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Purpose: To evaluate different segmentation methods in analyzing Schlemm’s canal
(SC) and the trabecular meshwork (TM) in ultrasound biomicroscopy (UBM) images.

Methods: Twenty-six healthy volunteers were recruited. The intraocular pressure (IOP)
was measured while study subjects blew a trumpet. Images were obtained at different
IOPs by 50-MHz UBM. ImageJ software and three segmentation methods—K-means,
fuzzy C-means, and level set—were applied to segment the UBM images. The quanti-
tative analysis of the TM-SC region was based on the segmentation results. The relative
error and the interclass correlation coefficient (ICC) were used to quantify the accuracy
and the repeatability of measurements. Pearson correlation analysis was conducted to
evaluate the associations between the IOP and the TMandSCgeometricmeasurements.

Results: A total of 104 UBM images were obtained. Among them, 84 were adequately
clear to be segmented. The level-set method results had a higher similarity to ImageJ
results than the other two methods. The ICC values of the level-set method were 0.97,
0.95, 0.9, and 0.57, respectively. Pearson correlation coefficients for the IOP to the SC
area, SC perimeter, SC length, and TM width were −0.91, −0.72, −0.66, and −0.61 (P <
0.0001), respectively.

Conclusions: The level-set method showed better accuracy than the other two
methods. Compared with manual methods, it can achieve similar precision, better
repeatability, and greater efficiency. Therefore, the level-set method can be used for
reliable UBM image segmentation.

Translational Relevance: The level-set method can be used to analyze TM and SC
region in UBM images semiautomatically.

Introduction

Glaucoma is the world’s second-leading ocular
disease that causes blindness and is the primary cause
of irreversible blindness.1 Elevated intraocular pressure
(IOP) is harmful to the optic nerve and can aggra-
vate glaucoma. Therefore, IOP is the most widely used
parameter for evaluating and monitoring glaucoma.2
IOP is balanced by the production and outflow of the
aqueous humor. Most studies on glaucoma pathogen-
esis have focused on outflow resistance. The trabecu-

larmeshwork (TM) and Schlemm’s canal (SC) pathway
account for 75% to 80% of the whole outflow,3 making
it an important area for study.

Kagemann et al.4 showed that an acute IOP eleva-
tion can reduce the SC area and alter the TM configu-
ration in human and animal eyes.5 Yan et al.6 demon-
strated that aerobic exercise can cause TM and SC
expansion, which lowers IOP. These findings suggest
that TM-SC tissue configurations may determine
aqueous outflow and IOP regulation. This conclusion
also applies to patients with glaucoma. Swain et al.7
reported that SC is collapsed in most patients with
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primary open-angle glaucoma (POAG). Moreover,
clinical studies have shown that canaloplasty is an effec-
tive and safe procedure to lower IOP in patients with
POAG.8 Cagini et al.9,10 determined that canaloplasty
is not as successful in eyes that exhibit an irreversible
collapse of outflow pathways. These findings suggest
that morphologic changes of TM-SC in patients with
glaucoma can lower IOP and improve the disease.

Since TM-SC morphologic changes can influence
IOP regulation, identifying a means to monitor the
changes in this area has become an important goal in
glaucoma research. Imaging systems are emerging as
influential tools for evaluating the TM-SC region in
vivo. Optical coherence tomography (OCT) and ultra-
sound biomicroscopy (UBM) are two of the most
predominantly used imaging methods in ophthalmol-
ogy. The former is considered powerful in distin-
guishing TM on account of its higher resolution and
noninvasive nature.11,12 The latter can be used in
almost all kinds of patients, even those who have a
cloudy cornea or arcus senilis and cannot be examined
with OCT.

Image segmentation is an important task in medical
analysis and a critical step in many clinical applica-
tions. In addition, different clustering methods are
used for medical image segmentation, such as K-means
clustering13 and fuzzy C-means clustering (FCM).14
In previous studies, UBM image segmentation was
performed freehand or partly assisted by image analy-
sis software.6,15–18 Among them, ImageJ software
(National Institutes of Health, Bethesda, MD) was
the most commonly used. However, manual segmenta-
tion is time-consuming and depends on the experience
of the technician. Moreover, UBM images are usually
corrupted with intensity inhomogeneities, which make
TM and SC segmentation an inherently difficult task.19
Recently, level-set methods have been proposed to
deal with images with intensity inhomogeneity, such
as the local intensity clustering method20,21 and the
edge-based method.22 These approaches have been
successfully applied to segment magnetic resonance
images of the breast, X-ray images of bones, ultra-
sound images of the prostate,20 and infrared breast
thermography.23

Inspired by the above research, we investigated
the application of different segmentation methods for
UBM images. Trumpet playing has the advantages of
convenience, feasibility, and simplicity. Therefore, we
adopted trumpet playing as an intervention to obtain
IOP elevations and fluctuations.24 These segmentation
methods were further verified inUBM images obtained
under different IOPs. With these segmentation results,
quantitative analysis of the TM-SC region was done
and compared.

Methods

Image Acquisition

In this study, healthy volunteers were recruited from
the staff of Liaocheng People’s Hospital, Shandong
Province, China. All subjects underwent an ophthal-
mologic examination and were verified to have met
the following requirements: (1) 20 to 40 years old, (2)
IOP between 10 and 21 mm Hg, (3) normal anterior
chamber depth and open angle, (4) normal structure
of TM examined by a gonioscope, (5) no history
of inflammatory eye disease or eye surgery, and (6)
no family history of glaucoma. The whole process
was approved by the ethics committee of Liaocheng
People’s Hospital and adhered to the tenets of the
Declaration of Helsinki. Written informed consent
was obtained from each subject before the study
began. Participants were examined in a supine position
while blowing the trumpet. They were asked to blow
the trumpet slowly for as long as possible.24 One eye of
each participant was randomly selected for the UBM
examination using a 50-MHzUBM (Suoer SW-3200L;
Suowei Co., Tianjin, China). The IOP of the other eye
before and during the trumpet blowing was measured
using the Icare Pro tonometer (Tiolat Oy, Helsinki,
Finland). According to the results of our preexper-
iment and previous studies,6 the SC detection rate
at the inferior quadrant is the highest. Thus, all the
images were obtained from the inferior quadrant of
the eye at four time points: before trumpet blowing,
10 seconds after the start of blowing (IOP increas-
ing period), immediately after blowing cessation (IOP
peak time), and 10 seconds after blowing cessation.
All examinations were conducted by the same ophthal-
mologists and under the same illumination conditions
using identical equipment.

Algorithms

Image segmentation is the process of partitioning a
digital image into multiple regions. In this study, three
algorithms were assessed: K-means,13 FCM,14 and the
level-set method.20

K-Means Clustering

K-means13 is a fast and simple clustering algorithm
that is used to classify an image into a specific number
of disjointed clusters. The general idea is to identify
K centroids, one for each cluster, and then associate
each data point to the nearest centroid.25 Let � be the
image domain, I(x): � → R be the observed image,



Different Algorithms for UBM Image Analysis TVST | September 2020 | Vol. 9 | No. 10 | Article 7 | 3

and x, y represent the pixel coordinates. In a previous
study,26 segmentation of image I(x) into K clusters was
achieved by minimizing the following equation:

E =
K∑
j=1

M∑
i=1

∥∥∥I (x( j)
i ) − c j

∥∥∥2
, (1)

where ‖I (x( j)
i ) − c j‖ is the distance between one of the

pixels, I (x( j)
i ), in cluster j and its cluster centroid, cj, and

M is the pixel number of the image.

FCM Algorithm

The FCM algorithm was first suggested by Dunn27
and later improved by Bezdek et al.14 This algorithm
is widely used in data clustering and image segmen-
tation.28,29 By introducing the possibility of partial
memberships to clusters, this algorithm attempts
to partition every pixel into a collection of fuzzy
cluster centroids by minimizing the following objective
function:

E =
K∑
j=1

M∑
i=1

um
i j

∥∥∥I (x( j)
i ) − c j

∥∥∥2
, (2)

where uij is the fuzzymembership degree of pixel I (x( j)
i )

and cluster centroid cj, which satisfies uij ∈ [0, 1],

and
M∑
i=1

ui j = 1, j = 1, 2, · · · ,K. In addition, parameter

m(m > 1) is a constant that determines the fuzziness of
the resulting partitions.

Level-Set Method

From the physics of imaging, the observed UBM
image I can be modeled as

I = BJ + n, (3)

where J(x) is the real image, B(x) is the bias field that
accounts for the intensity inhomogeneity, and n(x) is
the noise term.30 The bias field B(x) is assumed to
change slowly, and the value B(x) can be considered
approximately constant in a neighborhood of Oy =
{x||x − y| ≤ ρ}, B(x) ≈ B(y) for x ∈ Oy. Real image
J reflects an intrinsic property of the imaging objects,
which can be assumed to be a piecewise constant.
Moreover, J takes approximately N distinct constant
values c1,c2,���cN in disjointed regions �1,�2,����N,
where � = ∪N

i=1�i and �i∩�j = Ø for i 	= j. Thus, the
intensities of points in each subregion �i∩Oy can be
approximated as follows:

I (x) ≈ B(y)ci + n(x) for x ∈ �i ∩ Oy (4)

Based on the assumption of zero-mean additive
Gaussian noise, the intensities in neighborhoodOy can
be classified into N distinct clusters with centers mi ≈
B(y)ci:

Iiy = {
I (x) : x ∈ �i ∩ Oy

}
, i= 1, 2, · · · ,N. (5)

The K-means method is used to classify the local
intensities in Oy. Then, clustering criterion function εy
of y in � can be written as

εy =
N∑
i=1

∫
�i

k(y − x)|I (x) − B(y)ci|2dx (6)

where k(y− x) is theGaussian kernel function, which is
selected as a truncated Gaussian function defined by25

k(y − x) =
⎧⎨
⎩

1
ae

− |y−x|2
2σ2 , x ∈ Oy,

0, x /∈ Oy

(7)

where a is a normalization constant, such that ∫k(u)du
= 1, and σ is the standard deviation of the function.
The smaller the value of εy, the better the classification
of y in �. Therefore, the optimal partition of the entire
domain� can be realized by joint-minimizing εy, which
can be written as the following local clustering criterion
function:

ε =
∫

εydy =
∫ (∑N

i=1

∫
�i

k(y − x)|I (x) − B(y)ci|2dx
)
dy.

(8)

However, function ε is difficult to solve. There-
fore, ε is converted into a level-set formulation with
several level-set functions. Let ϕ: � → R be a level-set
function, and function ε can be written as the function
of � = (ϕ1,ϕ2,���ϕk), c = (c1,c2,���cN) and the bias
field b:

ε (�, c, b) =
∫ ∑N

i=1

∫
�i

ei(x)mi(�(x))dx, (9)

where ei(x) = ∫k(y − x)|I(x) − B(y)ci|2dy and the
membership functions mi=1 for y ∈ �i, and mi= 0
for y 	∈�i. For the case of two phases, the membership
functions are defined by m1(ϕ) = H(ϕ) and m2(ϕ) =
1 − H(ϕ). The energy function in the two-phase level-
set formulation is defined by

F (φ, c, b) = ε (φ, c, b) + νL(φ) + μRp(φ) (10)

where L(ϕ) and Rp(ϕ) are the regularization terms.
Energy minimization is achieved by an iterative
process. By minimizing this energy, the level-set
method30 can segment the image and estimate the bias
field that can be applied for bias correction. When the
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Figure 1. UBM image and ROI.

Figure 2. Preprocessed UBM images from one subject.

above energy function F(ϕ, c, b) obtains the minimum
value or the maximum number of iterations is reached,
the iteration is terminated.

Using ImageJ software, each image was segmented
three times by the same ophthalmologist. The average
value of the measurements was regarded as the ground
truth. The paired t-test was used to compare the mean
differences when the measurement data were obtained
by ImageJ and the three segmentation methods (P <

0.05 was considered statistically significant).31,32 The
relative error and the interclass correlation coefficient

(ICC) were employed to quantify the accuracy and
repeatability of the three methods.33 Because system-
atic differences are part of the measurement error, a
two-way random-effects model was used to calculate
the ICC.34

Image segmentation and analysis were conducted
on images with clear TM-SC structures that were
identified by the ophthalmologist. Owing to the low
resolutions of the 50-MHz UBM images, it is almost
impossible to obtain perfect quality UBM images. If
the TM-SC region in the UBM image was primarily
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Figure 3. UBM image segmentation result of the ROI at the IOP of 15 mm Hg using (a) ImageJ, (b) K-means, (c) FCM, and (d) level set.

not deformed or slightly deformed but not signifi-
cantly different from the physiologic anatomical struc-
ture, then the UBM image was considered of good
quality and of use for segmentation. If the TM-SC
region in the UBM image was severely deformed,
was very different from the physiologic anatomy, or
could not be recognized by the ophthalmologist, then
the UBM image was considered of poor quality and
excluded. Four UBM images of one subject were used
to illustrate the segmentation effects of the different
methods. The TM-SC regions of all UBM images
were extracted using the above three segmentation
methods. By measuring the TM-SC area, the reliabil-
ity and repeatability of the segmentation results were
quantified. Furthermore, the correlations between the
measurements and the IOP were obtained. All exper-
iments were carried out in MATLAB (MathWorks,
Natick,MA) on a PCwith a 3.6-GHz Intel core proces-
sor and 8 GB of memory.

Results

A total of 26 volunteers completed the whole experi-
mental process, including 10 males and 16 females. The
average age was 34.53 years. Four UBM images were
collected from each subject at different IOPs, and 104
images were collected in total. The average IOP before
trumpet blowing and immediately after was 17.5 mm
Hg and 28.8mmHg, respectively. TheUBM image and
its region of interest (ROI) are shown in Figure 1. The
size of the UBM image was 1024 × 655 pixels, and the
size of the ROI was 150 × 100 pixels.

Image Segmentation with Different Methods

To illustrate the segmentation effects of the different
methods, four UBM images (Fig. 2) from one subject
were segmented. ImageJ, K-means, FCM, and level set
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Figure 4. UBM image segmentation result of the ROI at the IOP of 22 mm Hg using (a) ImageJ, (b) K-means, (c) FCM, and (d) level set.

were used to obtain the boundary curves of the differ-
ent gray regions in the UBM images. The segmentation
results are shown in Figures 3 to 6.

When the IOP is 15 mm Hg, the SC region segmen-
tation result in Figure 3d is similar to that in Figure 3a.
The TM and SC in Figures 3b and 3c are blended,
resulting in an unrecognizable SC boundary, whereas
the TM boundary in Figure 3d is easy to identify. The
TM boundary in Figure 3b is discontinuous, and the
boundary in Figure 3c is overlapped and unclear. In
terms of the TM and SC segmentation effects in the
UBM image, the level-set method is thus better than
the other two methods.

Figure 4 shows the UBM image segmentation
results of the ROI at the pressure of 22 mm Hg. It is
observed that the SC region in Figure 4d ismore consis-
tent with Figure 4a. The SC boundaries in Figures 4b
and 4c are rougher than those in Figure 4a. There are

some disturbances on the TM boundary in Figure 4d.
However, there are two TM boundaries in Figure 4b,
and it is difficult to choose the correct one. The TM
boundary in Figure 4c is oversegmented. Therefore,
we can conclude that the level-set method can obtain
results similar to those of ImageJ when the IOP is
elevated.

The UBM image segmentation results at the
pressure of 27 mm Hg are shown in Figure 5. The
SC boundaries in Figures 5b and 5c obtained by
the FCM and K-means methods are discontinuous.
Some interference occurs between the TM and SC,
which makes identifying the TM area difficult. The
SC region segmented using the level-set method has
a clear outline, and the TM region boundary can be
easily identified. It is obvious that the level-set method
produces more accurate segmentation results than the
other two methods.
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Figure 5. UBM image segmentation result of the ROI at the IOP of 27 mm Hg with (a) ImageJ, (b) K-means, (c) FCM, and (d) level set.

To verify the universality of the segmentation
methods, we tested the three segmentation methods
using the UBM image at the pressure of 33 mm
Hg. From Figure 6, we can observe that the geomet-
ric deformation of SC becomes more obvious as the
IOP increases. There are some small differences in the
geometry of the TM-SC area in Figures 6a and 6d.
The TM and SC in Figures 6b and 6c are connected
on account of speckle noise, which also leads to the
interruption of the TM boundary. The TM-SC region
extracted by the level-set method is more similar to that
of the ImageJ result than the other two methods.

Quantitative Analysis of Segmentation
Results

Eighty-four images that were adequately clear
were selected from a total of 104 images. After the

UBM images were segmented, the TM-SC region
was extracted and measured. The measurement was
performed as follows. The Canny edge detection
algorithm was applied to convert the segmentation
result to a binary form. The number of pixels inside
the SC region was used as the SC area, and the number
of pixels on the boundary was regarded as the SC
perimeter. The average of the three maximum numbers
of pixels per row in the SC region was used as the
SC length. The Sobel edge detection algorithm was
employed to binarize the boundary curve of the TM-
SC region. The average of the three maximum numbers
of pixels between the TM and SC per column was used
as the TM width.

Table shows the measurement data of the four
methods as the mean ± SD. There were no statisti-
cally significant differences between the measurement
data obtained by the level-set method and ImageJ
(P= 0.663,P= 0.071,P= 0.755, andP= 0.117 for SC
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Figure 6. UBM image segmentation result of the ROI at the IOP of 33 mm Hg using (a) ImageJ, (b) K-means, (c) FCM, and (d) level set.

Table. Measurement Data (Mean ± Standard Deviation) for Segmentation Results of the Four Methods (Pixels,
n = 84)

Method SC Area SC Perimeter SC Length TMWidth

ImageJ 150.23 ± 41.8 66.11 ± 16.35 22.17 ± 5.39 11.14 ± 0.97
Level set 150.71 ± 45.93 64.61 ± 17.01 22.25 ± 5.25 10.95 ± 1.37
K-means 161.47 ± 70.48 66.86 ± 31.01 26.3 ± 9.28 10.18 ± 1.83
FCM 145.07 ± 59.74 56.37 ± 31.08 26.7 ± 7.97 9.31 ± 1.55

area, SC perimeter, SC length, and TM width, respec-
tively). There were no statistically significant differ-
ences in the SC area and SC perimeter measurements
between the K-means method and by ImageJ (P =
0.103 and P = 0.901 for SC area and SC perimeter,
respectively), while the differences for the SC length
and TM width between the two methods were statis-
tically significant (P < 0.001 for SC length and TM

width). There was no statistically significant difference
between the SC area measured by the FCM method
and the corresponding result measured by ImageJ
(P = 0.662), while the differences in the SC perime-
ter, SC length, and TMwidth between the twomethods
were statistically significant (P = 0.032, P < 0.001, and
P < 0.001 for SC perimeter, SC length, and TM width,
respectively).
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Figure 7. Schematic diagrams of relative errors and ICC values of the three segmentation methods.

As can be seen from the above results, the level-set
method showed better similarity to the ImageJ method
than the FCM and K-means methods. Among the four
parameters measured by the ImageJ and three segmen-
tation methods, the SC area was the most consistent
parameter.

Figure 7 presents schematic diagrams of the relative
errors and ICC values of the three segmentation
methods. It is evident that the relative errors of the
level-set method are less than 0.08, whereas the other
two methods have large relative errors. The ICC values
of the level-set method are 0.97, 0.95, 0.9, and 0.57,
respectively, whereas the corresponding ICC values of
the other two methods are less than 0.4. From these
results, we can conclude that the measurements of the
level-set method have a higher reliability and better
repeatability than the other two methods.

Correlation Analysis Between IOP and
Measurements

Owing to the poor performance of the K-means
and FCM methods for segmenting the TM-SC region,
only the level-set method was used to perform the
correlation analysis. The correlations among the SC
area, SC perimeter, SC length, TM width, and IOP
were analyzed using the Pearson correlation coeffi-
cient and linear regression analysis. The results are
shown in Figure 8. It can be observed that, as the IOP
increases, the SC area, perimeter, and length tend to
decrease. The TM width likewise decreases. Pearson

correlation coefficients for IOP to the SC area, SC
perimeter, SC length, and TM width are −0.91, −0.72,
−0.66, and −0.61, respectively. Thus, a negative corre-
lation relationship between the IOP and the geometri-
cal measurement of TM and SC can be inferred.

Discussion

Image segmentation plays an important role in
many medical imaging applications. In previous
studies, the TM-SC region was manually obtained
from UBM images.6,15–18 However, manual outlining
is a time-consuming and tedious task. In this article,
we showed that the level-set method can be used to
extract the TM-SC region from the UBM image and
useful features can be obtained from the segmentation.
Compared with manual segmentation, the level-
set method produced similar segmentation results
while providing better repeatability and efficiency. In
addition, the level-set method had higher accuracy
than the classical FCM and K-means methods.

The negative correlation between IOP and the
measurements of TM and SC inferred from our results
were similar to those of previous studies.4,5 The reason
for TM-SC region collapse may be the compression
force caused by acute IOP elevation to the elastic struc-
ture. Assuming that accurate measurements of the TM
and SC response to IOP fluctuation in patients in
vivo are realized, mathematical models can be used
to calculate the TM stiffness, which has recently been
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Figure 8. IOP versusmeasurements of the (a) SC area, (b) SC perimeter, (c) SC length, and (d) TMwidth. For reference, regression equations,
linear regression lines (red), Pearson correlation coefficients (R), and P values are provided.

shown to be associated with resistance to outflow.35–37
Among the four measurement indicators in this study,
the Pearson correlation coefficient for IOP to the SC
area is the highest. Thus, we may speculate that the SC
area can be used as a sensitive indicator for measuring
the TM-SC region.

However, our study had the following limitations.
First, the resolution of the 50-MHz UBM was not
high; therefore, approximately 20% of the images could
not be used. Second, since the UBM images were
continuously obtained while the measurement of IOP
was discontinuous, the mismatch between the two may
have affected the correlation analysis results. Third,
the subjects recruited for this experiment were young
healthy adults. We are therefore unsure whether this
method can be used with elder subjects and patients

with glaucoma. Therefore, the effectiveness of the level-
set method for UBM image segmentation of different
subject groups will be our future work.

In conclusion, changes in the TM-SC region can be
detected by UBM and extracted by image segmenta-
tion methods. The level-set method can accurately and
efficiently segmentUBM images of TMand SC. There-
fore, the level-set method is an effective technique for
UBM image segmentation.
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