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ABSTRACT We report the draft genome sequence of Monascus purpureus GB-01, an
industrial strain used as a food colorant. De novo assembly of long reads resulted in
121 chromosomal contigs and 1 mitochondrial contig, and sequencing errors were
corrected by paired-end short reads. This genome sequence will provide useful in-
formation for azaphilone pigments and mycotoxin citrinin biosynthesis.

Utilization of the filamentous fungus Monascus purpureus (phylum Ascomycota)
began more than 2,000 years ago for the production of red mold rice, a fermented

food in Southeast Asian countries (1). Currently, it is widely used for production of
yellow and red azaphilone pigments as food colorants. Recently, several research
groups began conducting genetic and genomic studies of Monascus ruber (2, 3),
Monascus aurantiacus (4), and Monascus purpureus (5, 6) using modern approaches to
elucidate the biosynthesis of pigments and the mycotoxin citrinin. In addition, the first
genome sequence of M. purpureus YY-1 was reported recently (7).

In this study, we obtained the M. purpureus strain GB-01 from Ezaki Glico Co., where
the strain was collected half a century ago for the purpose of red pigment production.
We selected GB-01 as a representative strain with high pigment production from
among the stocks available at this company. M. purpureus GB-01 cells were grown in
PSD100 medium (100 g/liter D-glucose, 38 g/liter polypeptone, 1.0 g/liter MgSO4·7 H2O,
and 2.0 g/liter NaNO3 [pH 5.5]). at 33.5°C for 4 days. The genomic DNA of M. purpureus
GB-01 was isolated using an Isoplant II kit for short reads and a NucleoSpin plant II kit
for long reads according to the manufacturer’s instructions. Paired-end short reads
were generated on the Illumina MiSeq platform using the Nextera DNA library prepa-
ration kit to generate libraries with different insert lengths and the MiSeq reagent kit
3 for sequencing runs. The numbers of reads totaled �4.00 million and 4.67 million, and
their mean insert lengths were 449 and 784 bases, respectively. Long reads of M.
purpureus GB-01 were generated on the PacBio RS II platform using the PacBio
SMRTbell template prep kit 1.0 and PacBio DNA/polymerase binding kit P6. The total
number of subreads was �1.23 million, the total number of bases was �2,862 million,
the mean subread length was �2,318, bases and the N50 subread length was �2,536
bases. To extract the mitochondrial reads, all long reads were mapped to the Aspergillus
nidulans FGSC A4 complete mitochondrial genome sequence (GenBank accession
number JQ435097) using Minialign 0.5.3 (8). The reads that did not map to the
mitochondrial genome were processed as chromosomal reads and assembled de novo
using Canu 1.7 (9). The assembly errors were corrected with the PacBio genomic
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consensus tool using the Arrow algorithm (Pacific Biosciences). In addition, to eliminate
small indels, a final polish of the assembly was performed using Pilon 1.22 with
nonredundant short paired-end reads of approximately 208.7� total coverage (10, 11).
In the final assembly, we obtained 121 chromosomal contigs with 24.3 million total
bases with an N50 value of 327,944 bases and 1 circular mitochondrial contig with
27,264 bases.

Obtaining multiple genomic sequences from Monascus spp. will help establish the
molecular machineries for pigment and fungal toxin biosynthesis and may lead to the
development of engineered strains with improved pigment productivity and lower
mycotoxin levels.

Data availability. The draft genome sequence of GB-01 was deposited in DDBJ/

GenBank under accession numbers BIYA00000000 for chromosomes and AP019407 for
mitochondria, SRA accession number DRA007939, and BioProject number PRJDB7887.
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