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Abstract

Our lab and others have shown that chronic alcohol use leads to gene and miRNA

expression changes across the mesocorticolimbic (MCL) system. Circular RNAs

(circRNAs) are noncoding RNAs that form closed-loop structures and are reported to

alter gene expression through miRNA sequestration, thus providing a potentially

novel neurobiological mechanism for the development of alcohol dependence (AD).

Genome-wide expression of circRNA was assessed in the nucleus accumbens (NAc)

from 32 AD-matched cases/controls. Significant circRNAs (unadj. p ≤ 0.05) were

identified via regression and clustered in circRNA networks via weighted gene

co-expression network analysis (WGCNA). CircRNA interactions with previously

generated mRNA and miRNA were detected via correlation and bioinformatic

analyses. Significant circRNAs (N = 542) clustered in nine significant AD modules

(FWER p ≤ 0.05), within which we identified 137 circRNA hubs. We detected

23 significant circRNA–miRNA–mRNA interactions (FDR ≤ 0.10). Among these,

circRNA-406742 and miR-1200 significantly interact with the highest number of

mRNA, including genes associated with neuronal functioning and alcohol addiction
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(HRAS, PRKCB, HOMER1, and PCLO). Finally, we integrate genotypic information that

revealed 96 significant circRNA expression quantitative trait loci (eQTLs) (unadj.

p ≤ 0.002) that showed significant enrichment within recent alcohol use disorder

(AUD) and smoking genome-wide association study (GWAS). To our knowledge, this

is the first study to examine the role of circRNA in the neuropathology of AD. We

show that circRNAs impact mRNA expression by interacting with miRNA in the NAc

of AD subjects. More importantly, we provide indirect evidence for the clinical impor-

tance of circRNA in the development of AUD by detecting a significant enrichment

of our circRNA eQTLs among GWAS of substance abuse.
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1 | INTRODUCTION

Alcohol is among the most readily available and commonly abused rec-

reational drugs worldwide with substantial socioeconomic and public

health implications.1 The shift from recreational alcohol use to prob-

lematic drinking resulting in alcohol use disorder (AUD) is dependent

upon genetic and environmental factors.2 AUD is moderately heritable

(�49%)3; however, the genetic mechanisms underlying this heritability

are poorly understood. Although the alcohol dehydrogenase cluster on

Chromosome 4 has been among the most consistently replicated

genetic loci associated with AUD,4 molecular studies from the

mesocorticolimbic (MCL) system of human postmortem brains and

animal models have implicated additional AUD risk genes involved in

neurosignaling, synaptogenesis, and immune response.5,6 The limited

overlap between molecular and genetic studies7 has hindered our

understanding of the link between AUD-associated genetic loci and

gene expression changes in the brain. Broadly, the human trans-

criptome can be divided into coding and noncoding, with the noncod-

ing transcriptome (represented by a large set of noncoding RNA

[ncRNA] species characterized by their minimal or complete lack of

protein-coding abilities and gene regulatory functions8,9) being a

largely unexplored domain of the human genome with a potentially

substantial impact on the neuropathology of AUD. Among these, a par-

ticular class of ncRNA, termed circular RNA (circRNA), have been impli-

cated in the development of alcoholic hepatitis in mouse models.10,11

CircRNAs are abundantly and dynamically expressed throughout

the mammalian central nervous system (CNS).12,13 They primarily arise

from pre-mRNA splicing events in which the 50 and 30 ends of introns

or alternatively spliced exons are covalently linked to form closed-loop

structures.14 Although several hypotheses have been proposed to

explain the mechanisms by which circRNAs regulate gene

expression,15 a commonly accepted one, based on experimental obser-

vations, is the miRNA sponge hypothesis.16 MiRNAs regulate gene

expression mainly through binding to the 30 untranslated regions

(UTRs) of their target genes, leading to translational repression and

mRNA degradation.17 CircRNAs serve as competing endogenous RNAs

(ceRNA) for miRNA by competing with miRNA response elements

(MREs) in the 30 UTRs of mRNA. This leads to miRNA sequestration by

circRNA and decreased miRNA–target interactions, effectively increas-

ing gene expression as a result.18 More importantly, circRNA's ability

to function as miRNA sponges has shown to be emerging biomarkers

for both neurodegenerative and neuropsychiatric disorders.19–21

With their varied spatiotemporal expression in the brain,

circRNAs were implicated in the etiology of neurodegenerative and

neuropsychiatric disorders.13,22,23 To test whether these recent obser-

vations also extend to alcohol dependence (AD), we assessed the

genome-wide expression of circRNA, miRNA, and mRNA in the

nucleus accumbens (NAc) from subjects with AD followed by

weighted gene co-expression network (WGCNA) and bioinformatic

and statistical analyses (Figure 1). We assess the functional impact of

circRNA expression in NAc based on (1) its role as part of the reward

pathway central to the neuropathology of addiction, (2) availability of

miRNA and mRNA data generated in NAc on the same subjects, and

(3) the known characteristic of the NAc as a hub for adult

neurogenesis,24 an important neurobiological process believed to be

partially regulated circRNA interactions.25 Finally, we applied an

expression quantitative trait loci (eQTL) analysis to identify genetic

elements affecting circRNA expression and the ability to interact with

miRNA and mRNA. With this study, our main goals were to identify

the potential regulatory mechanisms by which circRNAs affect the

expression of risk AUD genes and provide a methodological

framework for exploring circRNA, miRNA, and mRNA interactions in

future postmortem brain studies. This is the first study to examine the

effect of circRNA on mRNA expression via miRNA sponge interactions

in NAc from chronic alcohol abusers to the best of our knowledge.

2 | METHODS AND MATERIALS

2.1 | Tissue processing and RNA extraction

Postmortem NAc from 42 AD cases and 42 controls was provided by

the Australian Brain Donor Programs of New South Wales Tissue

Resource Centre (NSW TRC) under the support of the University of
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Sydney, National Health and Medical Research Council of Australia,

Schizophrenia Research Institute, National Institute on Alcohol Abuse

and Alcoholism, and the New South Wales Department of Health.26

As part of a previous study,27 several criteria were used to exclude

samples with (1) agonal state, (2) substantial brain damage, (3) history

of infectious disease, and (4) postmortem interval (PMI) > 48 h

(Table S1). Samples were further matched for RNA integrity number

(RIN) (mean = 6.9, ±0.84), sex (all male), ethnicity (100% Caucasian),

brain pH, and postmortem interval to minimize covariates' effect on

expression, resulting in 18 matched case–control pairs (n = 36).28

Total RNA from flash-frozen NAc was extracted and purified via

mirVANA-PARIS kit (Life Technologies, Carlsbad, CA) following the

manufacturer's protocol. RNA integrity (RIN) and concentrations were

assessed via Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.,

Santa Clara, CA) and Quant-iT Broad Range RNA Assay kit (Life

Technologies), respectively.

2.2 | Microarrays and expression normalization

Genome-wide circRNA, miRNA, and mRNA expression was assessed

on three different platforms: (1) Arraystar Human Circular RNA Array

spanning 13,617 circRNA probes, (2) Affymetrix GeneChip miRNA 3.0

Array spanning 1733 mature miRNAs, and (3) Affymetrix GeneChip

Human Genome U133A 2.0 array containing 22,214 probe sets

spanning �18,400 unique mRNAs. Raw expression data from each

assay were background corrected, log2 transformed, and quantile

normalized via Partek Genomics Suite v6.23 (PGS; Partek Inc.,

St. Louis, MO) and the limma package (Version 4.0) in R. To exclude

outliers that could impact downstream analyses, three samples were

removed from the circRNA normalized dataset, leaving 17 cases and

16 controls (n = 33), and one sample was removed from both the

miRNA and mRNA normalized datasets, resulting in 17 cases and 18

controls (n = 35). Here, we validate only the circRNA array by

assessing the expression of three randomly selected circRNA from the

entire microarray at the Arraystar facilities via quantitative PCR (qPCR)

because the mRNA and miRNA expression arrays were validated previ-

ously.27 The assessed genes showed a high mean correlation (Kendall

tau r = 0.87 [SD ± 0.021]) between the two platforms (Figure S1).

2.3 | Identifying differential transcript expression

We assessed the relationship between transcript expression and AD

status in RStudio (ver. 1.2.1335). Differential circRNA expression was

assessed via robust linear regression in the MASS package (v.7.351.5)

with smoking and RIN included as covariates in the model29 as these

were shown to have a greater impact on circRNA expression,30,31

compared with other demographic and postmortem covariates.32

Differentially expressed miRNA and mRNA were previously identified

via a bidirectional stepwise regression5 adjusting for demographic and

postmortem covariates in the Stats package (v.3.6.1).

2.4 | WGCNA

To better capture the system-wide network interactions between the

circRNA and increase power to detect circRNAs associated with AD,

F IGURE 1 Framework for
circRNAs as miRNA sponges and
study design flowchart. (A) CircRNAs
are primarily formed through back
splicing of unspliced transcripts in
which introns or a combination of
exons and introns have their 30 and 50

ends covalently bonded to form
closed-end loops. (B) Under normal

circumstance, miRNA will bind to 30

UTR of mature mRNAs, leading to
mRNA degradation or translational
repression; however, in the presence
of circRNA with complementary
sequences, miRNAs are sequestered
away from their target mRNAs,
leading to increased gene expression.
(C) Flowchart depicting the steps and
analyses used to determine
significant circRNA–miRNA–mRNA
interactions in this study
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we partition the nominally significant (p ≤ 0.05) circRNAs into

co-expression networks using WGCNA in RStudio (v.1.69). Our

criteria to include nominally significant genes were based on retaining

genes with (1) smaller effect sizes, albeit true positive signals;

(2) exclude genes not likely associated with AD (i.e., reduce the noise);

and (3) provide a sufficient number of genes for the network analysis.

A detailed description of WGCNA is outlined in literature27,33,34 and

in Methods S1. The module eigengenes (MEs), a single aggregate

expression value for each gene module, were correlated to AD case

status and available demographic/biological covariates. To validate

the gene networks associated with AD in WGCNA, we performed a

bootstrap resampling of 100 iterations with replacement (Figure S2).

2.5 | CircRNA hub gene prioritization

CircRNA hubs representing potential drivers of expression for entire

modules were identified from the absolute value of Pearson's

correlation coefficient between MEs and individual gene expression.

This value of intramodular connectedness, denoted as module

membership (MM), was used to define circRNA hubs as transcripts

significantly correlated with AD (p ≤ 0.05) and a MM ≥ 0.70 within

the significant AD modules.

2.6 | Correlations analysis between circRNA,
miRNA, and mRNA

To test the miRNA sponge hypothesis framework, we first explored

correlations between the differentially expressed mRNA, miRNA, and

circRNA hubs. We used only subjects with complete data across all

three expression platforms (i.e., 17 AD cases and 15 controls). The

circRNA–miRNA–mRNA correlations were based on Pearson's

product moment generated in the miRLAB package (ver. 1.14.3) in

RStudio. All significant circRNA–miRNA, negative miRNA–mRNA, and

positive circRNA–mRNA correlations, respectively, were extracted at

a false discovery rate (FDR) of 10% and retained for follow up

analyses.

2.7 | Computational prediction of circRNA–miRNA
interactions

Next, the correlation analyses were supplemented with bioinformatic

predictions to further increase the reliability of our findings by

identifying circRNA, miRNA, and mRNA pairs with converging

evidence for interaction from both the correlation and in silico

analyses. Thus, the circRNA–miRNA correlations were complemented

with computational predictions using STarMir in the Sfold application

suite (http://sfold.wadsworth.org/cgi-bin/index.pl).35 STarMir

calculates probability scores for binding predictions of shared seed

sequences between circRNA and miRNA36 based on logistic

regression models developed from crosslinking immunoprecipitation

(CLIP) studies.37 Based on STarMir's recommendations, the logarithm

of odds for predicted binding (logit probability score) ≥ 0.50 was

considered significant.35

2.8 | Prediction of miRNA–mRNA target
interactions

Similarly, the miRNA–mRNA correlations complemented miRNA

target predictions from the multiMiR package (v.1.6.0) in Rstudio.

MultiMiR is a curated database of miRNA–mRNA target predictions

that integrates both computational prediction algorithms (DIANA-

microT-CDS, ElMMo, MicroCosm, miRanda, miRDB, PicTar, PITA, and

TargetScan) and experimentally validated miRNA–target interactions

(miRecords, miRTarBase, and TarBase).38

2.9 | Moderation analysis

To test whether miRNA expression moderates the relationship

between circRNA and target mRNAs we utilized the Stats package in

RStudio. Within the linear regression model that included mRNA

expression as the independent variable, moderation was modelled as

the interaction (circRNA � miRNA) term effect on gene expression

adjusting for smoking and RIN's confounding effects.39 Significance

was based on an FDR ≤ 0.10 threshold. For a more detailed

methodological explanation, see Methods S2.

2.10 | Gene-set enrichment analyses

To determine the biological function of genes that participate in our

identified circRNA–miRNA–mRNA interactions, we performed a GO

biological processes gene-set enrichment via ShinyGO (v.0.61) at each

stage in our analyses. ShinyGO utilizes a hypergeometric distribution

to determine significant enrichment at an FDR ≤ 0.10.40

2.11 | CircRNA eQTL analysis and enrichment in
genome-wide association study of substance abuse

To explore if known AUD-associated genetic variants impact the

expression of differentially expressed circRNA hubs, an eQTL

analysis was performed, followed by a genome-wide association

study (GWAS) enrichment analysis. The postmortem sample was

genotyped as part of a larger GWAS study.27 Monomorphic single

nucleotide polymorphisms (SNPs) and those with excessive

missingness (>20%) were filtered out. Only local, cis-eQTLs within

500 kb of each circRNA hub's start/stop position were mapped, and

variants in linkage disequilibrium (LD) (R2 ≥ 0.7) were subsequently

pruned via Plink v1.9.41 We utilized the MatrixEQTL package

(ver. 2.3) in RStudio to perform two cis-eQTL analyses using a linear

regression framework after adjusting for relevant covariates. Firstly,
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we utilized the “modelLINEAR” argument to identify significant eQTLs

irrespective of AD case status. Secondly, we incorporated the

“modelLINEAR_CROSS,” which introduces a (SNP � AD) interaction

term to assess whether any significant eQTL impacts circRNA

expression in a disease dependent manner. The overlap

(i.e., enrichment) was tested between our eQTLs and recent GWAS of

substance abuse, including alcohol and smoking, using two mutually

complementing tests (Cauchy combination [CC] and Simes42,43)

adjusting for multiple testing and LD (R2 ≥ 0.50). For more details, see

Methods S3.

3 | RESULTS

3.1 | CircRNAs are organized in networks
associated with AD

At the nominal p ≤ 0.05, our gene expression analysis revealed

542 differentially expressed circRNAs between AD cases and controls

(Figure 2A), with none of them achieving significance at FDR ≤ 0.10.

The lack of significant circRNA detected at the FDR of 10% can be

attributed to low power (even in the presence of rigorous

case–control matching) due to the relatively low expression of

individual circRNA transcripts.25 Among others, low circRNA

expression could lead to increased within-group variance due to

purely stochastic events.44 Thus, to detect potential circRNA drivers

of the AD phenotype, we employed WGCNA, which aggregates

individual transcripts into co-expressed modules. In addition to

increased statistical power, WGCNA also highlights network

interactions at a system level. Except for one module (M3), the

nominally significant circRNAs clustered in 10 modules, nine of which

significantly correlated with AD (Bonferroni adj. p ≤ 0.05) (Figure 2B).

Of the significant modules, M1, M2, M4, and M5 were positively

correlated, whereas M6–M10 were negatively correlated with AD

status. From these modules, we identified 137 hub genes, which were

selected for downstream statistical and bioinformatic analyses against

mRNA (n = 3575) and miRNA (n = 264) significantly associated with

AD at FDR ≤ 0.10 as a part of a previous study on the same subjects

(Figure 2A).5 Please see (1) Table S2 for regression models and

coefficients, (2) Figures S2 and S3 for circRNA regression QQplots

and top differentially expressed transcripts, and (3) Table S3 for

WGCNA results.

F IGURE 2 Differentially expressed transcripts and circRNAWGCNA results. (A) Volcano plots describing the relationship between regression
estimates and �log10(p) for each transcript level in our analysis (circRNA, miRNA, and mRNA). Dashed lines correspond with the significance
threshold of p ≤ 0.05 and FDR ≤ 0.10. (B) WGCNA module clustering dendrogram from our nominally AD significant (p ≤ 0.05) circRNA
transcripts. (C) Heat plot comparing the correlation (Pearson's) of our identified circRNA module MEs to AD diagnosis and all other available
covariates. In respect to AD diagnosis, the top value represents the correlation coefficient, and the bottom value represents uncorrected p-values.
For covariates: *p ≤ 0.05 and **p ≤ 0.005
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3.2 | CircRNA–miRNA–mRNA show complex
interaction patterns that are associated with AD

We tested the circRNA ability to interact with miRNA and thus

indirectly affect the miRNA target's expression in a disease-dependent

manner. Assuming circRNAs act as miRNA sponges to impact mRNA

expression, we posit that the most relevant downstream biological

interactions will be represented by negative miRNA–mRNA and

positive circRNA–mRNA correlations. We also include negative

circRNA–miRNA correlations to capture the predicted inverse

relationship between circRNA–miRNA expression as previously

described.45,46 Thus, we first performed three independent correlation

analyses (circRNA–miRNA, miRNA–mRNA, and circRNA–mRNA)

followed by tests to identify the intersection between the significant

correlations corrected at FDR of 10%. In the circRNA–miRNA (circRNA

n = 137; miRNA n = 264) analysis, we identified 48 significant negative

circRNA–miRNA correlations. The miRNA–mRNA (miRNA n = 264;

mRNA n = 3,575) analysis revealed 46,501 significant negative

correlations. Finally, the circRNA–mRNA (circRNA n = 137; mRNA

n = 3575) analysis revealed 2221 significant positive correlations. From

the intersection of these analyses, we identified a total of 2480

overlapping correlations, which were then used in all subsequent

follow-up analyses. For a full list of correlation coefficients, see

Table S4.

3.3 | Binding predictions supplement intersecting
circRNA–miRNA–mRNA correlations

To reinforce and complement our correlation analyses, the 2480

overlapping circRNA–miRNA–mRNA correlations were further

screened computationally to identify predicted circRNA–miRNA and

miRNA–mRNA interacting pairs. Based on STarMir's algorithm, no

circRNA–miRNA binding predictions with a score greater than our

significance threshold (logit probability ≥ 0.50) were detected when

circRNA–miRNA correlations were considered in isolation. However,

by expanding the circRNA–miRNA binding predictions to include

circRNA–miRNA pairs correlated with the same mRNA, we identified

365 circRNA–miRNA–mRNA trios with intersecting negative

miRNA–mRNA correlations, positive circRNA–mRNA correlations,

and predicted circRNA–miRNA binding. We further narrow down the

365 interactions via selecting the best miRNA–mRNA target

predictions to identify the most reliable 47 circRNA, miRNA, and

mRNA participating in a three-way interaction. For a complete list of

binding predictions, see Table S5.

3.4 | Moderation analysis reveals circRNA impact
mRNA expression via potential miRNA sequestration

The impact of miRNA sequestration on mRNA expression from these

47 circRNA, miRNA, and mRNA was formally tested in a linear

regression model adjusting for AD status and controlling for covariate

effects (RIN and smoking history). The miRNA sequestration by

circRNA was assessed by introducing a (circRNA � miRNA)

interaction term in the model. At FDR ≤ 0.10, we identified

23 interactions that show a significant moderation effect on mRNA

expression (Table 1). Interestingly, among these 23 interactions,

circRNA-406702–miR-1200 stood out by affecting the expression of

the largest set of mRNA (n = 17), the four most significant of which

(HRAS, PRKCB, HOMER1, and PCLO) that have been linked to chronic

alcohol abuse in previous studies are highlighted in Figure 3. For full

moderation regression coefficients, see Table S6.

3.5 | CircRNAs interact with genes associated with
neuronal function

At each stage of our analyses, we consistently identified significant

enrichment (FDR ≤ 0.10) of genes involved in cellular localization,

synaptic transmission, neural development, and response to organic

stimuli gene sets (Figure 4). The 22 circRNA–miRNA–mRNA

interactions also revealed significant enrichment (FDR ≤ 0.10) for GO

biological processes associated with regulation of DNA metabolism,

anatomical structure homeostasis, regulation of biosynthesis, dendritic

spine organization, and anterograde transsynaptic signaling. For full

gene-set enrichment, see Table S7.

3.6 | Genetic variants potentially impact circRNA
expression

Our linear eQTL analysis revealed three significant circRNA eQTLs at

an FDR ≤ 0.10 (Figure 5A). When we repeated the eQTL analysis

taking into consideration the interaction (AD � genotype) term, we

detect seven additional significant eQTLs (FDR ≤ 0.10) independent

from our main analysis, which were associated with one circRNA

(circRNA-080252). After expanding our original linear eQTL analysis

to incorporate results at a more relaxed significance threshold (unadj.

p ≤ 0.002), we identify an additional 96 eQTLs used in the

downstream enrichment analysis. Among these, we identified multiple

circRNAs that participated in significant circRNA–miRNA–mRNA

interactions at various stages in our multistep analyses (Figure 5B,C).

For full eQTL results, see Table S8.

3.7 | CircRNA-associated SNPs are enriched within
AUD and smoking GWAS

We employed the CC and Simes42,43 tests to detect eQTLs (n = 96)

and SNPs in LD with them (r2 ≥ 0.50; n = 1558) that were enriched

among the significant (p ≤ 5E-4) loci from recent GWAS of AUD and

smoking (GWAS & Sequencing Consortium of Alcohol and Nicotine

Use (GSCAN)47 and Psychiatric Genetics Consortium AUD GWAS

(PGC-AUD)48). Adjusting for multiple testing and background

enrichment, we observed significant enrichment for our eQTLs in
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GSCAN cigarettes per day (CC p = 1.41E-05; Simes p = 2.74E-05),

GSCAN smoking initiation (CC p = 0.025), and PGC-AUD European

ancestry (CC p = 0.034).

4 | DISCUSSION

In recent years, circRNAs have become increasingly relevant for the

study of neuropsychiatric and neurodegenerative disorders as

potential regulators of the brain's complex and unique

transcriptome.49 Here, we examined the intersection between the

pathological characteristics of AD (aberrant neurogenesis and

accelerated neurodegeneration50,51) and circRNA's predicted role in

regulating neurobiological processes within the context of circRNA–

miRNA–mRNA interactions.

Our study relied upon a series of experimental, statistical, and bio-

informatics tests to narrow down well over a billion possible

interactions between circRNA, miRNA, and mRNA to highly specific

three-way interactions within the miRNA sponge hypothesis that

survive several layers of correction for multiple testing. Among our

most significant circRNA–miRNA interacting pairs (i.e., circRNA-

406702–miR-1200), we observed a unique set of genes negatively cor-

related with miR-1200 and positively correlated with circRNA-406702.

Some of these (such as HRAS, PRKCB, HOMER1, PCLO, ASTN1, and

ATP2B2) are enriched within gene sets associated with synaptic trans-

mission/development, highlighting their potential importance to the

neuropathology of AD.52 HRAS, a small GTP-binding protein, interacts

with downstream PI3K, AKT, and mTORC1 as part of a neurosignaling

pathway (“Go” pathway) believed to be important for promoting

neuroadaptations associated with excessive alcohol consumption and

F IGURE 3 CircRNA-406702–miR-1200 interacting transsynaptic signaling-associated genes. (A) Boxplot showing relative microarray
expression differences between AD cases and controls for miR-1200. (B) Diagram of predicted binding loci between circRNA-406702 and
miR-1200. (C) Boxplot showing relative expression differences between AD cases and controls for circRNA-406702. (D) Correlation plots
displaying the significant negative relationship between miR-1200 and interacting transsynaptic signaling-associated genes (HRAS r2 = �0.45;
PRKCB r2 = �0.57; HOMER1 r2 = �0.57; PCLO r2 = �0.51). (E) Correlation plot displaying significant positive relationship between
circRNA-406702 and select genes (HRAS r2 = 0.61; PRKCB r2 = 0.59; HOMER1 r2 = 0.68; PCLO r2 = 0.56). (F) Boxplots for differential mRNA

expression between AD cases and controls and diagram of miRNA predicted binding to the 30 UTR of target genes

8 of 14 VORNHOLT ET AL.



relapse.50 This is supported by studies showing that HRAS expression is

increased among mice strains consuming alcohol in high quantities,53 as

well as in the NAc of rats with an extended history of excessive

consumption followed by periods of abstinence.54 However, in contrast

to the animal-based studies, in our sample, we observed decreased

HRAS expression in AD subjects. A possible explanation would be that

the ligand-gated ion channels mediating HRAS activity become

desensitized due to chronic receptor activation after years of alcohol

abuse, which cannot be easily replicated in animal models.55,56 PRKCB

(protein kinase C beta), another gene implicated in our study, is an

isoform of the protein kinase C (PKC) family. This set of proteins is

shown to be essential for the development of AD through their

interaction with CREB-BDNF neurosignaling pathway, which was

reported to be associated with synaptic plasticity.57–59 More

importantly, genetic variants nearby PRKCB have been significantly

associated with comorbid bipolar disorder, substance use disorder

(SUD),60 and alcohol cue-elicited brain activation.59

Among the other genes interacting with circRNA-

406702–miR-1200 are HOMER1 and PCLO, which encode for

proteins playing an important role at the synapse. HOMER1 encodes

for one of the Homer scaffolding proteins (Homer1/2), which link

metabotropic glutamate receptors (mGlu1/5) to the postsynaptic

density.61 Both HOMER1 and one of the mGlu receptor, GRM5, have

been consistently implicated as potential therapeutic targets for the

treatment of AD due to their role in regulating alcohol-facilitated

neuroplasticity.62,63 Additionally, it has been shown that a

polymorphism (rs7713917) in the regulatory region of HOMER1 can

help predict increased alcohol consumption in adolescents years

later.64 PCLO codes for the Piccolo protein, a scaffolding protein at

the active zone of the presynaptic cytomatrix, an area where

neurotransmitters are released.65 Intronic SNPs within the PCLO gene

have been one of the most studied genetic variants associated with

major depressive disorder.66 Functional studies have suggested that

these polymorphisms may play an active role in emotional memory

processing,67,68 and previous research has indicated that deficits in

emotional processing is a hallmark of AD.69 This deficit then may lead

to enhanced emotional reactivity to positive and negative stimuli

during periods of drinking and periods of withdrawal, effectively

F IGURE 4 Identification of
significant circRNA–miRNA–mRNA
interactions and GO biological processes
enrichment. (A) Breakdown of the
number of significant circRNA–miRNA–
mRNA interactions and unique genes at
each step in our analysis (overlapping
positive circRNA–mRNA and negative
miRNA–mRNA correlations [Step 1],

circRNA–miRNA binding predictions
[Step 2], miRNA–mRNA binding
predictions [Step 3], and moderation
regression [Step 4]) ending with circRNA-
406702–miR-1200 interacting mRNA.
(B) GO biological processes enrichment
for each set of unique genes at each step
in our analysis. The genes or the number
of genes from our list is presented within
each histogram of the associated gen -set
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reinforcing continued alcohol abuse.70,71 Importantly, PLCO and

HOMER1 have both been implicated as differentially expressed in

multiple gene expression studies of AD.72–76 Finally, ASTN1

(astrotactin 1) is a gene that codes for a protein receptor important

for glial-guided neuron migration.77 In the context of AD, a

family-based linkage study has shown that ASTN1 is significantly

associated with AD in multiplex families. Overall, the results from our

study provide further support for research suggesting circRNA play an

important, yet still underexplored, role in neuronal function.78

Some of the miRNAs implicated at various steps in our circRNA

analysis, although not all of them directly associated with AD, show sig-

nificant associations with alcoholic liver disease, brain function, and

neuropsychiatric disorders. Among the several miRNA identified from

our significant circRNA–miRNA interactions, miR-665 is significantly

upregulated in the prefrontal cortex (PFC) of alcoholics,79 and

miR-361-5p shows increased expression in the PFC of early-stage AD

mouse models.80 The maternal expression of another miRNA from our

study (miR-3119) was shown to increase following alcohol consumption

during pregnancy.81 Two other miRNAs (miR-1200 and miR-3187-3p)

have been implicated in various neurobiological processes relevant to

AD etiology. Of these, miR-1200 has been predicted to regulate neuro-

nal connexins 36, 45, and 57 in humans, mice, and rats.82 Connexins

(Cx) are essential for gap junction function at electrical synapses, with

Cx36 shown to be associated with various rewarding effects of alcohol

intoxication in knockout (KO) mice.83 Another report has suggested

that miR-3187-3p expression changes modify the neuronal cell

response to oxidative stress.84 Increased oxidative stress is a well-

known consequence of alcohol's neurotoxic effects in the brain85 with

multiple studies from our group and others identifying increased

expression of immune and stress response genes in the postmortem

brains of chronic alcohol users.33,86,87 Finally, miR-571 has shown to be

an important biomarker for alcohol-related liver disease.88 We further

show that miR-571 interacts significantly with NR3C1, a highly

pleiotropic glucocorticoid receptor necessary for stress response and

reported to be significantly associated with AD.89,90

In respect to our cis-eQTL analysis, we identify genetic variants

that impact the expression of our circRNA hubs. Though no specific

polymorphisms at the genome-wide significance level (p ≤ 5E-8) in

GWAS of AUD were replicated among our eQTLs, we observed

significant enrichment at a lower significance threshold (p ≤ 5e-4)

using two separate genomic enrichment tests using recent GWAS of

AUD and smoking.47,48 Possible explanations for this observation are

(1) the limited power of our postmortem brain sample, (2) different

methods for phenotypic classification between our study and GWAS,

and (3) GWAS of AUD that are still underpowered.91 However, most

likely, with increased postmortem brain sample sizes92 and deep

phenotyping of subjects with chronic alcohol abuse,93 we may begin

to see a meaningful overlap between the results from these two

methods. Nevertheless, the importance of identifying eQTL

enrichment among GWAS signals from our eQTL analysis is threefold:

first, help validate the clinical relevance of these large association

studies by providing a functional explanation for AUD associated

GWAS signals; second, reinforce such identified eQTLs and SNPs in

LD as likely candidates for future, more targeted, follow-up analyses;

and third, provide limited genetic context for the causal relationship

between gene expression changes and AUD. Our study also highlights

a potentially novel neurobiological mechanism of alcohol addiction by

demonstrating that alcohol abuse may impact known AD risk genes

by altering circRNA expression and circRNA's ability to act as miRNA

sponges. Our circRNA eQTL study further suggests that we must be

careful when interpreting GWAS signals given that genetic variants

impacting the expression of proximal circRNA can alter the expression

F IGURE 5 Significant circRNA cis-eQTLs. (A) eQTLs that survive
FDR ≤ 0.10 significance threshold. (B) eQTLs from circRNA–
miRNA–mRNA trios with negatively correlated miRNA–mRNA,
positively correlated miRNA–mRNA, predicted circRNA–miRNA
binding, and miRNA–mRNA predicted interactions. (C) eQTLs for
circRNA that participate in circRNA–miRNA–mRNA interactions that
survive all our bioinformatics and statistical tests
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of distal genes through epistatic interaction between circRNA and

miRNA.

4.1 | Limitations and future direction

Our study does also have a few limitations. First, it is possible that by

focusing solely on the circRNA and miRNA interactions, we may have

overlooked other molecular mechanisms (i.e., epigenetic factors) that

potentially can also affect the functions of risk AD loci. Second,

although the use of male subjects only can be perceived as a

limitation, this was a deliberate choice in order to increase our

statistical power by removing sex-based variability. Genetic

epidemiological studies have shown that male and female subjects

have a similar genetic predisposition to alcohol abuse.94 Also, we

acknowledge our limited ability to differentiate between expression

changes that represent the neuropathological consequence of chronic

alcohol abuse or predictive factors for the development of AUD.

However, this does not diminish the scientific and clinical relevance of

our findings because identifying genes and gene networks that

promote or maintain problematic drinking behaviors can inform novel

therapeutic treatments for AUD. We also integrate genetic

information via eQTL in order to tease apart the relationship between

predictive genetic factors, AUD, and expression.95,96

To the best of our knowledge, ours is the first to specifically

investigate the effect of circRNA and miRNA interactions on gene

expression in NAc from subjects with AD. We are confident that this

pilot study will facilitate and promote future studies to corroborate

our findings by experimentally validating these results and further

exploring them in the context of increased and more diverse

experimental settings. Future studies might include exploring the

relationship between circRNA–miRNA–mRNA interactions and other

alcohol-related traits such as alcohol consumption. Including alcohol

consumption is beyond the scope of this study given that our samples

are obtained from individuals diagnosed with chronic and severe AUD

and that the genetic correlation between consumption and severe

AUD is relatively weak.97 We do feel alcohol consumption would be

an important factor to include when exploring more intermediate/

moderate drinking phenotypes in future studies. It is also important to

acknowledge the relevant crossover between the identified genes

participating in circRNA–miRNA–mRNA interactions and genes

implicated in studies from animal models of AUD. Much of the

functional neurobiological work has been performed in animal

models,98 whereas large-scale GWAS have attempted to identify

heritable genetic variants associated with AUD and other addictive

behaviors in human populations.99,100 However, the translation

between human genetic studies and functional animal studies has

been limited.101 This is most likely due to the complex nonlinear

relationships between environmental and genetic factors in humans

that are difficult to recapitulate in animal models of AD and the

increased transcriptome complexity in the human brain relative to

animal brains and other tissues.49,102 Thus, follow-up functional stud-

ies in animal models or proxy tissues are necessary to corroborate

these findings. Moreover, we believe that our study will be the

steppingstone on which future studies will expand our integrative

analytical approach to incorporate other brain regions and psychiatric

phenotypes.
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