2 Example of a discordant pair of retinal images. (A) Non-mydriatic fundus image of the left eye of a patient with diabetic 
retinopathy. (B) Color heatmap combined with non-mydriatic image (deep learning score =0). (C) Mydriatic fundus image of the same eye. 
(D) Color heatmap combined with mydriatic image (deep learning score =0.43). This example displays a larger area of activation in the 
mydriatic image. In this case, the absolute numerical differences of parameters between non-mydriatic and mydriatic images were as follows: 
difference of sums of activations =13,937,200; difference of number of activated areas =2,142; score difference =0.43. Raw images depict 
microaneurysms, hard exudates and retinal hemorrhages.
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Figure 3 Example of a discordant pair of retinal images. (A) Non-mydriatic fundus image of the right eye of a patient with diabetic 
retinopathy. (B) Color heatmap combined with non-mydriatic image (deep learning score =0.85). (C) Mydriatic fundus image of the same 
eye. (D) Color heatmap combined with mydriatic image (deep learning score =0). This example displays a larger area of activation in the 
non-mydriatic image. In this case, the absolute numerical differences of parameters between non-mydriatic and mydriatic images were as 
follows: difference of sums of activations =11,916,200; difference of number of activated areas =3,968; score difference =0.85. Raw images 
depict microaneurysms, hard exudates and retinal hemorrhages.

A

C

B

D

merits (13,19). On the other hand, opaqueness of clinical 
support systems may limit capabilities of clinicians (19). 
Explainability also helps build trust, enabling the resolution 
of disagreements between AI systems and human experts, 
no matter on whose side the error in judgment is situated. 
Moreover, explainability allows clinicians to verify whether 
the system’s parameters are aligned with clinical perspectives, 
enhancing the adherence to medical standards (19). From 
the patient’s perspective, explainability may contribute as 
educational tools, promoting more accurate risk perceptions 
and motivating their engagement in shared decision-
making (19). Explainability may also assure developers 
about the fairness of AI models, allowing them to perceive if 
performance is based on meta-data rather than the data itself, 
and possibly allowing developers to identify such types of 
errors before the systems go into validation and certification 
processes, saving time and development costs (19). 

DL systems are not programmed into models that 

reflect the causal structure of the problem to be solved; 
instead, these systems learn from a large set of data: 
neurons activate when certain features are detected, and the 
system’s output assigns a probability of the outcome (13). 
However, the relationship between features and output 
can be indirect and, sometimes, fragile; saliency maps may 
point to which pixels or regions seem to play a role in the 
decision process without telling us precisely how (5,13). 
Even though proposed methods such as GradCam can help 
humans understand the decision process of DL systems, 
such methods will hardly render automated systems 
totally transparent, due to the very nature of DL systems: 
sometimes, even small permutations in seemingly unrelated 
aspects of data can lead to a significantly different weighting 
of features (13).

Although explainability in computer vision has largely 
relied on the identification of the regions of importance, 
techniques based on saliency maps are not the only methods 
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developed for gaining insight into the decision processes of 
such systems; GradCam methods even bear some criticism, 
with previous studies having found considerable disagreement 
between heatmap-highlighted regions and expert annotations 
(5,6,8,14,20). Since feature extraction occurs at deep layers 
of a DL system, where the image resolution is smaller 
than the original input resolution, it is possible that, when 
the information from a deep layer is projected back onto 
the input image, the granularity is decreased, resulting in 
coarse heatmaps (6). Other approaches for explainability 
include linear proxy models, decision trees, automatic rule-
extraction, adversarial examples techniques, presegmentation, 
segmentation, categorization of lesions, and pixel-level 
classification (5,6,11,14).

Recently, several publications have reported the 
performance of AI systems for DR evaluation using portable 

retinal cameras and yielding variable outcomes, including 
the detection of any DR, referable DR and sight-threatening 
DR (21-24): Lupidi and colleagues have reported a 96.8% 
sensitivity and 96.8% specificity for the detection of any DR, 
using the Optomed Aurora™ (Oulu, Finland) camera and 
the Selena+™ (Singapore) system; their sample consisted 
of 256 patients with diabetes, half of whom had DR (21). 
Ruan and colleagues have reported an 88.2% sensitivity and 
a 40.7% specificity in identifying referable forms of DR, 
using the Optomed Aurora™ camera and the Phoebus™ 
(Shanghai, China) AI system; their sample consisted of  
315 patients with diabetes, and the sample composition 
regarding DR classification was not informed (22). In the 
study by Rajalakshmi and colleagues, performed with the 
Remidio™ (Bangalore, India) camera and the EyeArt™ 
(Woodland Hills, USA) system, the AI software showed a 

Figure 4 Example of a concordant pair of retinal images. (A) Non-mydriatic fundus image of the right eye of a patient with diabetic 
retinopathy. (B) Color heatmap combined with non-mydriatic image. (C) Mydriatic fundus image of the same eye. (D) Color heatmap 
combined with mydriatic image. In this example, the differences in the areas of activation are minimal, as they highlight hard exudates, 
which are surrogate markers of diabetic macular edema, both in the non-mydriatic and mydriatic images. The deep learning score difference 
for this case was zero.

A

C

B

D
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95.8% sensitivity and 80.2% specificity for detecting any 
DR, as well as a 99.1% sensitivity and 80.4% specificity in 
detecting sight-threatening DR on a sample of 296 patients  
with diabetes, 65% of whom presenting DR (23). A 
prospective, multicenter study was conducted in a real-
world community DR screening in India and obtained a 
large dataset: from a pool of 60,633 retinal fundus images, 
a total of 29,656 images from 11,199 patients were eligible 
for the study authored by Nunez do Rio and colleagues (24).  
The images were captured with the Zeiss Visuscout™ 
(Jena, Germany) camera and analysed with the Zeiss 
VISUHEALTH-AI DR™ (Singapore) system for the 
detection of referable DR; a 72.08% sensitivity and 85.65% 
specificity were reached; the vast majority of patients (80.2%) 
was classified as non-referable, with only 3.8% referable and 
an ungradable rate of 16.0% (24). Possible reasons for the 
heterogeneity of performances are individual cameras’ and 
AI systems’ characteristics, different study designs, uneven 
sample sizes, and variable datasets composition. 

Among the present study’s strengths are the high 
performance of the DL system, which led to the rare 
discordant outputs; the robust dataset; and the established 
relationship between objective variables extracted from 
GradCam heatmaps and the differences among discordant 
and concordant groups, a finding which helped shed light 
onto the decision process of the DL system. As for the 
study limitations, since it was based only on the AI modality 
of image recognition, its results and conclusions are not 
applicable to other modalities of AI in healthcare, such as 
speech recognition and natural language processing. In 
addition, even though objective, the criterion for Scenario A 
was arbitrary. Another limitation is related to the qualitative 
sub-analysis, which may have been intrinsically biased due 
to subjectivity. 

Finally, we believe the very idea of explainability of DL 
systems comes with an intrinsic limitation: as good as any 
explainability method may be, we should always consider 
that human reasoning is different from artificial systems, 
and this reality is also reflected in the essential differences 
among human and computer visions. As we have seen in 
published studies, sometimes computer vision sees what 
no human can see, as in the example of DL systems that 
predicted the sex of the individual from retinal fundus 
photographs (25,26).

Conclusions

In conclusion, the analytical process involving objective 

variables extracted from heatmap analysis has provided 
valuable insights on the reasons for different outputs in 
discordant pairs, helping to provide glimpses into DL 
decisions. The successfully established relationship among 
those parameters and the output discrepancies reinforces the 
role of heatmaps in contributing to the explainability of DL 
systems. Future research should address other challenges 
for the deployment of AI in healthcare, in order to harness 
the full benefits of AI in health, as well as techniques to 
further increase the performance of image classification, 
such as test-time augmentation (27). Future research should 
also evaluate explainability of other AI modalities besides 
computer vision, such as speech recognition and natural 
language processing.
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