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Translational activity is uncoupled from nucleic acid content in bacterial cells of 
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ABSTRACT
Changes in bacterial diversity in the human gut have been associated with many conditions, 
despite not always reflecting changes in bacterial activity. Methods linking bacterial identity to 
function are needed for improved understanding of how bacterial communities adapt and respond 
to their environment, including the gut. Here, we optimized bioorthogonal non-canonical amino 
acid tagging (BONCAT) for the gut microbiota and combined it with fluorescently activated cell 
sorting and sequencing (FACS-Seq) to identify the translationally active members of the commu
nity. We then used this novel technique to compare with other bulk community measurements of 
activity and viability: relative nucleic acid content and membrane damage. The translationally active 
bacteria represent about half of the gut microbiota, and are not distinct from the whole community. 
The high nucleic acid content bacteria also represent half of the gut microbiota, but are distinct 
from the whole community and correlate with the damaged subset. Perturbing the community 
with xenobiotics previously shown to alter bacterial activity but not diversity resulted in stronger 
changes in the distinct physiological fractions than in the whole community. BONCAT is a suitable 
method to probe the translationally active members of the gut microbiota, and combined with 
FACS-Seq, allows for their identification. The high nucleic acid content bacteria are not necessarily 
the protein-producing bacteria in the community; thus, further work is needed to understand the 
relationship between nucleic acid content and bacterial metabolism in the human gut. Considering 
physiologically distinct subsets of the gut microbiota may be more informative than whole- 
community profiling.
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Introduction

The human gut microbiota is comprised of trillions 
of microorganisms that together help maintain gut 
homeostasis and provide key ecosystem services to 
the human host such as nutrient digestion, pathogen 
exclusion, and immune system development.1,2 The 
diversity of the gut microbiome across different 
human populations and across various diseases has 
been well cataloged.3–8 Still, it is becoming increas
ingly clear that bacterial diversity and activity are not 
always coupled, and thus which members are key for 
maintaining host health cannot be elucidated 
through diversity metrics alone.9–11 New methods 
that link together bacterial function to bacterial iden
tity are needed to further explore the role of the gut 
microbiome in health and disease.

The active subset of the gut microbiota is more 
sensitive and responsive to perturbations than the 

diversity of the whole community alone.12,13 Broad 
range ‘omics techniques such as metatranscrip
tomics, metabolomics, and metaproteomics pro
vide an overall depiction of the gut microbiota’s 
output, yet incomplete functional databases make 
it challenging to link together bacterial identity to 
function.14 To characterize the active fraction of the 
gut microbiota, a broad and measurable indicator 
of activity needs to be identified that labels the 
active bacteria with minimal bias. Single-cell tech
niques allow for increased resolution of the hetero
geneity of activity in complex microbial systems, 
helping determine the actual contribution of speci
fic bacterial members in situ. Heavy water incor
poration, substrate uptake, and nucleic acid content 
have all been studied in the context of the gut 
microbiota.10,12,15–18 Yet they have low throughput, 
are costly, or, for the case of nucleic acid content, 
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the relevance to activity is unclear. Single-cell tech
niques to study bacterial physiology and activity 
have been well detailed by Hatzenpichler et al 
(2020).19

The use of relative nucleic acid content as 
a marker of bacterial activity was first introduced 
in aquatic systems, where the microbial commu
nity, when stained with a nucleic acid dye, clusters 
into two distinct populations based on their level of 
nucleic acid content.20 This was seen with a variety 
of nucleic acid dyes, such as SYBR Green I used in 
this study, which stains both DNA and RNA.21 The 
more fluorescent population consists of bacteria 
with higher nucleic acid content (HNA) than their 
low nucleic acid (LNA) counterparts. This phe
nomenon has since been widely studied, and is 
proposed to link together bacterial nucleic acid 
content to a gross level of bacterial metabolism, 
where the HNA bacteria are more metabolically 
active than the LNA. This has been demonstrated 
through higher leucine incorporation rates, ATP 
cell−1 concentrations, respiration rates, and propor
tions correlating with overall bacterial 
production,22–28 but these dynamics have been dis
puted as well.29

As this bimodal distribution of HNA and LNA 
has already been identified in the gut,10 we set out 
to determine if HNA and LNA components of the 
microbiota differ in their metabolic activity. To do 
so, a broad yet clearly defined measurement of 
single-cell levels of activity was required to compare 
and contrast with relative nucleic acid content 
determination. In this paper, we focus on protein 
translation as an important aspect of metabolic 
activity. We optimize bioorthogonal non- 
canonical amino acid tagging (BONCAT), 
a recent application of click chemistry, to identify 
the translationally active bacteria in the gut 
microbiota.30 BONCAT allows for the unbiased 
detection of proteins produced in situ under biolo
gically relevant conditions, without the need for 
radioactivity, isotopes, antibodies, long incuba
tions, or altering conditions. A methionine analo
gue, L-homopropargylglycine (HPG), is added to 
a short in vitro incubation of the gut microbiota, 
and is then “clicked” to an azide-modified fluoro
phore. HPG has been shown to be taken up by all 
bacteria under all physiological states tested, and 
due to the promiscuity of methionyl-tRNA 

synthetase, is incorporated into nascent proteins.30 

The alkyne-azide groups quickly undergo 
a cycloaddition to form a stable triazole conjugate 
at biologically relevant conditions. Azide and 
alkyne modifications are considered biologically 
inert: they do not interfere with biological processes 
and do not naturally exist in most biological sys
tems, including bacteria.30–32

Previously, BONCAT has been used in bacterial 
isolates, natural assemblages in aquatic 
systems,31–33 soil,34 and sputum from cystic fibrosis 
patients,35 and typically combined with fluorescent 
in-situ hybridization (FISH) with 16S rRNA probes 
to identify the protein-producing bacteria. To our 
knowledge, ours is the first study to apply 
BONCAT to the gut microbiota, while other gut 
microbiota studies have focused on selective uptake 
and incorporation.36 As 16S rRNA-FISH offers lim
ited taxonomic resolution and requires designing 
probes for specific taxa of interest a priori,37 we 
instead combine BONCAT with fluorescence- 
activated cell sorting (FACS) and subsequent 16S 
rRNA gene sequencing (FACS-Seq) as previously 
done elsewhere.34,35,38 This allows us to identify the 
diversity of the BONCAT+ and BONCAT- com
munities, linking together bacterial identity to 
activity and increasing throughput. Assessing pro
tein production through BONCAT yields similar 
results to assessing protein production through 
nano-SIMS30and MAR-FISH,31 yet it is faster and 
less expensive.

Applying BONCAT to the gut microbiota pro
vides some unique challenges that we address in 
this study. The incorporation of HPG into nascent 
proteins requires a short in vitro incubation, which 
is difficult for the gut microbiota, as there is no 
single media that is able to support the growth of 
all gut bacteria. Indeed, “culturomics” is an 
ongoing, developing field to broaden our ability to 
culture more of the fastidious members of the gut 
microbiota.39 Furthermore, methionine is common 
in the gut, but inhibits HPG incorporation. HPG 
has an activation rate 500 times lower than 
methionine,40 and bacteria preferentially incorpo
rate methionine over HPG ten-fold, so excess HPG 
is required to outcompete methionine.31 

Methionine is expected to be ubiquitous in the gut 
lumen, and as such, fecal bacteria are not immedi
ately well-suited for BONCAT. The approach 
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detailed in this study addresses and overcomes 
some of these limitations.

Lastly, to explore what the inactive subset of the 
gut microbiota may represent, we identified the 
damaged subset of the gut microbiota with propi
dium iodide (PI), a membrane exclusion dye. By 
contrasting the active subset to the damaged subset, 
we hope to begin to explore if the less active or 
inactive fraction represents dormant bacteria acting 
as a seedbank, or external transient bacteria that are 
unable to colonize the gut.41–45

Here we show that the HNA and BONCAT+ 
bacteria are taxonomically distinct, suggesting that 
the HNA bacteria are not necessarily undergoing 
translation. We explore how the HNA bacteria 
contain more of the conserved bacteria across indi
viduals, contributing to the “core” gut microbiome, 
while the BONCAT+ community is a subset of the 
whole community and potentially more responsive 
to changes in the environment.

Results

Optimizing incubation conditions for HPG labeling 
of gut bacteria

The BONCAT method requires an incubation step 
as bacteria incorporate HPG. In the interest of 
maintaining gut bacterial activity to levels as similar 
to in situ as possible, optimization of the media, 
length of incubation, and concentration of HPG 
was necessary to ensure that bacterial growth and 
community structure were not altered. To best 
mimic the gut environment, a fecal slurry was cre
ated by homogenizing fresh stool in reduced PBS 
(rPBS – 1 mg mL−1 L-cysteine), and the superna
tant of the fecal slurry was tested as the media at 
varying concentrations, along with different incu
bation times. An additional challenge to an in vitro 
BONCAT incubation is that methionine is prefer
entially incorporated over HPG,30,31 and the gut is 
a nutritionally rich environment with high concen
tration of methionine (Table S1). As such, HPG was 
added in excess of 10X what is found in the gut to 
outcompete methionine incorporation.

Gut bacteria incubated with 2 mM HPG in 50% 
fecal supernatant for 2 hours results in saturated 
HPG incorporation without altering growth 
(Figure 1a,b) or community composition as per 

16S rRNA gene sequencing (Figure 1c). The con
centration of supernatant has a significant effect on 
the BONCAT signal (p = .032, 2-way ANOVA, 
Tukey’s multiple comparisons test), but HPG con
centration does not, once above 1 mM (Figure 1a).

Optimizing fluorescence-activated cell sorting 
(FACS) of BONCAT-labeled bacteria

To link bacterial identity to bacterial activity, we 
optimized a method to sort the translationally 
active bacteria (BONCAT+) and sequence with 
16S rRNA gene amplification (BONCAT-FACS- 
Seq). We first verified the click protocol was able 
to capture all HPG-incorporating bacteria by using 
Escherichia coli in exponential phase as a positive 
control. Control incubations not containing the 
fluorophore (Alexa-azide 647) or HPG (Fig S1ab) 
were used to determine the appropriate gating for 
flow cytometric analysis of the BONCAT+ popula
tion, which was 96% BONCAT+ for E. coli in 
exponential phase with glucose supplementation 
(Fig S1c). For the gut microbiota, similar gating 
controls are employed in a consistent manner (Fig 
S1d) to determine the BONCAT+ population (Fig 
S1e). As shown elsewhere, dead bacteria did not 
uptake HPG30,31 (Fig S1f).

We determined that sorting 180,000 events was 
sufficient to represent the unsorted population. 
Based on a probability mass function for the bino
mial distribution, we modeled the probability of 
finding k bacteria from a total of N bacteria. 
Based off the cumulative probability of finding 
k or less from a sample size of N, we calculated 
the theoretical value that if we sort 25,000 events 
(N), we would capture 100 bacteria (k) that are 
present in the initial population at a prevalence of 
0.5%. We then sorted a range of events from 50,000 
to 1,000,000, confirming we sorted viable bacteria 
that resulted in amplifiable DNA (Fig S2ab). Sorted 
samples have a slightly lower alpha diversity than 
the unsorted samples (Fig S2c), yet still cluster near 
the unsorted samples based on Bray-Curtis dissim
ilarity in a principal coordinate analysis with no 
differences in community composition between 
sorted and unsorted (R2 = 0.027, p = .887, 
PERMANOVA)(Fig S2d). The sorting purity for 
BONCAT, as determined by re-acquiring the 
sorted fractions by flow cytometry, however, is 
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lower than sorting with other physiological dyes 
such as SYBR Green I, with a mean purity of the 
BONCAT+ fraction at 80% ± 10% (Table S2). The 
BONCAT- fraction, however, has a higher purity 
level after sorting at 94.3% ± 9%.

The cell sorting process introduced contaminant 
DNA into the sorted samples. A negative control 
was sorted each sorting day, consisting of the cell 
sorter’s sheath fluid, and was extracted and 
sequenced alongside the samples. The sheath fluid- 
negative controls contained between 341 and 2,333 
reads, mostly assigned to Pseudomonas. Thus, to 
remove sheath fluid contaminants from the sam
ples, we removed reads that were present in the 
sheath fluid, but absent from the initial, unsorted 
sample from all samples. This had only a minor 
effect on the diversity and read count of most 
samples, the most pronounced effect being in the 
BONCAT- fraction (Fig S3). Thus, we conclude 
that BONCAT-FACS-Seq yields generally repre
sentative 16S communities of the BONCAT+ and 

BONCAT- populations and is an appropriate 
method moving forward.

Diversity of physiologically distinct fractions of the 
gut microbiota

To determine the active and damaged members of 
the gut microbiota, we sorted bacteria based on the 
BONCAT signal, relative nucleic acid content 
(HNA and LNA), and membrane damage (PI+). 
Fresh fecal samples were obtained from ten healthy, 
unrelated individuals who had not received anti
biotics in the past 3 months, and immediately 
placed in the anaerobic chamber. Samples were 
processed and stained anaerobically, using reduced 
media.

The proportion of each physiological fraction 
from total quantified cells was determined through 
flow cytometry. The HNA bacteria average 51.73 ± 
17.59%, BONCAT+ at 49.01 ± 18.54%, and PI+ at 
15.73 ± 14.58% (Figure 2a). There is a high 

Figure 1. Optimizingin-vitro BONCAT incubation conditions for the human gut microbiota. a) HPG concentrations between 1 and 5 mM 
tested with varying concentrations of fecal supernatant between 10 and 50% show no significant differences in incubation based on 
HPG concentration. b) Growth curves with HPG, methionine, or neither. Bacteria were diluted 1/10 in 50% supernatant and incubated 
at anaerobically at 37°C in the dark, with shaking. c) Family level 16S rRNA gene sequencing of the gut microbiota with and without 
HPG or methionine in 50% supernatant for 1, 3, or 5 hours (n = 1). Labels indicate time (hours), followed by No addition (N), Methionine 
(M), or HPG (H).

e1903289-4 M. TAGUER ET AL.



correlation between the proportion of HNA and 
the proportion of PI+ bacteria (r = 0.74, 
p = .0136) and a borderline significant negative 
correlation between the proportion of HNA and 
the proportion of BONCAT+ bacteria (r = −0.62, 
p = .0548) (Figure 2b). 16S rRNA gene amplifica
tion and sequencing identified that these physiolo
gical cell fractions are distinct from one another 
and from the whole community. Principal coordi
nate analysis on pairwise weighted UniFrac dis
tances shows that samples cluster strongly by 
individual stool donor (R2 = 0.50712, p = .001, 
PERMANOVA) (Figure 2c), and secondarily 
based on physiology (R2 = 0.15171, p = .005, 
PERMANOVA) (Figure 3a). When broken down 
by individual, HNA and LNA appear most distinct 
from one another on the first principal component, 
and BONCAT- most distinct from the other sam
ples on the second principal component 
(Figure 3bc).

We next set out to determine specific differences 
between physiological fractions. The HNA and 
LNA communities are significantly different from 

one another at the phylum and genus level (p < .05, 
PERMANOVA with FDR adjustment) and the 
HNA is borderline significantly different from the 
whole community at the phylum level (p = .055, 
PERMANOVA with FDR adjustment) (Figure 4a 
and b). No other fractions were significantly differ
ent from one another after FDR adjustment. 
Phylum and genus level relative abundances are 
broken down by individual as well (Fig 4 cd). To 
determine specifically which taxa are differentially 
abundant, we fitted a count regression for corre
lated observations with the beta-binomial model 
(Corncob) to every taxa and compared each phy
siological fraction to the whole community or to 
their low/high activity counterpart.46 The HNA 
fraction is dominated by the Firmicutes, averaging 
80.98% of the HNA community compared to 
61.28% of the whole community (p = .004, corn
cob). The HNA fraction also contains fewer 
Actinobacteria compared to the whole community 
(p = .0008, corncob). Similarly, the PI+ fraction 
resembles HNA more closely than it does the 
whole community, with significantly more 

Figure 2. Abundance and diversity of physiological fractions per individual. (a) Relative abundance of cells in each physiological 
fraction (n = 10). b) Correlations between the proportion of PI+ bacteria and BONCAT+ bacteria to the proportion of HNA. C) PCoA of 
weighted UniFrac distances of regularized log transformed data indicate significant clustering by individual. There is significant 
clustering by (c) individual.

Figure 3. Beta diversity by physiological fractions. (a) PCoA of weighted UniFrac distances of regularized log transformed data indicate 
significant clustering by physiology. As there is large variation across individuals, the first (b) and second (c) principle components were 
plotted by individual to show trends in clustering by physiology.
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Firmicutes at 78.02% (p = .04, corncob) and fewer 
Actinobacteria (p = .017, corncob). Conversely, the 
LNA fraction is more similar to the whole commu
nity, with 44.94% Firmicutes and 51.36% 
Bacteroidetes. As shown previously in the human 
gut,10 the HNA and LNA fractions contain the 
same bacteria (unweighted UniFrac p = .6), but 
present at different relative abundances (weighted 
UniFrac p = .028,), suggesting that nucleic acid 
content reflects bacterial physiology rather than 
taxonomy.

Surprisingly, the BONCAT+ and BONCAT- 
fractions are not significantly different from one 
another, or from the initial community 
(PERMANOVA). Still, Proteobacteria are signifi
cantly increased in the BONCAT- fraction com
pared to the whole community. While the 
BONCAT- fraction contains more Proteobacteria 
in general (p = .0069, corncob), the BONCAT+ 
fraction contain higher abundances of specific 
lineages within Proteobacteria such as E. coli/ 
Shigella (p = .045, corncob), as well as differentially 
abundant Coprococcus 1 (p = 3.98e-05, corncob).

The HNA bacteria of the gut microbiota contain 
more core taxa
HNA bacteria have previously been characterized as 
the more active bacteria in a community. Yet we 
found that the HNA bacteria are not necessarily the 
protein-producing bacteria, as HNA and BONCAT+ 
cell fractions are taxonomically different from one 
another (R2 =0.11721, p =.014, q =0.07 FDR). We 
hypothesized that HNA and BONCAT+ bacteria 
each represent different aspects of bacterial activity, 
but as active members of the community, both 
should contain more members of the core micro
biome (i.e. taxa commonly present in most people). 
Changes in the core bacteria or functional groups 
have been linked to changes in host phenotype,47–50 

suggesting the core microbiome is actively responsi
ble for host phenotype, potentially through the meta
bolites they produce. Conversely, the less active 
fraction (BONCAT- and LNA) would contain the 
transient, environmental bacteria that are unique to 
the individual and perhaps less adapted to survive in 
the gut environment.41–44 Consistent with our 
hypothesis, the HNA fraction is more similar across 

Figure 4. Taxonomic overview of the physiologically distinct subpopulations of the human gut microbiota. Relative abundance at the 
(a) phylum level and (b) top ten genera across physiological groups and by individual (c) and (d). Pairwise Adonis tests, with FDR 
adjustment.
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individuals than the whole community (p < .01), or 
the LNA community (p < .0001). The LNA fraction 
is more different across individuals than the whole 
community (p < .05, Kruskal–Wallis test with 
Dunn’s test for multiple comparisons of weighted 
UniFrac distances) (Figure 5a). However, we found 
no equivalent differences in the BONCAT commu
nities across individuals.

To expand on the idea that the active fractions are 
more similar across individuals and thus contain more 
of the common core bacteria, we compared the dis
tribution of core, unique, and shared taxa across the 
physiologically distinct fractions (Figure 5b). Core 
taxa are defined as those found in all sampled indivi
duals, unique taxa are defined as those present in only 
one individual, and shared represent the remaining 
taxa. With this definition of 838 bacterial amplicon 
sequencing variants (ASVs), 12 (1.4%) were found in 
all individuals and 477 (57%) ASVs found in only one 
individual. The remaining 349 ASVs (41.5%) are 
shared across some proportion of individuals. The 
core taxa are differentially dispersed in HNA and 
BONCAT+, while also being significantly increased 
in HNA (p < .05). HNA also has fewer unique bacteria 
(p < .01, corncob), without a difference in dispersion. 
These patterns remain when the definition of core 
bacteria is loosened to ASVs found in 8/10 individuals, 
where 32 (3.8%) ASVs are considered as core. The 
enrichment of core taxa and lack of unique taxa in 
HNA, but not BONCAT, suggests the HNA may be 
providing more of the core metabolic activity in 
the gut.

Physiological information is more sensitive than 
whole community profiling
Focusing on the active subset of the gut microbiota 
allows for a finer resolution of changes in activity to 
be captured than whole-community DNA sequen
cing alone. To demonstrate this, we performed 
in vitro incubations of fecal samples from two indi
viduals with various xenobiotics previously shown 
to alter the activity of the whole community 
(through metatranscriptomics), but not bacterial 
community composition (through 16S rRNA gene 
sequencing).10 We supplemented the BONCAT 
incubations with digoxin, nizatidine, or glucose, 
and compared the proportions of the physiological 
communities to a control incubation without any 
additions. PCoA plots of the weighted UniFrac 
distances, focusing on each of the two individuals 
separately, demonstrate a clear clustering by bac
terial physiology (R2 = 0.65 and 0.64, respectively, 
Table 1) (Figure 6ab). Treatment alone has no 
effect; however, when looking at the effect of treat
ment nested within each physiological fraction, it 
has the largest effect size at R2 = 0.75 (individual 1) 
and R2 = 0.73 (individual 2) (Table 1). To deter
mine specific pairwise effects of xenobiotic treat
ments relative to the controls in each physiological 
group in each individual, we compared Bray–Curtis 
dissimilarities. Specific changes in response to the 
xenobiotics in each physiological group were 
inconsistent, and limited by the low number of 
replicates per sample (n = 3). However, a few phy
siological groups trended toward significance 

Figure 5. Similarity of physiologically distinct fractions across individuals. a) Weighted UniFrac distances for each pair of samples of rlog 
transformed data. b) Distribution of core, unique and shared taxa across physiological fractions. Red stars represent significantly 
different dispersion, black stars represent significantly differential abundance as per corncob models. *p < .05, **p < .01, ***p < .001, 
and ****p < .0001.
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compared to the control incubation. Specifically, in 
individual 1, the glucose incubation resulted in 
a change in beta diversity compared to control in 
the whole community and in the LNA fraction, and 
digoxin had effects in the PI+ fraction (p = .1, 
PERMANOVA). The taxonomic composition of 
these sorted fractions are in Figure S4.

BONCAT-FACS-Seq provides actual cellular 
abundance data of each of the physiological frac
tions. The proportion of HNA bacteria decreased in 
individual 1 in response to glucose (65 ± 4% to 
56 ± 3.2%), but increased in response to digoxin 
(to 89 ± 1.5%) and nizatidine (85 ± 5.5%) (Figure 
6c); however, there were no changes in the 

proportion of HNA and LNA in individual 2 
(Figure 6d). Increases in the proportion of HNA 
bacteria in individual 1 did not correspond to 
changes in composition, which remained similar 
to the PI+ fraction (Figure S4). The proportion of 
BONCAT+ bacteria increased in response to glu
cose in both individuals (28 ± 17% to 60 ± 7.9% and 
27 ± 7.5% to 67 ± 3.5%, respectively) (Figure 6e and 
f). And lastly, the proportion of PI+ bacteria 
decreased in response to glucose in individual 1 
(10 ± 0.96% to 6.5 ± 0.94%) but not individual 2 
(Figures 6g and 6h). While the response in HNA/ 
LNA and PI proportions is individual specific, there 
is a consistent increase in the proportion of 

Table 1. Effect size and dispersion effect of xenobiotics on the gut microbiota.
Individual 1 Individual 2

PERMANOVA Dispersion PERMANOVA Dispersion

R2 p F p R2 p F p
Physiology 0.65 0.001 6.25 0.001 0.64 0.001 1.3 0.275
Treatment 0.010 0.8 0.33 0.81 0.018 0.53 0.6635 0.582
Treatment %in% Physiology 0.75 0.001 0.6574 0.861 0.73 0.001 0.69 0.825

Figure 6. Differences of physiological groups after xenobiotic incubations. PCoA of rlog transformed weighted UniFrac distances 
broken down by physiology and treatment for a) individual 1 and b) individual 2. The circle for treatment C represent the control, the 
triangle for treatment D represents digoxin, the square for treatment G represents glucose, and the plus sign for treatment 
N represents nizatidine. Cellular relative abundance of (c) HNA and LNA, (e) BONCAT+, and (g) PI+ bacteria in Individual 1. The 
relative abundance of d) HNA and LNA, f) BONCAT+, and h) PI+ bacteria in Individual 2. Ex-vivo incubations were performed 
anaerobically at 37°C for 2 hours. N = 3 incubation replicates, error bars represent S.D, One-way ANOVA compared to the control 
group, with FDR correction.
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BONCAT+ bacteria in response to glucose. Overall, 
we demonstrate how BONCAT-FACS with or 
without sequencing may be a faster and less expen
sive alternative to detect broad-level changes in 
bacterial activity than metatranscriptomics or 
whole-community profiling.

Discussion
In this study, we have optimized the BONCAT- 
FACS-Seq protocol for the human gut microbiota 
to identify the translationally active bacteria. We 
then compared the cellular proportions and bacter
ial diversity of the BONCAT+ and BONCAT- frac
tions to the high and low nucleic acid containing 
bacteria (HNA and LNA), as well as the damaged 
fraction through PI staining. We found that the 
HNA and PI+ bacteria correlate well both in 
terms of abundance and diversity. The BONCAT+ 
and HNA fractions are taxonomically distinct, and 
as such we suggest they represent two different 
aspects of bacterial metabolic activity.

The high and low nucleic acid communities have 
been previously studied in the human gut micro
biota. Previous work reported similar proportions 
of HNA, LNA, and PI in healthy individuals as our 
study, along with the dichotomous taxonomic dis
tribution where the HNA are dominated by 
Firmicutes, and Bacteroidetes most abundant in 
the LNA fraction.10 This was found with different 
nucleic acid dyes, and both studies align with ours 
showing that the HNA fraction is taxonomically 
distinct from the whole community.10,18 

Firmicutes have on average smaller genomes than 
the Bacteroidetes, suggesting genome size is not 
a factor in this bimodal distribution.51,52 In the 
same study, the Firmicutes were shown to be tran
scriptionally more active than the Bacteroidetes, 
and were the first to be damaged upon exposure 
to a perturbation,10 a characteristic of HNA that 
has been shown in other studies.53,54 The correla
tions seen with the relative abundance and diversity 
between HNA and PI suggest that a portion of the 
HNA bacteria are damaged, or contribute to the 
pool of damaged bacteria. However, the specific 
biological mechanisms at play that differentiate 
the HNA/LNA modality in the human gut remain 
undefined.

Relative nucleic acid content is thought to be 
related to the metabolic activity of the cell, as for 
example, it is supposed that a bacterial cell would 
contain more RNA when active than when inac
tive. SYBR Green I stains both DNA and RNA, 
and as such could follow multiple aspects of 
bacterial activity.21 As most RNA in the bacterial 
cell is involved in translation, we optimized 
a complementary technique, BONCAT to speci
fically probe the production of nascent proteins. 
BONCAT-FACS is a promising technique that 
allows for the sensitive, rapid identification of 
translationally active bacteria from just a short 
in vitro incubation. By adding excess HPG and 
incubating the bacteria in their own fecal slurry 
anaerobically, we maintained in situ conditions 
as much as possible. Thus, we were able to use 
a defined marker of activity: translation, to com
pare to an undefined marker of activity: relative 
nucleic acid content, to determine how much 
protein production contributes to the activity 
supposed by relative nucleic acid content.

Both relative nucleic acid content and BONCAT 
identified approximately half of the gut microbiota 
as active. This is similar to what has been seen in 
other studies using stable isotope probing with 
heavy water (D2O), where they found a range in 
the proportion of active bacteria from 30 to 76%.16 

While the overall average proportion of HNA and 
BONCAT+ bacteria were similar in this study, their 
proportions did not correlate within an individual, 
and these two fractions are taxonomically distinct 
from one another. This suggests that the HNA 
bacteria are not necessarily the protein-producing 
bacteria within the system, and that HNA and 
BONCAT are two independent pools of bacteria. 
It is commonly assumed that transcription and 
translation are tightly coupled,55 so that both 
RNA and protein activities would be correlated 
and a relationship between BONCAT+ and HNA 
cells would exist. However, it has recently been 
shown that this tight coupling is not always the 
case, and specifically, there exists a substantial lag 
between transcription and translation across most 
Firmicutes.56 This is similar to what we are seeing 
in the human gut microbiome: there is no clear 
relationship between BONCAT+ and HNA cells, 
consistent with the notion that there is large 
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variation in the relationship between transcription 
and translation across bacteria.

The HNA fraction is the physiological fraction 
most similar across individuals, containing more 
core taxa and less unique taxa than the whole com
munity. Thus, the HNA cells may provide the bulk 
of the common cellular functions performed by the 
gut microbiota, containing the conserved function
ality required for members of the gut microbiome 
to exist in the intestinal milieu. In this sense, the 
HNA fraction is metabolically active and still func
tionally relevant, but less resistant to damage than 
the BONCAT+ fraction.

The translationally active bacteria (BONCAT+) 
are not taxonomically distinct from the whole com
munity or from the non-translating fraction 
(BONCAT-). Upon glucose addition, the propor
tion of BONCAT+ bacteria increased significantly, 
more than doubling in relative abundance. This 
suggests that most of the bacteria present in the 
gut have the potential to become translationally 
active, and that BONCAT with or without supple
mentation is able to differentiate between the actual 
and potential activity of the gut microbiota. 
Previous studies have suggested that approximately 
20% of the gut microbiota is dormant, with 15% of 
the gut microbiome containing sporulation 
homologues.45 While the non-translating fraction 
determined in this study is larger than what has 
been predicted to be dormant, it may represent 
a bacterial reservoir; a spectrum ranging from 
dead, damaged, fully dormant, to a slower rate of 
protein production not captured with the incuba
tion time used here. The lack of distinction between 
the BONCAT + and BONCAT- fractions could 
possibly be due to the leakiness in the sorting, but 
with purity levels ranging around 80%, only minor 
changes in the diversity between BONCAT+ and 
BONCAT- would be missed. As 16S rRNA gene 
sequencing rather than shotgun metagenomics was 
performed on the sorted fractions, differences 
might exist between the BONCAT + and 
BONCAT- fractions and the whole community at 
a higher taxonomic resolution.

Adding physiological information to sequencing 
data provides more sensitivity to subtle changes in 
the gut microbiota than whole-community diver
sity changes alone. The changes in the proportions 
of these physiological fractions in response to 

various drugs or glucose demonstrate the utility of 
a rapid method to determine changes in bacterial 
activity that occur before changes in taxonomic 
composition. The substantial increase in the pro
portion of BONCAT+ bacteria after glucose addi
tion is in line with previous work,15,16 and 
demonstrates how the majority of the gut micro
biota can be stimulated, differentiating between the 
realized potential of the community rather than the 
theoretical upper limit. BONCAT is a sensitive 
method to detect changes in the active fraction of 
the human gut microbiota, but the lack of changes 
in diversity of these fractions highlights the hetero
geneity of activity in microbial communities seen 
elsewhere.38 Changes in the proportion of HNA 
bacteria in response to certain xenobiotics were 
not as consistent as changes in the BONCAT+ 
fraction, but could represent an increase in stress 
response based on the correlation with damaged 
bacteria.

We believe BONCAT is a suitable method to 
study the translationally active members of the 
human gut microbiota. The limitations of 
BONCAT are well described in this comprehensive 
review.19 Specific to this study, the combination of 
BONCAT with FACS-Seq remains an area to 
further optimize, as our sorting efficiency was 
lower than sorting SYBR-stained cells. It is possible 
that bacterial aggregates with a mixture of positive 
and negative cells are being sorted together as 
BONCAT+. Further optimization of the BONCAT- 
FACS protocol, for example to allow for double 
positive sorting could further enlighten the HNA/ 
LNA distribution and its relationship to transla
tional activity. Other measurements of activity, 
such as replication or transcription, are amenable 
to the gut microbiota incubation and click protocol, 
and would help further characterize the contribu
tion of relative nucleic acid content as 
a physiologically marker of activity.

In conclusion, we compared two broad indicators 
of bacterial metabolism using cell sorting methods: 
relative nucleic acid content and translational activ
ity. Both markers identify approximately half of the 
community as active, yet are distinct from one 
another. Thus, the HNA bacteria are not necessarily 
the protein-producing bacteria, and these two frac
tions represent distinct types of metabolism and 
activity. By focusing on the active subcommunities 
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of the gut microbiota, we can more sensitively detect 
changes to perturbations than looking at the whole 
community alone. We hope this work lays the 
groundwork for using bulk-activity measurements 
to study how bacteria are able to change their phy
siology in response to various perturbations.

Methods

Sample collection

Human studies were performed with approval of 
the McGill Ethics Research Board (REB #A04-M27 
-15B). Ten healthy, unrelated individuals who had 
not taken antibiotics in the past 3 months and had 
not been diagnosed with a gastrointestinal condi
tion provided fecal samples on site. Samples were 
immediately placed in the anaerobic chamber (Coy 
Laboratory Products, 5% H2, 20% CO2, 75% N2). 
Sample preparation and staining were performed in 
the anaerobic chamber; FACS was performed aero
bically. Metadata questionnaires were completed 
post-sample donation, collecting information on 
dietary logs for the previous 48 hours, as well as 
recent travel history, antibiotic usage, and typical 
coffee, chocolate, tea, and dairy consumption.

BONCAT incubations, growth curves, and click 
reaction

Gut microbiota sample preparation was prepared 
as previously describe.57 Bacteria were diluted 1/ 
10 in 50% (v/v) of the supernatant retained from 
the first 6,000 x g centrifugation, 2 mM final 
concentration HPG, and remaining volume of 
rPBS. Bacteria were incubated at 37°C for 
2 hours unless otherwise stated. When specified, 
glucose (0.2% final concentration) or drug addi
tions (0.01 mg/ml final concentration) were 
added at the start of the BONCAT incubations. 
A no-HPG incubation is included as a control, 
and each sample is incubated in duplicate (tri
plicate for the xenobiotic experiments). Bacteria 
were fixed with 80% ethanol to a final concen
tration of 50% (v/v) and stored at 4°C until 
processed with the click reaction that same day.

For the click reaction, bacteria were pelleted 
and resuspended in the click reaction solution 
(Click-iT Cell buffer kit, ThermoFisher 

Scientific) containing 5 µM Alexa-647 azide, and 
incubated in the dark at room temperature for 
30 minutes. A no-Alexa control is included. 
Samples were then centrifuged at 8,000 x g for 
5 minutes, supernatant removed, and washed 
with 80% ethanol, and then centrifuged again 
and resuspended in PBS and stained with SYBR 
Green I. Growth curves were performed anaero
bically in the dark in 96 well plates, with tripli
cates for each condition, using the BioTek Epoch 
2 microplate spectrophotometer at OD600 with 
shaking before each measurement.

Fluorescence-activated cell sorting (FACS) and cell 
counts

Cell sorting was performed on the FACSAria III 
(BD Bioscience) equipped with a 488 nm laser 
and the appropriate detection filters, using 
a 70 μm nozzle at 70 psi and at a flow rate 
that would lead to less than 5% coincidence 
events. Positively stained cells were determined 
from debris and unstained cells using unstained 
controls. A total of 180,000 events were sorted 
using a 70 μm nozzle for each population for 
each individual and frozen at −80 °C for later 
DNA extraction. Sheath fluid was collected at 
the end of every sorting day as a negative con
trol to detect contaminant DNA. Data files were 
analyzed using FlowJo V7 software (FlowJo 
LLC). Cell count data was analyzed as previously 
reported.57

DNA extraction and 16S gene amplicon 
bioinformatics analysis

Samples were stored at −80°C until DNA extrac
tion. Samples were extracted with the Qiagen 
AllPrep PowerFecal kits as per the manufacturer’s 
instructions. The V4-V5 hypervariable region was 
amplified with the 515 F/926 R primers.58 

Trimming, alignment of paired end reads, and 
quality filtering was performed by DADA2.59 

Taxonomic alignment was performed with a pre- 
trained Naives Bayes classifier using SILVA 132 
database on 99% OTUs using QIIME2.

Taxonomic and low abundance filtering was per
formed in phyloseq (v1.3) in R (v3.6.1). Reads pre
sent in the sheath fluid but absent in the whole 
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community samples (69 ASVs) were removed. As 
well, ASVs without phyla-level taxonomic assign
ment were removed. A prevalence threshold was set 
at a minimum of 6 reads in at least 2 samples. 
Finally, two Pseudomonas ASVs were identified as 
contaminants and removed.

Count data was rlog transformed using the 
DESeq2 package (v1.26) and weighted UniFrac dis
tance matrix was calculated using rbiom (v1.0). 
Beta diversity was assessed on weighted UniFrac 
distances using pairwise PERMANOVA with 
999 permutations to test for significance using ado
nis in the vegan package (v2.5). Differential abun
dance testing was performed using the statistical 
analysis package corncob (v0.1) which performs 
beta-binomial regression models to determine dif
ferentially abundant and dispersed relative abun
dances. Weighted UniFrac distances between 
physiological groups were compared using the 
Kruskal–Wallis test in the rstatix package (v0.5). 
Alpha diversity of the sorted and unsorted compar
isons was performed on samples rarified to 10,534 
reads/sample without replacement using the 
Shannon diversity metric.
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