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Hao Zhang1, Keyang Liu1, Tieliu Shi1,6,7,*, Jun Wu 1,7,*

1Center for Bioinformatics and Computational Biology, and The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University,
Dongchuan Road 500, Shanghai 200241, China
2School of Mathematics and Computer Science, Ningxia Normal University, College Road, Guyuan City, Ningxia 756099, China
3Henan International Joint Laboratory of Infection and Immunity, Henan Key Laboratory of Critical Care Medicine, Department of Emergency Medicine, The First
Affiliated Hospital, Zhengzhou University, East Jianshe Road No. 1, Zhengzhou 450052, China
4Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland
5Faculty of Medicine, Department of Microbiology, Jagiellonian University, ul. Czysta 18, 31-121, Poland
6Key Laboratory of Advanced Theory and Application in Statistics and Data Science—Ministry of Education, School of Statistics, East China Normal University,
Zhongshan North Road 3663, Shanghai 200062, China
7Shanghai Institute of Wildlife Epidemics, East China Normal University, Dongchuan Road 500, Shanghai 200062, China

*Corresponding authors. Tieliu Shi, Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East
China Normal University, Shanghai 200241, China. E-mail: tieliushi@yahoo.com; Jun Wu, Center for Bioinformatics and Computational Biology, and the Institute of
Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China. E-mail: jwu@bio.ecnu.edu.cn

Abstract

Virulence factors (VFs) are critical determinants of bacterial pathogenicity, but current homology-based identification methods often
miss novel or divergent VFs, and many machine learning approaches neglect functional classification. Here, we present VirulentHunter,
a novel deep learning framework that enable simultaneous VF identification and classification directly from protein sequences by lever-
aging the crucial step of fine-tuning pretrained protein language model. We curate a comprehensive VF database by integrating diverse
public resources and expanding VF category annotations. Our benchmarking results demonstrate that VirulentHunter outperforms
existing methods, particularly in identifying VFs lacking detectable homologs. Additionally, strain-level analysis using VirulentHunter
highlights distinct pathogenicity profiles between Mycobacterium tuberculosis and Mycobacterium avium, revealing enrichment in VFs
related to adherence, effector delivery systems, and immune modulation in M. tuberculosis, compared to biofilm formation and motility
in M. avium. Furthermore, metagenomic profiling of gut microbiota from inflammatory bowel disease patient reveals a depletion of
VFs associated with immune homeostasis. These results underscore the versatility of VirulentHunter as a powerful tool for VF analysis
across diverse applications. To facilitate broader accessibility, we provide a freely accessible web service for VF prediction (http://www.
unimd.org/VirulentHunter), accommodating protein sequences, genomes, and metagenomic data.
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Introduction
Virulence factors (VFs) are molecules expressed or secreted by
microorganisms that enable host colonization, immune evasion,
and nutrient acquisition, facilitating infections [1]. Understanding
bacterial VFs is crucial for elucidating pathogenesis and devel-
oping therapeutic strategies [2–5]. High-throughput sequencing
has revolutionized microbiology, enabling insights into micro-
bial communities and their functional potential [6], including
VFs. However, a significant proportion of the proteins identified,
including potential VFs, remain unannotated, posing substan-
tial challenges. Thus, developing robust methods to analyze and
interpret this complex data is essential for advancing microbial
research and therapeutic innovation.

To address these challenges, various computational methods
have been developed for VF identification. These range from
sequence homology searches against known VF databases
(e.g. VFDB [7], Victors [8], BV-BRC [9]), to advanced machine
learning algorithms leveraging protein signatures. Homology-
based methods [10, 11] rely on sequence similarity but are
limited in identifying novel VFs without known homologs.
To overcome this, features such as amino acid composition,
physicochemical properties, PSSM, and one-hot encoding have
been integrated with machine-learning methods to improve
VF identification. For instance, Gupta et al. introduced MP4,
incorporating dipeptide frequency and pepstats features to
classify pathogenic proteins into three groups: Non-pathogenic
Proteins, Antibiotic Resistance and Toxins, and Secretory System
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and Capsular Proteins [12]. Additionally, Singh et al. developed
VF-Pred, an ensemble learning model predicting VFs using
sequence alignment and 982 engineered features [13]. Similarly,
Ji et al. introduced HyperVR, a hybrid deep ensemble approach
combining machine and deep learning with sequence-based and
evolutionary features [14]. Moreover, Xie et al. proposed a stacking-
based hybrid framework integrating four machine leaning and
three deep learning algorithms for VF prediction from protein
sequences [15]. The 3D structural information is crucial for
understanding protein functions and has been applied in tools like
GTAE-VF [16], its utility is limited by the scarcity of experimentally
resolved structures. However, the availability of 3D structures for
VFs is limited, and computational prediction of these structures
with high accuracy (e.g. AlphaFold2 [17], Rosetta [18], and ESMFold
[19]) is resource-intensive, posing challenges for metagenomic
studies that generate vast amounts of novel proteins.

Although these methods reliably identify VFs, they struggle
to classify VFs into specific functional categories. Categorizing
VFs is crucial for understanding how pathogens interact with
hosts. Different VF types, such as toxins, adhesins, and secretion
systems, have unique roles in infection. For example, toxins harm
host tissues, adhesins help bacteria attach to hosts, and secretion
systems deliver effector molecules. This gap highlights the need
for advanced methods to classify VFs into specific functional
groups, enhancing our understanding of microbial pathogenicity
and resistance mechanisms.

Recent advances in protein language models, such as ESM2
[19], ProteinBERT [20] and ProtT5 [21] have been pre-trained and
our previous studies has demonstrated their ability to extract
complex sequence–structure function relationships [22, 23]. Here,
we developed VirulentHunter, a novel framework for VF identi-
fication and classification. By fine-tuning the pre-trained ESM2
model, VirulentHunter effectively extracts meaningful features
from protein sequences, enabling precise prediction of VF cate-
gories. We validated its utility by analyzing pathogenic differences
between two Mycobacterium species with distinct virulence profiles
and contrasting VF variations in the gut microbiomes of healthy
individuals and inflammatory bowel disease (IBD) patients. Viru-
lentHunter outperforms state-of-the-art methods, demonstrating
the critical role of pre-trained models in advancing VF analysis
and providing a powerful tool for studying bacterial pathogenesis
and disease stratification.

Materials and methods
Data collection and curation
In this study, we focused exclusively on VFs found in bacteria.
We gathered all bacterial VF protein sequences from three public
databases: VFDB 2022 [7], Victors [8] and BV-BRC [9]. Subsequently,
these sequences were clustered with CD-HIT [24] v4.8.1, and the
duplicates were removed with 100% sequence identity and 80%
coverage, yielding 30,483 non-redundant VFs.

Since many collected VFs lacked category information, we
implemented a rigorous label propagation strategy to annotate
them using the 14 primary categories defined by VFDB. Initially,
we performed sequence-based clustering using DIAMOND [25]
with an 80% sequence identity and an 80% coverage threshold.
Within each cluster, all member VFs were assigned combined
labels from the union of their existing annotations. To further
enhance category assignment, we employed TM-Vec [26], a deep
learning tool for structural similarity detection. VFs were clus-
tered using TM-Vec with a threshold of 0.9. The same label
propagation strategy was then applied, allowing each VF to be

assigned combined labels derived from the union of their existing
annotations.

Fine-tuning of ESM2 for virulence factor
prediction and classification
VirulentHunter was developed by fine-tuning the state-of-the-art
ESM2 model (esm2_t30_150M_UR50D) to predict VFs and their
categories directly from protein sequences (Fig. 1). This fine-
tuning process utilized Low-Rank Adaptation [27] to adjust the
query, key, and value matrices of its self-attention modules. This
approach preserved pre-trained representations while enhancing
VF-specific feature extraction. Subsequently, a classification head
comprising two fully connected layers and a dropout layer was
added to perform binary VF prediction and multi-class catego-
rization. Considering class imbalance in VF categories, which
could bias predictions and confound performance evaluation,
we employed Focal Loss [28] for the VF classification task. Focal
Loss is designed to upweight hard-to-classify examples and those
belonging to minority classes, promoting more accurate and
robust categorization, especially for infrequent VF categories.
To determine the optimal hyperparameters, we utilized the
W&B Sweeps [29], a reliable and widely recognized method for
exploring the hyperparameter space. The detailed search spaces
are provided in Supplementary Tables S1 and S2. Besides that,
we also fixed the random seeds for all experiments to ensure
reproducibility.

Performance metrics and evaluation
To comprehensively assess VirulentHunter’s performance, we
used five standard metrics: accuracy, precision, recall, F1-score,
and Matthews correlation coefficient (MCC). While accuracy,
precision, recall, and F1-score provide valuable insights into
prediction performance, MCC offers a more robust evaluation,
particularly when dealing with imbalanced datasets. The
equations for these metrics are as follows:

• Accuracy = TP+TN
TP+TN+FP+FN

• Precision = TP
FT+FN

• Recall = TN
FP+TN

• F1 − Score = 2 × TP
2TP+FP+FN

• MCC = (TP×TN)−(FP×FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Where:

• TP = True Positives
• TN = True Negatives
• FP = False Positives
• FN = False Negatives

Given that VF category classification is a multi-label task, we
employed micro-averaged metrics: precision, recall, F1-score, and
MCC. In micro-averaging, each instance-label pair is considered a
separate prediction.

Webserver construction
We utilized the Apache HTTP server as a web server, devel-
oped by PHP (Version: 7.0.12, https://www.php.net/) programming.
Data interaction was implemented by HTML5, JavaScript, jQuery.
All data in VirulentHunter are stored and managed in MySQL
database (Version: 5.7.17, https://www.mysql.com/). Data analy-
ses were mainly carried out by the R (Version 4.4.0, https://www.
r-project.org/) or python (Version 3.9.10, https://www.python.org/)
script.
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Figure 1. Illustration of the proposed VirulentHunter framework for virulence factor identification and classification.

Results
Unifying public virulence factors databases for
enhancing VirulentHunter training
We developed a reproducible data curation schema for bench-
mark VFs and its category datasets, encompassing manual
review, redundancy elimination, and category label propagate
(Fig. 2a and b, see Materials and methods). The finally curated
VF dataset comprises 30 483 VFs across 14 distinct categories.
The majority of the VFs are associated with only one category
(90.1%), while 7.62% are related to two categories. Additionally,
five out of the 14 VFs categories constitute approximately 55% of
all VFs, highlighting a significant imbalance among the known VF
categories. The three most prevalent categories—effector delivery
systems (25.67% of VFs), immune modulation (15.12% of VFs), and
adherence (14.1% of VFs)—collectively account for nearly half of
the VFs in the dataset (Fig. 2c).

To construct a negative dataset for VF identification model
training, we extracted non-virulent protein sequences from
the Swiss-Prot [29] using the 23 keywords used in previous
study [14] (e.g. ‘NOT Virulence’, ‘NOT Toxin’ and ‘Not Capsule’,
Supplementary Table S3). To match the length distribution of
the collected VFs (Fig. 2d), we retained only non-virulent protein
sequences with lengths between 50 and 2000 amino acids. After
removing duplicates, 30 215 non-virulent proteins were randomly
selected to match the number of VFs, creating a negative
dataset for VF identification. Although standard approaches
for negative dataset construction are lacking, we recognized
its significant impact on model performance. Therefore, we
additionally explored a Gene Ontology (GO) annotation-based
method [29] (NExIGO) for negative sample selection. However,
compared to the keyword filtering method, the NexIGO-based
method resulted in lower performance (Supplementary Fig. S1).

Comparative analysis and sequence similarity
evaluation of the VirulentHunter method for
virulence factors identification
We initially assessed the performance of our proposed method,
VirulentHunter, by comparing it with current state-of-the-art
models: MP4 [12], VirulentPred 2.0 [30], and DeepVF [15]. Prior to
training, we randomly selected 3048 VFs and 3021 non-VFs to form

an independent validation dataset. The remaining proteins were
allocated to training and validation set. It should be noted that
DeepVF and MP4 are available exclusively as online services and
do not provide open-source code, thus preventing us from retrain-
ing these models with our constructed dataset, potentially influ-
encing their performance in the comparison. The 10-fold cross-
validation results demonstrated that VirulentHunter achieved
significantly improved robustness and consistently higher mean
performance metrics across all evaluation criteria compared to
baseline methods, highlighting its stability and generalizability
(Supplementary Fig. S2). Validation on an independent validation
set demonstrated that VirulentHunter outperformed competing
methods across most metrics. However, its recall score of 0.809
was slightly lower than those achieved by DeepVF and MP4.
(Fig. 3a). The ROC analysis demonstrated that VirulentHunter
achieved improvements of 47.76% and 68.37% over MP4 and
DeepVF, respectively, in terms of the AUC value. Since VirulentPred
2.0 only provides binary outcomes, it was excluded from the
ROC comparison. Additionally, the comparison between the
VirulentHunter with and without the fine-tuning step indicated
that incorporating a fine-tuning strategy can significantly
enhanced performance, as evidenced by the generation of more
distinctive embedding outcomes (Fig. 3b, Supplementary Fig. S3).

We subsequently assessed the capacity of VirulentHunter to
identify VFs with a range of sequence identities to the training
set. Hence, we initially categorized the independent validation set
into seven groups based on their sequence identity to the training
set. The results revealed that most of the methods provide accu-
rate predictions for queried proteins with high sequence identi-
ties (>70%) to the training set (Fig. 3c, Supplementary Fig. S4).
Notably, VirulentHunter exhibited more consistent performance
than other methods, even when sequence identity was below
40%. This underscores its superiority in characterizing VFs within
metagenomic studies, which are known for containing numerous
unknown proteins.

Classification performance of VirulentHunter in
diverse virulence factors categories
Having established the superior performance of VirulentHunter
in identifying VFs, we further evaluated its performance to
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Figure 2. Workflow of VF data curation and the composition of VirulentHunter database: (a) preprocessing of VFs collected from three publicly available
VF databases; (b) illustration of VF category propagation based on both the sequence and structure similarity; (c) expansion of the VF categories after
label propagation; (d) Distribution of the length of VFs and non-VFs selected as negative set.

classifying VFs into different functional categories. Following
the categorization schemes adopted in the VFDB database,
we aimed to further classify the identified VFs into 14 basal
categories.

Given the absence of direct competitors for this specific task,
we evaluated the proposed VirulentHunter method against a
baseline approach using BLAST and a naïve ESM2 + XGBoost
method. The ESM2 + XGBoost method involved using ESM2
to embed the proteins and then employing XGBoost for the
classification task, a strategy that has been shown to effectively
handle the complexity of protein classification [23]. Consis-
tent with our previous methodology, employed 10-fold cross-
validation and stratified the validation set into five groups
based on sequence similarity. The comparison results revealed
that both VirulentHunter and the ESM2 + XGBoost methods
offered higher and more stable performance compared to the
baseline BLAST approach across all sequence identity groups
(Fig. 4a and Supplementary Fig. S5a). Notably, VirulentHunter
demonstrated superior performance to the ESM2 + XGBoost
method, particularly in groups with low sequence identity,
underscoring its robustness in classifying VFs even when
sequence similarity to known VFs is limited. This capability

also suggests that VirulentHunter is exceptionally well-suited
for diverse metagenomic datasets, where sequence diversity is
prevalent.

We further conducted a comprehensive evaluation of the
performance of VirulentHunter across various VF categories.
The results demonstrated that our method consistently achieved
high and robust performance across all categories, with mean
Accuracy values ranging from 0.973 to 0.996, mean MCC
values from 0.753 to 0.934, and mean F1-scores from 0.704 to
0.946 (Fig. 4b). However, when examining query proteins with
less than 40% sequence identity, we observed a decline in
performance for categories with a limited number of training
proteins, particularly when the number was below 2000 (Fig. 4c,
Supplementary Fig. S5b and c).

VirulentHunter reveals the distinct patterns in
virulence factors between Mycobacterium avium
and mycobacterium tuberculosis
To further validate the reliability of VirulentHunter in real-
world microbiological studies, we conducted a comparative
analysis focusing on Mycobacterium tuberculosis (M. tuberculosis)
and Mycobacterium avium (M. avium). These two species, while
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Figure 3. Performance comparison of VirulentHunter against state-of-the-art (SOTA) methods for identifying VFs on the independent test set. (a) Radar
plot comparing VirulentHunter with SOTA methods and results from ablation experiments. (b) ROC curves of VirulentHunter, VirulentHunter w/o
fine tune, DeepVF, and MP4 on the independent test set. (c) Comparative performance of VirulentHunter and SOTA methods across varying sequence
identities relative to reference proteins. The bar chart illustrates performance differences between VirulentHunter and other SOTA methods, measured
by accuracy and MCC. The x-axis of the bar chart represents different similarity intervals and the number of protein sequences within each interval.

belonging to the same genus, Mycobacterium, display distinct
pathogenic profiles in humans, with M. tuberculosis mainly
infects individuals with normal immune function and M. avium
typically associated with opportunistic infections, particularly in
immunocompromised individuals.

We retrieved the complete genomic sequences of 93 M. avium
and 88 M. tuberculosis strains, along with their corresponding
protein sequences, from the NCBI database (release date:

20 July 2024, Supplementary Table S4). Using VirulentHunter
method, we identified and categorized 212,432 VFs across these
strains. Each M. avium strain contains 972–1425 VFs, while
each M. tuberculosis harbored 1122–1333 VFs. The predominant
VF categories in both species were Effector Delivery Systems,
Nutritional/Metabolic Factors, and Immune Modulation (Fig. 5a).
These categories underscore the multifaceted strategies utilized
by these pathogens to establish infection, acquire essential

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf271#supplementary-data
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Figure 4. Performance of VirulentHunter in the VFs categorization task. (a) Comparison of VFs category identification performance via 10-fold cross-
validation among VirulentHunter, BLAST and ESM2_XGBoost under varying sequence identity thresholds relative to the reference VFs dataset. (b)
Performance of VirulentHunter on each VF category evaluated with five criteria. (c) Performance decline of VirulentHunter with decreasing training
numbers for VFs lacking highly similar homologous sequences in the reference dataset. ‘Unlimited’: No sequence identity cutoff (independent test
versus reference); ‘<40’: Identity <40% (independent test validation versus reference).

nutrients, and manipulate host immune responses. The preva-
lence of VFs associated with Effector Delivery Systems, such as
type VII secretion systems, highlights the importance of these
systems in delivering VFs into host cells. Additionally, VFs involved
in Nutritional/Metabolic Factors suggests these pathogens
have evolved mechanisms to acquire essential nutrients from
the host environment. Finally, the presence of VFs associated
with Immune Modulation indicates that these pathogens can
actively subvert host immune responses to promote their
survival and replication. Intriguingly, we observed a distinct
separation of M. avium and M. tuberculosis strains when visualizing
their VF profiles (Fig. 5b). This suggests that the proportion of
different VF categories within each strain constitutes a unique
‘virulence fingerprint.’ This ‘fingerprint,’ based on the relative
representation of different VF classes, effectively differentiates
these closely related mycobacterial species. This highlights the

potential of VF proportion profiles as a valuable tool for
strain-level classification and for gaining insights into the evo-
lutionary trajectories of pathogenicity within the Mycobacterium
genus.

We further compared VF prevalence between M. tuberculosis
and M. avium, revealing a significantly higher prevalence of VF
in M. tuberculosis compared to M. avium (Mann–Whitney U test,
P < .01, Fig. 5c). However, the direction of this difference varied
across VF categories (Fig. 5d). Specifically, VFs associated with
Adherence, Effector Delivery System and Immune Modulation
were more prevalent in M. tuberculosis, suggesting greater empha-
sis on host cell invasion and immune evasion. Conversely, a
higher proportion of VFs related to Biofilm Formation and Motility
were observed in M. avium, indicating potential adaptation to
diverse ecological niche and reliance on extracellular survival
strategies.
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Figure 5. The application of VirulentHunter to large-scale assembled bacterial genomes reveals significant differences in VFs between M. avium and M.
tuberculosis. (a) Histogram showing the genome size distribution of M. avium and M. tuberculosis groups. (b) Heatmap illustrating the distinct separation of
VF proportion profiles between M. avium and M. tuberculosis groups. (c) Comparison of the overall proportion of VFs between M. avium and M. tuberculosis.
(d) Comparison of the proportions of VFs in each category between M. avium and M. tuberculosis. Statistical significance was determined using the
Mann–Whitney U test.
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These findings align with the distinct pathogenic strate-
gies employed by these two Mycobacterium species. M. avium,
often infecting immunocompromised hosts, harbors a higher
proportion of VFs related to Biofilm Formation and Motility.
These VFs enhance its ability to form biofilms, adapt to various
environments, and survive in hosts with weakened immune
systems. In contrast, M. tuberculosis, a primary pathogen infecting
immunocompetent individuals, possesses more prevalent VFs
involved in Immune Modulation and Effector Delivery Systems.
This adaptation enables it to evade and manipulate the host’s
immune response, establishing a chronic infection. Furthermore,
the higher proportion of Adherence-related VFs in M. tuberculosis
may facilitate its transmission and colonization within the host.

VirulentHunter identified differences in the
relative abundance of virulence factor gene
expression among patients with different
inflammatory bowel diseases
Building on the established effectiveness of VirulentHunter in
classifying VFs across diverse microbial strains, we further applied
this method to the complex landscape of metagenomic research,
with a particular focus on IBD—a spectrum of chronic intestinal
inflammatory disorders encompassing Crohn’s disease (CD) and
ulcerative colitis (UC). Prior research have revealed that specific
VFs within the gut microbiota substantially affect the pathogen-
esis and progression of IBD [3, 31–33]. Consequently, we utilized
VirulentHunter to analyze metagenomic data from IBD patients,
thereby identifying VFs associated with this disease.

To achieve the objectives outlined above, we utilized the
dataset from Lloyd-Price et al. [34], randomly selecting 220 gut
metagenomic samples from 106 participants, including 60 sam-
ples from non-IBD individuals, 80 from patients with CD, and 80
from patients with UC. We initiated our analysis with a standard
metagenomic data processing pipeline, including quality control,
genome assembly, and gene prediction, on these samples (see
Materials and methods). To reduce the bias leading by sequence
length, 209 samples with more than 10,000 predicted genes were
retained for downstream analysis (Supplementary Table S5).
The relative abundances of these genes were estimated using
Salmon [35]. To optimize computational efficiency, we performed
clustering using CD-HIT with a sequence identity threshold of at
least 90% before applying VirulentHunter model to identify and
classify VFs among the selected representative proteins. This
approach identified 64 642 representative VFs, of which only
42.21% matched known reference VFs with sequence identity
greater than 40%. This significant discovery underscores the
presence of numerous previously unrecognized or divergent
VFs, which are likely overlooked by commonly used sequence-
alignment-based methodologies. The assigned VF categories were
then propagated to their corresponding protein members.

Our results revealed significant differences in VF prevalence
across different cohort groups. Specifically, gut microbiome
samples from patients with CD and UC exhibited higher
proportions of VFs compared to samples from non-IBD individuals
(Fig. 6a). To evaluate this finding using a traditional approach,
we also employed BLAST-based method (DIAMOND) to quantify
VF proportions across the cohorts (positive hits were defined
using established reference criteria of sequence identity >50%
and query coverage >80%, as employed in previous studies
[39, 40]). While this traditional method also identified higher
proportions of VFs in the IBD cohorts, the estimated VF proportion
was significantly lower than that determined by the proposed
VirulentHunter method, demonstrating its high sensitivity

(Supplementary Fig. S6a). These findings are consistent with
previous studies, including those reviewed by [41], which reported
an increased presence of VFs in IBD patients. Our results further
reinforce the hypothesis that VFs may play a role in the patho-
genesis of IBD and that patients with IBD tend to harbor a higher
abundance of VFs in their gut microbiome compared to healthy
individuals. To further investigate, we examined the VF dispersion
across the three cohorts, focusing on their estimated relative
abundances. The non-metric multidimensional scaling (NMDS)
analysis did not reveal significant differences (Fig. 6b). However,
specific VF analysis identified numerous VF with significantly
altered abundances in patients with UC and CD compared to
healthy individuals. Between the UC and CD cohorts, only 4 VFs
showed differential expression. Notably, 79 VFs were significantly
different in the UC cohort compared to the non-IBD cohort, with
47 having higher abundance and 32 having lower abundance Sim-
ilarly, 97 VFs were differentially expressed in the CD cohort com-
pared to the non-IBD cohort, with 29 having higher abundance
and 68 having lower abundance (Fig. 6c, Supplementary Table S6).
Of the VFs with significant differences in abundance, 29 were
commonly dysregulated in abundance in both the UC and CD
cohorts compared to the non-IBD cohort (Fig. 6d). Notably, 19 have
higher abundance VFs, primarily linked to biofilm formation and
immune modulation (Fig. 6e), suggesting a potential mechanism
for enhanced bacterial persistence and chronic inflammation.
Conversely, 10 VFs with lower abundance may be associated with
immune modulation (Fig. 6f), indicating a potential disruption
in the delicate balance between the gut microbiota and the
host immune response in IBD. This categorization underscores
the multifaceted roles these VFs may play in the pathogenesis
and progression of IBD, providing insight into the potential
mechanisms through which these factors contribute to the
disease. In contrast, the traditional BLAST-based method failed
to identify any significantly differentially abundant VFs between
the non-IBD and CD cohorts, or between the CD and UC cohorts,
highlighting a key advantage of VirulentHunter in revealing
disease-relevant functional differences (Supplementary Fig. S6b).

Conclusion and discussion
VFs are central to infectious disease pathogenesis. Current
homology-based VF identification methods suffer from high
false-negative rates, particularly for novel or divergent VFs.
While machine learning approaches improve detection, they
often neglect functional classification, limiting mechanistic
insights. Here, we present VirulentHunter, a novel deep-learning
framework that simultaneously identifies and classifies VFs
directly from protein sequences. We constructed a comprehensive
and curated VF database by integrating public resources and
expanding annotations via label propagation strategy. Bench-
marking demonstrated VirulentHunter significantly outperforms
state-of-the-art methods, particularly for VFs lacking detectable
homology—a major hurdle in microbial pathogenesis research.
We further validated VirulentHunter’s practical utility through
two distinct applications: strain-level analysis, revealing key
differences in pathogenicity between two Mycobacterium species,
and metagenomic profiling, providing novel insights into VF
distribution within the gut microbiota of IBD patients.

The superior performance of VirulentHunter, particularly in
identifying non-homologous VFs, highlights the power of ESM2
to capture complex sequence patterns beyond homology. This
capability is crucial for uncovering novel virulence mechanisms
in emerging pathogens and characterizing the ‘virulome’ of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf271#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf271#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf271#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf271#supplementary-data
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Figure 6. Dispersion of VFs across the non-IBD, UC, and CD cohorts. (a) Comparison of the proportion of VFs identified in the gut microbial samples from
the three cohorts. (ANOVA test, FDR-adjusted. ‘Ns’ indicates no significant difference; ∗ and ∗∗ represent P-values of ≤.05 and ≤.01, respectively.). (b)
NMDS plots of VFs grouped by individual status (non-IBD, UC and CD). The stress value of the NMDS ordination is 0.19. The 95% confidence ellipses are
displayed around the sample groups. (c) Comparison of relative VF abundance between each pair of cohorts. (Wilcoxon test was used for comparisons.
Significance was defined as FDR-adjusted P-value <.1, consistent with thresholds applied in previous studies [36–38]). (d) Overlap of VFs with higher
and lower abundance in the UC and CD cohorts compared to the healthy individuals. (e and f) Categories of VFs with higher abundance and lower
abundance in the UC and CD cohort compared to the healthy individuals, respectively.

understudied microbes. Our strain-level analysis of Mycobacterium
species demonstrates the VirulentHunter’s ability to dissect
subtle differences. By accurately identifying and classifying VFs,
we gain insights into disease mechanisms, such as variations in
immune modulation, invasion and biofilm formation, which may
explain differences in disease severity or clinical manifestations.
This approach is particularly valuable for understanding drug
resistance evolution and the emergence of more virulent strains.
Furthermore, applying VirulentHunter to metagenomic data
from IBD patients provides novel insights into gut microbiome
pathogenesis. Profiling VF composition revealed dysbiosis in
IBD patients, marked by a reduction in VFs linked to immune

modulation. This suggests that the altered microbial community
in IBD may impair immune regulation, contributing to chronic
inflammation. This approach could also be used to investigate
the impact of dietary interventions or therapeutic treatments on
the gut virulome.

While VirulentHunter advances in VF identification and classi-
fication, several key challenges remain: (i) limited training data for
certain VF categories. Expanding the VF database with experimen-
tally validated entries, leveraging augmented functional anno-
tation [42, 43], and integrating structural information [44] could
enhance accuracy; (ii) potential data leakage from pLMs like
ESM2, which we mitigated through sequence similarity subgroup
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analysis (Figs 3c and 4a), particularly focusing on low-similarity
proteins (<40%) to assess generalization capability, it serves as
an approximation of the model’s behavior on out-of-distribution
proteins; and (iii) the selection of the negative class is a crit-
ical factor that can significantly influence the performance of
machine learning classifiers. We argue that the choice of a nega-
tive sampling strategy should be carefully tailored to the specific
application, as different approaches may be optimal depending on
the research context and the nature of the available data. Addi-
tionally, exploring the interplay between different VFs and their
regulatory mechanisms will contribute to more comprehensive
understanding of microbial pathogenesis.

Key Points

• VirulentHunter is a novel deep learning framework that
overcomes limitations of current methods by directly
predicting VFs and classifying them into functional
categories from protein sequences, without relying on
sequence homology.

• VirulentHunter leverages a comprehensive, curated
VF database integrating diverse public resources and
employs a rigorous label propagation strategy to expand
VF annotations, enabling more accurate and inclusive VF
identification.

• Benchmarking shows VirulentHunter outperforms exist-
ing methods, particularly in identifying VFs with limited
sequence homology, which is critical for studying emerg-
ing pathogens and less-studied microbial species.

• Two key applications demonstrate its utility: strain-level
analysis reveals distinct VF patterns between M. tubercu-
losis and M. avium, while metagenomic profiling links VF
depletion in IBD gut microbiomes to disease pathogene-
sis.

• VirulentHunter advances microbiome research by
enabling comprehensive VF detection, functional
categorization, high-resolution strain comparisons, and
metagenome-scale insights into disease mechanisms.
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