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Abstract

Background: Malignant pleural mesothelioma (MM) is an aggressive, asbestos-related pulmonary cancer that is increasing
in incidence. Because diagnosis is difficult and the disease is relatively rare, most patients present at a clinically advanced
stage where possibility of cure is minimal. To improve surveillance and detection of MM in the high-risk population, we
completed a series of clinical studies to develop a noninvasive test for early detection.

Methodology/Principal Findings: We conducted multi-center case-control studies in serum from 117 MM cases and 142
asbestos-exposed control individuals. Biomarker discovery, verification, and validation were performed using SOMAmer
proteomic technology, which simultaneously measures over 1000 proteins in unfractionated biologic samples. Using
univariate and multivariate approaches we discovered 64 candidate protein biomarkers and derived a 13-marker random
forest classifier with an AUC of 0.9960.01 in training, 0.9860.04 in independent blinded verification and 0.9560.04 in
blinded validation studies. Sensitivity and specificity at our pre-specified decision threshold were 97%/92% in training and
90%/95% in blinded verification. This classifier accuracy was maintained in a second blinded validation set with a sensitivity/
specificity of 90%/89% and combined accuracy of 92%. Sensitivity correlated with pathologic stage; 77% of Stage I, 93% of
Stage II, 96% of Stage III and 96% of Stage IV cases were detected. An alternative decision threshold in the validation study
yielding 98% specificity would still detect 60% of MM cases. In a paired sample set the classifier AUC of 0.99 and 91%/94%
sensitivity/specificity was superior to that of mesothelin with an AUC of 0.82 and 66%/88% sensitivity/specificity. The
candidate biomarker panel consists of both inflammatory and proliferative proteins, processes strongly associated with
asbestos-induced malignancy.

Significance: The SOMAmer biomarker panel discovered and validated in these studies provides a solid foundation for
surveillance and diagnosis of MM in those at highest risk for this disease.
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Introduction

Malignant mesothelioma (MM) is a relatively rare cancer almost

always caused by prolonged exposure to asbestos fibers. There are

about 2,500–3,000 new cases per year in the USA [1]. Although

the disease is not frequent, it is devastating, with a median survival

of 7 months [2]. Furthermore, over 27 million people in the US,

and millions more worldwide, have been exposed to asbestos fibers

and thus are at risk for the disease. There are 15,000–20,000

deaths per year from MM in the Western world and Japan [2].

Since the most exposed, and therefore most at risk, people have

been exposed through their occupations (miners, pipe-coverers,

shipyard workers, etc.), there are important medico-legal issues

involved almost every time a person is diagnosed with MM [1].

Definitive diagnosis of MM requires distinguishing it from

benign pleural disease, such as asbestosis or other inflammatory

conditions, or from metastasis of other primary cancers to the

pleura. Diagnosis is difficult and depends on invasive sampling of

pleural fluid or tissue. Currently the most prescribed screening
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methods for surveillance of asbestos-exposed patients involve

imaging procedures that are costly and expose patients to high

doses of radiation each year. In addition, the high rate of

incidental imaging findings requiring follow up for nonmalignant

conditions leads to unnecessary invasive procedures, patient

anxiety and cost [3,4].

Blood-based biomarkers for differential diagnosis and monitor-

ing treatment response of MM include mesothelin and its

proteolytic products and osteopontin [5,6]. Mesothelin is reported

to have low sensitivity (32%) for early disease [6–8], but early

detection may be improved with serial sampling in a high-risk

population [9]. Osteopontin has shown promise for early

detection, but serum protein instability has led to variable results

[2]. More recently, changes in micro-RNAs have been reported in

tissue and blood to have diagnostic potential when combined with

mesothelin [10] or as prognostic markers correlated with

progression and overall survival [11].

Since MM is a low incidence disease even in the asbestos-

exposed population, a need still exists for a highly specific test for

risk surveillance and early detection while avoiding false positive

results and unnecessary invasive procedures. We report the

discovery and validation of a serum-based 13-protein classifier

with an AUC of 0.95 and an overall accuracy of 92% for detection

of MM in the asbestos-exposed population using the SOMAs-

canTM proteomic assay. This assay utilizes Slow Off-rate Modified

Aptamers (SOMAmersTM) to quantify proteins in biologic samples

[12]. SOMAmers are selected to have slow specific off-rates for

dissociation of targeted analytes, which results in highly selective

protein detection [13]. The biomarker discovery assay measures

more than 1000 proteins in biologic samples without sample

depletion or fractionation. Once biomarkers have been identified,

targeted panels for specific diagnostic applications can be

assembled from the same SOMAmers, thus simplifying the

transition for discovery to clinical use [14].

The use of SOMAmers as capture reagents offers several

advantages over traditional antibodies [14]. The synthetic nature

of SOMAmers ensures uniformity and consistent availability.

Customization of the affinity reagent with chemical attachment or

signaling moieties is routine, relying only on the availability of the

appropriate phosphoramidites. SOMAmers have the chemical

and thermal stability properties of DNA, which exceeds that of

proteins, including antibodies. SOMAmers typically bind to large

structural portions of their protein target and therefore require the

protein to be properly folded for optimal recognition [12,13],

making consistent sample processing an essential requirement for

accurate measurement.

The use of SOMAmers as capture reagents carries advantages

over traditional antibody-based arrays. The intrinsic upper limit of

high sensitivity antibody arrays to multiplexing 30–40 analytes is

not a constraint with SOMAmer arrays, which currently measure

over 1000 proteins. Sensitive antibody arrays require two

antibodies per analyte to avoid cross-reactivity, but the slow-off

rate selection of SOMAmers provides specificity in binding with

only a single SOMAmer per protein target [13].

Materials and Methods

Objectives
The objective of this study was to apply the SOMAscan

proteomic assay to discover and validate serum-based biomarkers

for detection of MM in the asbestos-exposed, at risk population.

Participants
Serum samples from MM cases and asbestos-exposed controls

were collected at 4 institutions: New York University (NYU),

Mount Sinai Medical Center (SIN), the Center for Asbestos

Related Diseases in Libby, Montana (LIB) and Karmanos Cancer

Institute (KAR) (Tables 1 and 2). The MM cases were

consecutively collected in the clinics (pre-op) or at the time of

surgery (intra-op) at KAR (1996–2005) and NYU (2005–2011).

Additional serum from 6 benign and 26 malignant (non-MM)

pleural effusion subjects was obtained from NYU. All MM cases

were pathologically confirmed by cytology and/or resection by a

specialist in mesothelioma pathology (co-author MC), and

consenting patients were eligible for inclusion in the study whether

they had symptoms or not. Blood samples were collected from

most cases prior to treatment. Control blood was obtained from

study participants with a history of asbestos exposure. The control

group contains individuals with asbestosis, pulmonary fibrosis and

pulmonary plaques and represents the population most at risk for

MM. The KAR asbestos-exposed cohort were patients followed at

the Center for Occupational and Environmental Medicine (co-

author MH) who consented for study participation between 2003

and 2005, and included foundry workers, pipe fitters, building and

construction, passive exposure from construction or a family

member, brake assembly or repair, boiler repair, vermiculite

exposure, plumbers, ship builders, machinists, tool and die

workers, millwrights, brick layers, and electricians [6]. Radio-

graphic evidence of fibrosis was found in 33%, and pleural

scarring/plaques were found in 75%. The SIN asbestos exposed

cohort included active and retired insulators enrolled in a follow-

up to the Selikoff Cohort program [15] with 63% having pleural

scarring, 24% with plaques, and 5% having parenchymal changes.

The LIB asbestos-exposed cohort included individuals who were

seen at the Center for Asbestos Related Diseases between 2004

and 2006 who were involved with the mining or processing of

tremolite contaminated vermiculite and who had pleural changes

on computerized tomography.

Ethics
All samples and clinical information were collected under

Health Insurance Portability and Accountability Act (HIPAA)

compliance from study participants after obtaining written

informed consent under clinical research protocols approved by

the institutional review boards for each site. The NYU Langone

Medical Center Institution Review Board approved this study.

Demographic data was collected by self-report and clinical data by

chart review.

Sample Collection Procedure
Serum samples were collected following uniform processing

protocols recommended by the National Cancer Institute’s Early

Detection Research Network (EDRN) using red top Vacutainer

Table 1. Study cohort (n = 259) by blood collection site.

Site Cases (n = 117) Controls (n = 142) Total/Site

NYU 66 0 66

KAR 51 41 92

LIB 0 71 71

SIN 0 30 30

doi:10.1371/journal.pone.0046091.t001

SOMAscan Proteomic Assay Detection of Mesothelioma
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tubes (Becton Dickinson, Raritan, NJ) [16]. Processing time from

blood collection to centrifugation was 1–6 hours. All samples were

stored at 280uC. Samples were collected either intra-op or pre-op

from MM cases and during routine clinic visits for asbestos-

exposed controls. To control for biomarker differences resulting

from the blood draw procedure, paired intra-op and pre-op blood

samples were compared from the same individuals. Any candidate

biomarkers affected by the blood draw procedure were removed

from the analysis.

Sample Blinding
To prevent potential bias, a unique unidentifiable barcode was

assigned to each sample and data record, and the key was stored in

a secure database accessible only to designated study administra-

tors. The sample blinding code was broken according to the pre-

specified analysis plan. First a subset was unmasked for training

the classifier. Unmasking the samples for classifier verification and

validation occurred only after the classifier was fixed. For the

verification sample set, a blinding key was provided exclusively to

a third party reader, unaffiliated with the study centers or

SomaLogic, for calculating final results.

Proteomic Analysis
Serum samples (15 ml) were analyzed on the SOMAscan

proteomic assay, which uses novel modified DNA aptamers called

SOMAmers to specifically bind protein targets in biologic samples

[12,13]. All sample analyses were conducted in the Good

Laboratory Practice (GLP) compliant lab at SomaLogic by trained

staff. Serum samples were distributed randomly in 96-well

microtiter plates and the assay operators were blinded to case/

control identity of all samples. Assay results are reported in

Relative Fluorescence Units (RFU). Data processing was as

described by Gold [12]. Briefly, microarray images were captured

and processed with a microarray scanner and associated software.

Each sample in a study was normalized by aligning the median of

each sample to a common reference. Inter-plate calibration was

done by applying a multiplicative scaling coefficient to each

SOMAmer. These scaling factors were calculated using the eight

reference calibrators on each plate.

The biomarker discovery and verification studies were con-

ducted with Version 1 (V1) of the assay, which measured over 800

proteins [12]. The final validation study used Version 2 (V2),

which measures 1045 proteins (Table S1). Minor assay protocol

changes were incorporated in V2 to optimize the sample diluent

and washing steps. The classifier containing the same 13 candidate

biomarkers was re-trained in the V2 format with a bridging study

which included 113 of the original 120 training samples; 7 samples

were depleted after the initial training. Equivalent performance

was demonstrated with a Spearman correlation coefficient of 0.92

prior to blinded verification and validation (Figure S1).

Candidate Biomarker Selection and Classifier Training
The cohort of 159 samples was divided randomly into two sets,

75% for training (60 cases/60 controls) and cross-validation and

25% (19 cases/20 controls) for blinded verification, which were

withheld from training to test classifier performance (Figure 1).

This was followed by a blinded independent validation set of 100

samples (38 cases/62 controls). A series of univariate and

multivariate comparisons were made to identify candidate MM

biomarkers and filter out analytes subject to preanalytical

variability. A 13 biomarker random forest classifier was applied

to the blinded verification and validation study samples to predict

the probability of MM. Functional analysis was performed with

DAVID Bioinformatics Resources version 6.7 [17].

Statistical Analysis for Candidate Biomarker Selection and
Classifier Construction

A major issue with diagnostic discovery, particularly when using

archived sample sets is the possibility that systematic batch effects

may distort the results and lead to errors in the selection of

candidate disease biomarkers. The development of the diagnostic

panel presented here was performed on a large data set with

samples from multiple sites, which was designed to detect

variations in sample preparation and to allow us to mitigate the

Table 2. Cohort demographics.

Training (n = 120) Verification (n = 39) Validation (n = 100)

Case Control Case Control Case Control

Number 60 60 19 20 38 62

Gender (%) Male 50 (83) 41 (68) 17 (89) 16 (80) 31 (82) 43 (69)

Female 10 (17) 19 (32) 2 (11) 4 (20) 7 (18) 19 (31)

Age Median 64 62 64 66 64 62

Range 41–91 36–90 50–79 42–80 41–87 22–80

Asbestos Exp (%) 45 (75) 55 (92) 14 (74) 18 (90) 25 (66) 61 (98)

MM Stage (%) I 7 (12) NA 1 (5) NA 5 (13) NA

II 10 (17) NA 4 (21) NA 13 (34) NA

III 30 (50) NA 9 (47) NA 10 (26) NA

IV 13 (22) NA 4 (21) NA 9 (24) NA

Unknown 0 (0) NA 1 (5) NA 1 (3) NA

MM Histology (%) Epithelial 39 (65) NA 9 (47) NA 16 (42) NA

Biphasic 12 (20) NA 8 (42) NA 6 (16) NA

Sarcomatoid 4 (7) NA 1 (5) NA 3 (8) NA

Unknown 5 (8) NA 1 (5) NA 13 (34) NA

doi:10.1371/journal.pone.0046091.t002
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risks associated with preanalytic variability. Of particular impor-

tance was the collection of paired pre-op and intra-op samples

from twelve control individuals, because many of our MM samples

were drawn intra-op, whereas most control samples were standard

clinic draws. Having a wide range of control sample sets allowed us

to exclude 214 potential markers which showed variation between

the different control sample sets (Kolmogorov-Smirnov (KS)

distance .0.45), or between matched intra-op and pre-op

samples. Principal Components Analysis (PCA) was used to

exclude samples and analytes that showed evidence of bias due

to preanalytic variation. Samples and analytes with high coeffi-

cients on principal components associated with different sources of

preanalytic variability were removed. The principal components

associated with preanalytic variation were identified by correlating

them with previous clinical experiments on preanalytic variation in

blood sample collection [18]. As a result, one set of 30 SIN control

samples from asbestos exposed individuals was removed, as the

samples were found to have suffered extensive protein degrada-

tion. These samples were not included in the cohort description

(Tables 1 and 2).

After excluding the proteins shown to be susceptible to variation

between control groups, we performed candidate marker selection

on a training dataset composed of MM samples and the asbestos-

exposed control samples. Candidate biomarkers were ranked used

the random forest Gini importance measure, which reflects the

magnitude of an individual marker’s contribution to the classifier

performance, calculated from the construction of a random forest

classifier on the 64 candidate biomarkers [19]. We ranked the

candidate markers by their Gini importance and compared the

performance of various size models constructed using the highest

ranked markers. Thirteen proteins were used to construct a

random forest classifier on the data set. Ranking the candidate

biomarkers once based on a single random forest model built using

all biomarkers was chosen over stepwise selection/backwards

elimination techniques to avoid complexity. Since the random

forest importance measure is calculated on the out of bag samples,

this approach to ranking candidate markers by a single application

of random forest classification should be somewhat resistant to

over-fitting. Other methods of marker selection (modified t-tests,

KS tests), came up with similar lists of markers, with slightly

different orderings.

The study design and execution were conducted according to

accepted best practices [20]. Analyses were performed with R

statistical software version 2.10.1. We used the R packages

random forest (4.5–34) and fdrtool (1.2.6).

ELISA Correlation Studies
Mesothelin was measured with the Mesomark Assay (Fujirebio

Diagnostics) [5] and compared to SOMAscan results for 32 cases

and 34 controls, using a cutoff of 1.9 nM as described. FCN-2 was

measured in serum samples with the Human L-ficolin ELISA kit

(Hycult biotech, Uden, the Netherlands). Complement Factor 9

(MicroVue SC5b-9 EIA kit, Quidel Corporation, San Diego, CA

USA), Factor IX (AssayMax Human Factor IX ELISA kit,

AssayPro St. Charles, MO USA) and Human CXCL13 (Human

CXCL13/BLC/BCA-1 Quantikine ELISA kit, R&D Systems,

Minneapolis, MN USA) were analyzed in order to validate

SOMAmer results in the 68 controls and 32 MMs in the blinded

validation trial.

Results

We analyzed a total of 259 serum samples from four

independent MM biorepositories in a series of prospectively

designed case/control studies with archived samples (Figure 1 and

Table 1). The study included serum collected from 117 MM

patients and 142 high-risk controls, 94% of whom had

documented asbestos exposure (Table 2). The remaining 6% of

controls were individuals who had unusual occupations and

included engineers who were not on site at high risk jobs, teachers,

and nuclear power plant workers. They still participated in

screening because of their association with others at high risk. One

third of the MM cases had stage I or II disease, which enabled

discovery of potential biomarkers of early disease and the

possibility to identify patients with a chance for curative

intervention.

Figure 1. Study flowchart for classifier training, blinded
verification and validation. Biomarker selection and training were
performed with V1 of the assay. The equivalent classifier was applied to
verification and validation studies using V2 of the assay.
doi:10.1371/journal.pone.0046091.g001
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Analysis of the training study yielded a set of 64 unique

biomarker candidates (Table S1). We constructed a 13-protein

random forest classifier from these potential biomarkers with an

AUC of 0.9960.01 in training and 0.9860.04 in blinded

verification (Figure 2). Sensitivity and specificity were 97%/92%

in training and 90%/95% in blinded verification (Table 3). This

classifier accuracy was maintained in the independent blinded

validation set with an AUC of 0.9560.04, and a sensitivity/

specificity of 90%/89%. The combined sensitivity/specificity for

all samples was 94%/91% resulting in an accuracy of 92%

(Figure 2 and Table 3). Sensitivity correlated with pathologic stage

(Table 4). Overall 77% of Stage I, 93% of Stage II, 96% of Stage

III and 96% of Stage IV cases were detected. The sensitivity for

detection of local disease (Stages I and II) was 88%, demonstrating

that the classifier can identify the majority of MM at potentially

curable stages with a higher chance for successful multimodality

therapy. We also tested 32 individuals with non-MM pleural

effusion (PE) and 30 asbestos-exposed controls. All 6 benign and

24/26 malignant PE samples were classified as disease.

Table 5 lists the 13 candidate biomarkers along with their

statistical significance for distinguishing MM from controls. Nine

of the biomarkers are elevated in MM and 4 are lower compared

to the asbestos-exposed controls. The measured protein values

consistently reflect pathologic stage and disease burden (Figure 3).

The ability of the classifier to detect MM was not compromised by

neoadjuvant chemotherapy prior to blood draw or by histology.

Ten patients received neoadjuvant therapy, and eight of them

were correctly identified as MM. Across the three study cohorts

there were eight false negative cases: six epithelial, one biphasic,

and one mixed, which reflects the distribution of these histological

categories in the cohort as a whole.

We compared the random forest classifier to mesothelin, as

measured by a commercial ELISA. Applying the random forest

classifier generated an AUC of 0.99+/20.01 while the commercial

ELISA for mesothelin resulted in an AUC of 0.82+/20.10

(Figure 4). The sensitivity and specificity of mesothelin this cohort

was 66%/88% compared to the random forest classifier sensitivity

and specificity of 91%/94% in this paired sample set.

We compared the SOMAmer-measured values of one of the

classifier proteins, FCN2, to that of a commercial ELISA kit

(Figure 5). The Spearman correlation of 0.87 demonstrates strong

concordance of these two assays, particularly in the MM samples.

We also confirmed the differential expression of three additional

MM markers discovered in this study, CXCL13, C9 and F9 in the

62 controls and 38 MM of the validation set, with antibody-based

commercial ELISA assays (Figure 6).

Discussion

Using the SOMAscan proteomic assay, a highly sensitive

candidate 13-biomarker panel was discovered and validated for

the detection of MM in the asbestos-exposed population with an

accuracy of 92% and detection of 88% of Stage I and II disease.

The series of clinical studies encompass classifier training,

verification, and validation in clinically relevant populations for

the detection of MM in those at highest risk for this aggressive

disease. We deliberately avoided looking for biomarkers of MM

compared healthy normal controls. Many biomarker studies are

initially designed to contrast the extremes of disease with healthy

normals, and then when applied to the true clinical intended use

the biomarkers fail. Particularly in a low prevalence disease

associated with specific risk factors, identifying disease biomarkers

in comparison to healthy controls is not clinically relevant.

In the next 25 years it is estimated that the diagnosis of MM will

increase 5–10% each year until 2020 in most industrialized

countries at a cost of $200 billion in the US and nearly $300 billion

worldwide [1,2]. The interval between asbestos exposure and the

development of MM ranges from 25–71 years, yet this disease is

often fatal within one year of diagnosis [1]. The large gap between

asbestos exposure and disease lends itself to surveillance in the

high-risk population with the goal of detecting early, treatable

disease.

Table 3. Classifier performance for training, verification and
validation.

Study Set Sensitivity Specificity Accuracy

Training 96.7 (92.1–100.0) 91.7 (84.7–98.7) 94.2 (90.0–98.4)

Verification 89.5 (75.7–100.0) 95.0 (85.4–100.0) 92.3 (83.9–100.0)

Validation 89.5 (79.7–99.2) 88.7 (80.8–96.6) 89.0 (82.9–95.1)

Combined 93.2 (88.6–97.7) 90.8 (86.1–95.6) 91.9 (88.6–95.2)

Percentage values at the predefined decision threshold and 95% confidence
intervals.
doi:10.1371/journal.pone.0046091.t003

Table 4. MM detection by pathologic stage and study cohort.

MM Stage Train Verification Validation Combined

I 6/7 0/1 4/5 10/13

II 10/10 4/4 11/13 25/27

III 29/30 8/9 10/10 47/49

IV 13/13 4/4 8/9 25/26

Unknown 0/0 1/1 1/1 2/2

doi:10.1371/journal.pone.0046091.t004

Figure 2. ROC curves for classifier training, blinded verification
and validation. Training (blue), verification (purple), and validation
(red) study ROC curves are plotted with corresponding AUC values and
95% confidence intervals.
doi:10.1371/journal.pone.0046091.g002
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Since 1973 the USA Occupational Safety and Health Admin-

istration has mandated monitoring of individuals with occupa-

tional airborne asbestos exposure [2]. Monitoring currently

includes chest X-ray, health history, and spirometry, but these

tools are poor predictors of disease. Low dose computed

tomography (LDCT) screening studies for malignant pleural

mesothelioma and lung cancer in asbestos-exposed individuals

have been conducted by several investigators [3,4]. Similar to CT

screening for high-risk smokers, CT scans resulted in many more

cases of benign disease requiring follow-up than true malignancies

detected. For example, Roberts [3] reported screening 516

asbestos-exposed individuals, resulting in a screen-detected rate

of malignancy of 2.1%, while the rate for benign conditions was

70%, primarily pulmonary plaques and nodules. Only 0.6% of the

study population presented with PE. Over 25% of the invasive

interventions were for benign disease. There was limited benefit

for detection of MM in this study, as the longest reported survival

was nine months after diagnosis.

Using the same prevalence assumptions, compared to the

calculated PPV/NPV of 2.5%/98.9% for initial CT screening in

Robert’s study and 7.2%/99.4% for mesothelin (based on

performance reported in Pass et al [5]), our estimated PPV/

NPV is 12.6%/99.9%. Furthermore, the accuracy of the classifier

in this population is estimated at 90.8% compared to 75.9% for

the initial CT screen and 88.6% for mesothelin. The classifier

results would identify more true cases of MM while sending fewer

individuals without MM for unnecessary followup procedures and

avoiding repeated radiation exposure.

Our pre-specified classifier decision threshold ascribed equal

importance to sensitivity and specificity and remained fixed

throughout verification and validation. However, because MM is

a rare disease even in the asbestos-exposed population, an

argument could be made to assess the risk of MM at a different

operating point on the ROC curve that favors specificity over

sensitivity. For example, an alternative decision threshold in the

validation study yielding 98% specificity in this cohort would still

detect 60% of MM cases.

A potential limitation of our findings is the lack of discrimina-

tion of the classifier in patients with PE. Even if this preliminary

result is confirmed in future studies, the apparent false positive rate

is tolerable because the incidence of benign PE is low and

detection of non-MM malignant PE is important. Roberts

reported that 0.6% of their asbestos exposed screening cohort

had PE while 1.4% had MM [3]. Individuals with benign PE were

not excluded in our studies; therefore the background prevalence

of PE in the control population is represented in the high

specificity results. This non-invasive blood test could be applied as

a screen for the asbestos-exposed population. Negative individuals

could be spared further testing and invasive procedures while

positives would be followed up with imaging to refine their

diagnosis. Since most MM cases present with PE, application of

this test for differential diagnosis of symptomatic individuals with

PE is limited without further refinement of the classifier to improve

specificity in this population.

A potential limitation of this study was the bridging between

versions of the assay, which required a retraining of the classifier

on the same sample set, with the exception of seven depleted

samples. The new assay version resulted in a shift in the reference

ranges for the biomarkers; however, the predictions produced by

classifiers trained on different versions were extremely well

correlated, which suggests the differential expression signatures

between MM and asbestos exposed individuals were consistent

between the two versions. The classifier performed well on the

blinded validation set, demonstrating that the assay transition did

not affect our ability to differentiate MM from controls.

To our knowledge none of the classifier biomarkers discovered

in this study have been associated with MM. The list of proteins in

Table 5 fall into two broad categories: inflammation and

regulation of cellular proliferation. Chronic pulmonary inflamma-

tion has long been a hallmark of asbestos deposition and is thought

to contribute to asbestos-related carcinogenesis. Measures of

inflammation such as high neutrophil/lymphocyte ratio correlate

with angiogenesis, cellular proliferation and prognosis in MM

patients [21]. Consistent with these observations, over 25% of our

Table 5. Biomarkers in random forest classifier and their statistical significance.

Gene Name Gene ID Protein Target SwissProt ID Function MM vs Asbestos* KS test p-value t test p-value

APOA1 335 Apo A-I P02647 Lipid transport Down 2.99E-08 6.32E-11

C9 735 C9 P02748 Adaptive immune response Up 6.47E-07 1.14E-07

CCL23 6368 Ck-b-8-1 P55773 Cellular ion homeostasis,
inflammatory response

Up 2.81E-06 4.00E-08

CDK5/CDK5R1 1020/8851 CDK5/p35 Q00535/Q15078 Cell morphogenesis Up 1.22E-06 8.64E-09

CXCL13 10563 BLC O43927 Immune system development Up 1.67E-09 6.31E-08

F9 2158 Coagulation Factor IX P00740 Coagulation cascade Up 2.46E-07 9.61E-09

FCN2 2220 FCN2 Q15485 Immune effector Up 3.38E-09 6.09E-11

FN1 2335 Fibronectin P02751 Cell morphogenesis Down 9.23E-06 9.41E-06

ICAM2 3384 sICAM-2 P13598 Cell adhesion Up 2.67E-05 1.75E-06

KIT 3815 SCF sR P10721 Immune system development,
receptor tyrosine kinase

Down 3.83E-06 1.14E-08

MDK 4192 Midkine P21741 Regulation of cell division Up 2.99E-08 8.54E-02

SERPINA4 5267 Kallistatin P29622 Serine protease inhibitor Down 2.05E-07 4.56E-07

TNFRSF8 943 CD30 P28908 Regulation of cytokines & cell
proliferation

Up 8.02E-08 3.94E-06

*Up or down regulation in MM cases relative to controls.
doi:10.1371/journal.pone.0046091.t005
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MM candidate proteins are associated with neutrophils, leuko-

cytes, or platelets.

Asbestos induces necrotic cell death and the accompanying

release of HMGB1, which leads to chronic inflammation and

accumulation of macrophage and other inflammatory cells [1,22].

These cells release TNF-a, which activates the NF-kB pathway

and increases survival of mesothelial cells after asbestos exposure,

including those with asbestos-induced genetic damage that will

eventually develop into malignant disease. One of our classifier

proteins, TNFRSF8, is a member of the TNF receptor superfamily

that mediates signal transduction leading to NF-kB activation.

Eight other proteins in the classifier cluster with NF-kB in

pathways involved in response to wounding and inflammation:

CCL23, C9, CDK5-CDK5R1, CXCL13, F9, FCN2, FN1 and

MDK [17]. Four proteins are involved in the extracellular matrix

or processes regulating cell migration: CDK5-CDKR1, FN1,

ICAM2, KIT, and MDK. The remaining markers function in

cellular metabolism: ApoA1 and SERPINA4. Interestingly, we

measure lower SERPINA4 levels in MM patients than controls,

and substrates for this protease inhibitor have been reported at

elevated levels in MM tissue [23]. SERPINA4, also known as

kallistatin, inhibits tissue kallikrein, which promotes angiogenesis

and tumor growth [24]. Thus, lower SERPINA4 may increase the

availability of active tissue kallikrein and lead to angiogenesis and

malignant cell proliferation [24].

Two previously described markers of MM, mesothelin and

CEA, are included in our proteomic discovery array content

(Table S1). Mesothelin was identified as a potential biomarker in

the list of 64 candidates, (Table S1) but other markers proved to be

superior by univariate analysis. In paired samples, the random

Figure 3. Distribution of the 13 protein biomarkers by pathologic stage. Teal boxes are samples from training and verification combined.
Purple boxes are samples from the validation study. Relative fluorescence unit (RFU) distributions are separately shown for control (C) and pathologic
stages (I–IV) to illustrate the change in signal as a function of disease burden. Some outlying points have been omitted to make the box plots easier
to see: APOA1 (1 point), CDK5-CDK5R1 (1 point), MDK (6 points), and TNFRSF8 (8 points).
doi:10.1371/journal.pone.0046091.g003
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Figure 4. ROC curves comparing the random forest classifier to mesothelin. Performance of the random forest classifier (red) compared to a
commercial mesothelin assay (blue) on the same cohort of 32 MM cases and 34 asbestos exposed controls. ROC curves are plotted with
corresponding AUC values and 95% confidence intervals.
doi:10.1371/journal.pone.0046091.g004

Figure 5. FCN2 SOMAmer and ELISA correlation in the training
cohort. FCN2 measurements for MM cases (red triangles) and asbestos-
exposed controls (blue squares) are reported as RFU for SOMAmer and
ng/ml for ELISA measurements. Spearman correlation is 0.87.
doi:10.1371/journal.pone.0046091.g005

Figure 6. ROC curves of individual MM biomarkers measured
by commercial ELISA kits. AUC values and 95% confidence intervals
for F9 (green), CXCL13 (red), C9 (blue), FCN2 (purple) were derived from
measurements in the validation study samples.
doi:10.1371/journal.pone.0046091.g006
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forest classifier AUC of 0.99 and 91%/94% sensitivity/specificity

was superior to that of mesothelin with an AUC of 0.82 and 66%/

88% sensitivity/specificity, demonstrating the potential of the

candidate biomarkers described here to improve detection of MM

and improve patient outcomes. Differential expression of CEA was

not statistically significant.

Several biologic functions are represented in the classifier,

including inflammation/immune response, cell growth regulators

and cellular adhesion/morphogenesis proteins. Taken together,

the functions of the markers in the classifier illustrate tumor

growth strategies to deregulate cellular energetics, sustain prolif-

eration, resist cell death, and activate invasion. The supportive role

of the tumor micro-environment is represented by proteins

involved in avoiding immune destruction and inducing tumor-

promoting inflammation. The biomarker levels correlate with

pathologic stage and are a measure of disease burden as tumors

evolve from local to invasive malignancy. Future studies will assess

whether this correlation with tumor burden can be extended for

prognosis and measuring response to therapy.

Our data suggest that the candidate markers and classifier

described in this series of discovery, verification, and validation

studies have the potential to improve MM surveillance and early

detection, leading to more effective treatment and the potential for

prolonged survival. The high specificity reduces unnecessary

treatment for this rare disease, thus saving cost and reducing

patient anxiety. Based on the discoveries reported here, we have

initiated further validation studies in high-risk individuals for both

screening and diagnosis.

Supporting Information

Table S1 SOMAscan protein targets and MM biomark-
er candidates.
(PDF)

Table S2 The training and verification datasets from V1
of the SOMAscan assay for the thirteen biomarkers in
the panel. The units are Relative Fluorescence Units (RFU). The

Response column distinguishes the asbestos exposed samples

(Control) from the malignant Mesothelioma samples (Disease).

The Dataset column distinguishes between the training dataset

and the verification dataset.

(XLSX)

Figure S1 Plot of classifier prediction scores for the V1
and V2 classifier. The plot shows consistent predictions for

both models on the same 113 samples present in both versions.

MM samples are colored red and asbestos exposed patients are

colored green.

(DOCX)
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