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Abstract

Although visual object recognition is well studied and relatively well understood, much less is known about
how shapes are recognized by touch and how such haptic stimuli might be compared with visual shapes. One
might expect that the processes of visual and haptic object recognition engage similar brain structures given
the advantages of avoiding redundant brain circuitry and indeed there is some evidence that this is the case.
A potentially fruitful approach to understanding the differences in how shapes might be neurally represented is
to find an algorithmic method of comparing shapes, which agrees with human behavior and determines
whether that method differs between different modality conditions. If not, it would provide further evidence for
a shared representation of shape. We recruited human participants to perform a one-back same–different vis-
ual and haptic shape comparison task both within (i.e., comparing two visual shapes or two haptic shapes)
and across (i.e., comparing visual with haptic shapes) modalities. We then used various shape metrics to pre-
dict performance based on the shape, orientation, and modality of the two stimuli that were being compared
on each trial. We found that the metrics that best predict shape comparison behavior heavily depended on the
modality of the two shapes, suggesting differences in which features are used for comparing shapes depend-
ing on modality and that object recognition is not necessarily performed in a single, modality-agnostic region.
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Significance Statement

Humans are adept at recognizing objects by touch alone despite the inherent complexity required to inte-
grate information from touch receptors across multiple articulating fingers. Little is understood about how
this is accomplished and to what extent the brain borrows visual object recognition machinery to achieve
this goal. Here we use various metrics for predicting human shape comparison behavior and find that the
best metrics vary considerably depending on the modality (vision or touch) used to evaluate the shapes.
This suggests that there may be more independence between unfamiliar visual and haptic object recogni-
tion processing than previously believed.

Introduction
Object recognition is a core capacity afforded by our

visual system and, accordingly, has long been of great in-
terest to psychologists, neuroscientists, and philosophers
(Cheselden, 1728; Ettlinger, 1956; Bülthoff et al., 1995;
Riesenhuber and Poggio, 1999; Martin, 2007; Peissig and
Tarr, 2007; Marr, 2010). The ability to recognize objects is

not exclusively a visual faculty, however; we are also quite
adept at recognizing objects solely by touch when, for ex-
ample, searching for a coin in a pocket or purse. Although
we know a great deal about the role that somatosensory
pathways play in the perception of basic dimensions
of touch, such as texture and vibration (Klatzky et al.,
1985; Lederman and Klatzky, 1987; Sathian, 2016), little is
understood about how the brain ultimately integrates this
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information to serve advanced functions such as haptic
object recognition.
From one perspective, both visual and haptic object

recognition might be assumed to be processed by
shared neural circuitry. After all, object recognition taps
the same basic ability, regardless of the source modality,
and it would seem economical not to have duplicate ma-
chinery. Indeed, this view has received support from
groups studying the human visual extrastriate regions
such as lateral occipital cortex and inferotemporal cortex
using imaging (Grill-Spector et al., 1998; Amedi et al.,
2001; James et al., 2002; Pietrini et al., 2004; Prather
et al., 2004; James and James, 2005; Lee Masson et al.,
2016; but see Snow et al., 2015).
Alternatively, it is clear that visual and somatosensory

signals originate from fundamentally different end organs
and are, at least initially, processed independently. So,
from this perspective, recognition of objects using infor-
mation from these senses may be contained within their
own modality-specific circuits. Further complicating the
issue, we know it is possible to compare shapes that
are perceived haptically with shapes perceived visually,
meaning that there must be some way for the neural ma-
chinery processing these unisensory stimuli to communi-
cate shape information. If visual and haptic shapes are
processed in the same areas, this comparison may be rel-
atively simple. If processed separately, comparisons may
only be possible through intermediaries such as classical
association or prefrontal areas responsible for higher-
level cognition. Researchers investigating anterior intra-
parietal cortex and dorsolateral prefrontal cortex have
found evidence to support this, finding these areas to be
especially active when comparing shapes across modal-
ities (Murata et al., 2000; Grefkes et al., 2002; Ricciardi
et al., 2006; Lacey et al., 2010; Helbig et al., 2012).
Yet another possibility is something of a middle ground:

that the extent of visual cortical involvement in haptic
shape recognition is dependent on other factors such as
familiarity. The importance of familiarity in haptic process-
ing has been highlighted by a number of behavioral stud-
ies (Ikeda and Uchikawa, 1978; Magee and Kennedy,
1980; Lederman et al., 1990; Ballesteros et al., 1999) and
neuroimaging studies (Deshpande et al., 2010; Lacey
et al., 2010; Cacciamani and Likova, 2016).
Here we attempt to disentangle these possibilities by deter-

mining the extent to which shapes from the two modalities
are similarly represented. Figure 1 illustrates two alternative
hypotheses that we are seeking to differentiate. Following

basic feature extraction in visual and somatosensory uni-
sensory areas, little is known about how haptic object
recognition is completed and how much of the related
neural machinery overlaps with what are considered vis-
ual processing areas. To the extent that there is a great
deal of overlap (“early-convergence model”), we might
expect that the same shape features determined to be
crucial for visual object recognition would also be crucial
for haptic object recognition. On the other hand, if the
properties that are relevant for recognizing visual shapes
are much different from those for haptic shapes, we
might conclude that the neural underpinnings of these
two abilities are substantially different (“late-conver-
gence model”). Furthermore, mistakes in object recogni-
tion can be informative. If there is a distinct difference in
the types of mistakes made when identifying shapes
using the two different modalities, this would be evi-
dence that the pathways responsible may be substan-
tially different.
We recruited human participants to perform a one-back

shape-matching task that involved determining whether a
given two-dimensional (2D) abstract shape is the same as
or different from the shape that was presented seconds
earlier. This was done both within modalities (i.e., com-
paring visual with visual, haptic with haptic) and across
modalities (i.e., comparing visual and haptic shapes).
This necessitated the design and production of a new
device capable of quickly and reliably presenting physi-
cal objects from a large inventory (see Materials and
Methods).

Materials and Methods
Human participants (n = 10, 8 female) were recruited

from Brown University undergraduate and graduate
student populations to perform a visual–haptic match-
ing task lasting approximately 1 h and were paid $15.
Methods were approved by the Brown University
Institutional Review Board. All participants had normal
or corrected-to-normal vision. All participants were
right handed. One participant was excluded from this
study because of miscommunication of instructions.

Figure 1. Schematized illustration of alternative hypotheses.
A, Late-convergence model. One possibility is that shapes
are recognized independently within unisensory processing
areas and, if necessary, compared in some higher “supramodal”
processing area. B, Early-convergence model. Alternatively, ob-
ject recognition for the two modalities may use shared neural
machinery following basic feature extraction (e.g., lines and cur-
vature) in unisensory areas. Adapted from the study by Lacey
et al. (2009).
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Task
Participants performed a one-back task where they

were asked to determine whether the current stimulus
was the same shape as the previous stimulus and report
their answer by pressing the button corresponding to
“same” or “different.” Stimuli were presented one at a
time in blocks of 72 trials. Participants sat with their heads
resting in a chin rest for all conditions, and all trials began
with a fixation point appearing until fixation was acquired,
then the fixation point disappeared and either a visual
stimulus was presented or they were free to touch
the haptic stimulus. Orientation of the visual or haptic
shape was pseudorandomly chosen on each trial so
that there was a 1:1:1 ratio between matching trials that
were the same orientation, trials that were rotated 90°
left or right, and trials which were rotated 180°. Each
trial was pseudorandomly chosen as same or different
so that each block of 72 trials used 48 unique shapes
and had 24 same trials. Within those constraints, there
was no limit on consecutive same or different trials. For
example, it was possible (though exceedingly unlikely)
to have the same shape presented five times in a row.
Consistent with previous experiments comparing visual
and haptic stimuli (Newell et al., 2001; Lacey et al.,
2007, 2009; Tabrik et al., 2021), participants were given
double the time to explore haptic (6 s) as visual (3 s),
after which point the stimuli were removed. They could
report their decision at any time during or after the stim-
ulus presentation.
Each block was one of three types: visual-only, haptic-

only, or alternating. “Alternating” blocks alternated between
visual and haptic stimuli (Fig. 2C). These three block types
provided four conditions, based on the within-modal or
cross-modal comparison being made: the within-
modal visual comparison (VV) trial and the within-
modal haptic comparison (HH) trial. For cross-modal
visual–haptic comparison (VH) trial, the visual shape
presented on the previous trial is compared with the

haptic shape on the current trial. For cross-modal haptic–
visual comparison (HV) trials, the haptic shape presented on
the previous trial is compared with the visual shape on the
current trial. Each participant completed two visual-only
blocks, two haptic-only blocks, and four alternating
blocks, yielding 144 trials of each of the four condi-
tions. The order of these eight blocks was counterbal-
anced across participants so as to avoid any order
effect. Two-thirds of trials were different while the re-
maining one-third were same. Participants were given
;20 practice trials for each of the three block types
before beginning data collection.

Visual stimuli
On each visual trial, an abstract white-outlined shape,

centered at fixation, was presented on a uniform gray back-
ground. Each shape was scaled such that it was the same
size (;3° visual angle) as the haptic representation of that
same shape and rotated to one of four orientations, spaced
in 90° increments. The shapes were constructed in a man-
ner similar to Sigurdardottir and Sheinberg (2015). Two or
three two-dimensional “blobs” were generated using three
randomly chosen control points connected by splines.
Those blobs were then overlaid on each other and filled to
produce a unique shape composed of multiple rounded
edges (from the splines) and sharp corners (where two
blobs intersect). Only unions of blobs that yielded a single
filled shape were allowed. Examples of shapes used in the
experiment are shown in Figure 2. Stimuli were presented
on an LCD monitor (Display11, Cambridge Research
Systems) with a 100Hz refresh rate and eye position was
tracked using an EyeLink eye tracker operating at 1kHz to
ensure fixation at the start of each trial.

Haptic stimuli
A custom apparatus was designed and built (Fig. 2B) to

hold an inventory of up to 80 unique objects and present

Figure 2. Stimuli and task. A, Randomly selected 16 of the 48 shapes used in this task. B, Rendering of the device used to present physical
shapes to participants for haptic trials. C, Task conditions. Each participant performed the one-back matching task in the following three block
types: visual-only (top), haptic-only (middle), and cross-modal (bottom). These three block types yield the following four conditions: VV, HH, VH,
and HV. Block types were completed in pseudorandom order, counterbalanced across participants. Each block consisted of 72 trials.
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any 1 or 2 of those 80 objects at a given time (only 1 ob-
ject was presented at a time in the present experiment) to
either the left or right hand. For this study, subjects ex-
plored the haptic shapes with their left hand, using their
right hand to press one of two buttons indicating same or
different. The haptic stimuli were positioned such that
they could not be seen by the participant. The haptic pre-
sentation system includes an x–y slide system (drylin line-
ar actuators, Igus) driven by stepper motors (Applied
Motion) used to position the inventory panel and two arms
each composed of three servo motors (DYNAMIXEL,
ROBOTIS) used to retrieve, present, and return objects.
Each object could be independently rotated in plane

for presentation at any angle. Each object was wrapped in
6 mm conductive foil tape (Adafruit), and that tape was di-
vided into six sections, which were monitored at 100Hz
using a 12-channel capacitive touch sensor (6 channels
available for each of two objects; model MPR121, Adafruit),
enabling us to know when and where a shape was being
touched by the participant.
On each haptic trial, a physical stimulus was pre-

sented to the left hand of participants at a comfortable
position where their hand would naturally rest with el-
bows on their chair’s armrest, rotated to one of four 90°
positions. Haptic stimuli were simply an extruded ver-
sion of the two-dimensional visual stimulus. Each 2D
shape was first scaled such that the maximum extent
was 25 mm, then extruded 5 mm in depth using CAD
(computer-aided design) software (Autodesk Fusion 360)
and three-dimensionally (3D) printed (Mojo 3D printer,
Stratasys). After 3D printing, the perimeter of the shape was
wrapped in foil tape and divided into six sections, as de-
scribed above. Each of those six touchpads was wired to a
custom circuit board embedded within each object to make
those touchpads electronically accessible. The entire object
was then painted with conformal coating (MG Chemicals)
to give a smooth, uniform feel and to protect the copper
touchpads.
For this experiment, we specifically chose to present

two-dimensional shapes, recognizing that these are only
a subset of the kinds of objects encountered in the real
world. For the visual–haptic comparisons under study, a
significant advantage of using extruded 2D (as opposed
to 3D) stimuli is that all relevant shape information is avail-
able to both modalities from a single view. With complex
3D shapes, a single view cannot reveal the entire shape
(because you cannot see the back of an object) but a par-
ticipants’ fingers would have access to that shape infor-
mation, leading to a fundamentally different opportunity
to perceive the shape.
When presenting physical stimuli (as opposed to digital

stimuli rendered on a computer screen), care must be
taken to avoid any possibility that the participant might
gain additional helpful information from the sights or
sounds generated by the presentation mechanism. For
example, in the present same–different task, it would be
trivially simple to perform perfectly just by listening to
whether the machine picks up a new object (different tri-
als) or not (same trials). Multiple steps were taken to ad-
dress such confounds. First, the presentation device was

obscured from view, thus providing no helpful visual infor-
mation. Second, after each trial, when an object was re-
turned to the panel holding the inventory of objects, it was
returned to a new location. This prevented a participant
from being able to guess the identity of an object by lis-
tening to the x–y travel of the machine. Third, on every
haptic trial, whether it was a same trial (the same haptic
stimulus needs to be presented on successive trials) or a
different trial, an object was always dropped off and a dif-
ferent object was picked up. The only difference was that
one robotic arm was used to drop off and pick up a new
object on different trials and the second robotic arm was
used to drop off and pick up a new sham object on same
trials. The sham object was not actually presented to the
participant, but there was no visual or auditory cue avail-
able to tell whether the real or sham object was pre-
sented, and thus no cue predicting whether the current
stimulus was the same or different from the previous stim-
ulus was present. Postexperiment questionnaires con-
firmed that participants had not found any strategy that
was helpful in predicting the identity of haptic stimuli.

Behavioral measurements and analysis
Shape measurements
One of the major goals of this study was to determine

whether participants were more likely to mistake two
different shapes as being the same shape if the two
shapes were similar. The question then becomes: how
do you define “similar”? Here, we selected a variety of
metrics with which we can quantitatively evaluate and
compare shapes that are intended to cover a wide
range of plausible methods of comparison. We ac-
knowledge that, although we have used a wide range
of these metrics, our collection does not constitute an
exhaustive list of possible metrics.

Distribution of angles. Each shape was defined by ap-
proximately 700–800 (depending on the perimeter length
of each shape) points spaced at 0.1 mm increments. To
calculate the distribution of angles for a given shape, the
local angle at each of those points was calculated over a
specified span. For example, for a span of 101 points, the
angle at point p is calculated as the angle formed by the
vectors from p to p – 50 and from p to p1 50. The distri-
bution of all angles making up a shape is simply the
cumulative density function (CDF) composed of these
angles.

Aspect ratio. For a given shape, the x span (xmax –

xmin) and y span (ymax – ymin) were calculated. Then, the
aspect ratio at that rotation is calculated as xspan/yspan.
The shape is then rotated at 1° increments, and the as-
pect ratio is computed again at each orientation. The as-
pect ratio for the shape is determined to be the largest of
the 360 aspect ratios calculated for each shape.

Area/convex hull area/compactness. Area was calcu-
lated using the built-in MATLAB function “polyarea.” The
convex hull was determined using the built-in MATLAB
function “convhull,” and then the convex hull area was
calculated using the function “polyarea.” Compactness is
defined here as the area divided by the convex hull area.
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Shape comparisons
Distribution of angles. To determine the similarity of two

shapes, A and B, using this method, we computed the sum
squared error between the CDFs of angles of shapes A and B.

Area/convex hull area/compactness. As with aspect
ratio, we defined the similarity of two shapes in these meas-
ures to be the difference squared of the relevant measure.

Turning distance. This was calculated using the built-in
MATLAB function “turningdist” based on the study by
Arkin et al. (1991). Briefly, turning functions are calculated
for each shape as the angle of the counterclockwise tan-
gent as a function of the length of each segment of a
shape, which is then normalized to a common length. This
yields a complete representation of a shape that has the
advantage of being invariant to size and x–y translation,
but the disadvantage (for our application) of not being ro-
tation invariant because the starting position for each
turning function is arbitrary. Thus, the distance between
turning functions is calculated for all starting positions of
one shape and the minimum (min) distance is taken as the
turning distance between two shapes.

Intersection over union. This was calculated using the
built-in MATLAB functions “intersect” and “union,” with
the area of intersection then divided by the area of union.
Possible values range from 0 to 1, with 1 representing per-
fect overlap between shapes. This ratio is computed for
the pair of shapes both for the actual orientations as pre-
sented (“@actual”) as well as at the optimal orientation
that maximizes the overlap (“@optimal”) to represent the
mental rotation a participant may be performing to at-
tempt to align two shapes.

Aspect ratio. The similarity of the aspect ratios of two
shapes is defined as the difference squared between the
individual aspect ratios of the two shapes (@optimal
method). The difference in aspect ratio is also measured
under the assumption that no attempt at mental rotation
is made (@actual), calculated as the aspect ratio of a
bounding box with the long axis oriented the same as that
for the shape on the previous trial. For example, if the
shape presented on the previous trial had its long axis ori-
ented 30° right of vertical, a participant may feel the cur-
rent shape for a long axis that is;30° right of vertical.

Hausdorff distance. Shapes are first overlaid with
aligned centerpoints. Next, for a given point on shape a,
the nearest point on shape b was determined and the dis-
tance between these points was calculated. This was re-
peated for all points on each shape, and the maximum of
these minimum distances is the Hausdorff distance. The
Hausdorff distance is small for shapes that very nearly
overlap and increase with larger deviations. Because this
distance is not rotation invariant, it is calculated for both
the actual orientations of the two shapes being compared
(@actual) as well as the optimal orientation where the
Hausdorff distance is minimized (@optimal) to account for
the possible mental rotation a participant may perform to
align two shapes.

Metric evaluation
The various metrics were evaluated using a general line-

ar model (GLM) with a binomial distribution to assess the

relationship between the similarity of a pair of shapes (as
determined by the metrics described above) with the re-
sponse of a participant (same or different) on each trial.
We used the Akaike information criterion (AIC) provided
by the GLM as the dependent measure to evaluate a
given metric. To facilitate comparisons within a condition
(e.g., VH), a “random” metric was introduced that was
simply a uniformly distributed random number assigned
for each trial. For a metric to be considered predictive, it
should provide at least an additional 3 units of AIC beyond
the random metric (Burnham and Anderson, 2004). This
use of AIC for assessment was particularly helpful when
comparing the performance of metrics by themselves
with models composed of multiple metrics, as it accounts
for the likelihood that adding predictor variables will tend
to improve model performance (purely by chance) by pe-
nalizing for the additional factors. Here we chose the
model with the fewest variables that was not improved by
at least 3 units by adding an additional variable.

Monte Carlo simulation
To determine whether a given touchpad was touched

more or less than would be expected by chance, and thus
whether participants direct their haptic exploration toward
particular features, we used a Monte Carlo simulation to
form a baseline prediction of random touching. For each
shape, 100,000 x–y points were randomly generated,
each point representing a potential center point of a fin-
ger. If a given point was (1) outside the shape, (2) within
6 mm of an edge (representing the radius of a finger), and
(c) not within 4 mm of an edge (representing the con-
straints on morphability of a finger when it touches a hard
object), it was considered a touch. Any pad that was at
least partially within 6 mm of the x–y point was considered
“touched.” After 100,000 simulated touch points, the ratio
of touches for each of the six touchpads was compared
with the ratio of actual touches on those six touchpads to
determine which pads were touched more or less than
expected.

Results
Ten participants participated in a one-back same–dif-

ferent task (Fig. 2) during which they evaluated a series of
abstract shapes to determine whether each was the same
as the last, regardless of changes in orientation. Each de-
cision was signaled by pressing one of two buttons (same
or different). Two-thirds of the trials were different trials,
and the remaining one-third were same. Each participant
completed 144 trials for each of the following four condi-
tions: VV (comparing two visual shapes), VH (comparing a
haptic shape on the current trial with a visual shape on the
previous trial), HV (comparing a visual shape on the cur-
rent trial with a haptic shape on the previous trial), and HH
(comparing two haptic shapes).

Analysis of within-modal and cross-modal conditions
We used a multilevel linear model to analyze the re-

peated-measures data. As is quite obvious from the re-
sults presented in Figure 3, the individual modalities used
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for the shape comparison (i.e., VV, HV, VH, and VV)
had a significant effect on percentage correct perform-
ance (x2 (3) = 55.84, p, 0.0001), sensitivity as meas-
ured using d9 (x2 (3) = 61.84, p, 0.0001), and reaction
time (x2 (3) = 83.60, p, 0.0001). Performance in the
within-modal conditions, compared with the cross-
modal conditions, was better (for percentage correct:
b = 4.30, t(27) = 6.98, p,0.0001; for d9: b = 0.637, t(27) =
7.23, p, 0.0001), as would be expected from the high
level of performance seen in the VV condition (Fig. 3).
Indeed, using Tukey’s contrasts for multiple compari-
sons for performance and sensitivity, we also found
that the VV condition was different from all three other con-
ditions (all z-values less than �9.0, p-values, 0.0001), but
that none of the other conditions differed significantly from
each other.
Contrasts for the reaction time data provide a slightly

different picture. Not surprisingly, as we found for per-
formance and sensitivity, the modality of the current stim-
ulus significantly affected reaction times, with responses
to a currently presented visual stimulus being significantly
faster than a current haptic stimulus (b = �1407, t(27) =
�18.82, p, 0.0001). However, the modality of the prior
stimulus did not have a significant impact on reaction
times (b = �58.5, t(27) = �0.78, p=0.44). We did find,
though, that the within-modal conditions were overall
faster than the cross-modal conditions (b = �172, t(27) =
�2.31, p=0.029). We again used Tukey’s contrasts to
compare the four conditions to each other, and we found
that the VV condition differed from the VH and HH condi-
tions (z values less than �14) but that although VV was
slightly faster than the HV, the effect was not significant
(estimate = 462, z= 2.3, p= 0.097). When comparing VH
to HH, the within-modal haptic condition was faster
(estimate = 228), but the difference was not significant
(z = �1.135, p= 0.66). We note that the reaction time

cost for comparing HV to VV is higher than comparing
VH to HH. This suggests that translating a haptic repre-
sentation in memory to compare to a visually presented
match is more demanding than translating a visually
stored shape into a haptic space.

Effects of shape rotation
For match trials, the same shape was presented twice

sequentially, but the orientation of that shape could differ
on each of the two presentations. This was primarily to
curtail certain undesirable strategies (e.g., feeling only the
top left of each shape and comparing that small section
between shapes), but it also allowed for an evaluation of
the impact of rotation on recognition in different modal-
ities. To assess the effects of rotation, and in particular to
ask whether rotation had a different impact on the recog-
nition of shape as a function of modality, we modeled the
percentage correct and reaction time data using a facto-
rial repeated-measures GLM (sensitivity could not be as-
sessed as above as these were all match trials so we only
have hits and misses). For this analysis, the first factor in-
cluded levels for condition (VV, HV, VH, and HH). The sec-
ond factor was stimulus rotation (0°, 90°, 180°). To test for
the overall effect of each factor, we added them one at a
time to the baseline model followed by inclusion of their
interaction.
Results for percentage correct performance are shown

in Figure 4. Considering the hit rate, the addition of each
factor and the interaction significantly improved the model
fit (modality: x2 (3) = 28,4, p,0.001; rotation: x2 (2) = 13.9,
p=0.0009; interaction: x2 (6) = 30, p, 0.0001) and reac-
tion time. This implies that performance across the four
conditions differed, and that performance depended on
the orientation of the sample and match stimulus. The sig-
nificant interaction indicates that the effect of rotation itself
depends on the modality.

Figure 3. Task performance. All comparisons not labeled “n.s.” were significantly different (Tukey’s contrasts, p, 0.005). A, Box
plot showing performance (median, interquartile range, range) of all participants on each condition. Participants performed best on
within-modal visual comparisons (VV). B, Performance using d9 measure. C, Median reaction time for each participant for each con-
dition. Cross-modal responses tended to be slower than within-modal comparisons (p=0.029), though each of the two cross-modal
conditions (HV and VH) were not significantly slower than the comparable within-modal conditions (VV and HH, respectively).
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Specific contrasts help us to better understand these
trends. For the modality factor, we included orthogonal
contrasts for “visual current” (VV and HV vs VH and HH),
“cross-modal” (VV and HH vs HV and VH), and “unimodal
pathway” (VV vs HH, ignoring the cross-modal condi-
tions). For the rotation factor, we included contrasts for
“rotated” (0° vs 90° and 180°) and for “degree of rotation”
(90° vs 180°, ignoring 0°). All of these factors, except the
last, were significant (visual current: b = �0.06, t(27) = 2.72,
p=0.011; cross-modal: b = �0.05, t(27) = 3.45, p, 0.005;
within-modal pathway: b=0.34, t(27) = 5.34, p, 0.0001).
These significant contrasts support the idea that, regard-
less of rotation difference, performance on match trials is
better when the current stimulus is visual, when the com-
parison is made within modality compared with across
modality, and, for unimodal trials (VV and HH), that visual
comparisons are more accurate than haptic comparisons.
For the rotation contrasts, we found a significant effect

of rotation away from 0° (rotated: b = �0.11, t(27) = 4.41,
p, 0.0001) but no overall difference between the 90° and
180° of rotation (degree of rotation: b = �0.02, t(27) = 0.75,
p=0.46). This supports a model where shape compari-
sons are orientation sensitive, as one might expect, with
rotation between sample and match reducing perform-
ance. However, we also found a significant interaction be-
tween the cross-modal contrast and rotation away from
0° on performance (b =0.1, t(27) = 4.14, p,0.001). This
suggests that orientation differences between sample
and match have greater impact on performance for
within-modal comparisons compared with cross-modal
comparisons. Said another way, cross-modal recogni-
tion performance appears more invariant to rotation, a

finding that accords with previous studies of visuohap-
tic recognition (Bülthoff and Edelman, 1992; Newell
et al., 2001; Lacey et al., 2007, 2009; Andresen et al.,
2009).
Finally, we analyzed the effect of rotation specifically

within the unimodal VV and HH conditions. Looking at
Figure 4, it appears that the effects of rotation were more
pronounced for the within-modal haptic condition com-
pared with the within-modal visual condition, and that the
patterns of the effect were distinct. Using general linear
hypothesis testing, we compared the 0–90°, 0–180°, and
90–180° rotation conditions within the VV and HH condi-
tions. This analysis revealed that the effects of rotation for
the visual matching trials were incremental and monoton-
ic (0° vs 90°: b = 0.13, z=2.149, p=0.06; 90° vs 180°:
b =0.03, z=0.59, p=0.55; 0° vs 180°: b =0.16, z=2.74,
p=0.025). This suggests that for visual matching, per-
formance degraded with increasing rotation. Rotation
affected the haptic condition in a very different way.
Rotation away from the original orientation by 90° dramat-
ically affected performance (0° vs 90°: b =0.35, z=5.88,
p, 0.0001), but a further 90° rotation actually improved
performance (90° vs 180°: b = �0.16, z = �2.70, p=
0.025). We return to this distinction below, as we consider
which specific shape dimensions appear critical for visual
and haptic recognition and how these may differ.
Consistent with the match performance measures,

each factor and their interaction significantly improved
the model fit for reaction times (modality: x2 (3) = 86.9,
p, 0.001; rotation: x2 (2) = 16.3, p=0.0003; interaction:
x2 (6) = 38, p, 0.0001). These data are shown in Figure 4,
and, as for the performance data, we can infer that

Figure 4. Performance with rotation of match shapes. Within-modal rotation tends to lead to more mistakes and longer reaction
times, while no such penalty is seen for cross-modal comparisons. *p, 0.05; **p,0.005; all others, p. 0.05.
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modality, rotation, and their interaction are all significant
predictors of reaction times.
Results of the contrast analyses revealed that reaction

times are, as is evident from Figure 4, significantly faster
for trials where the current stimulus is presented visually
(visual current: b = �1068, t(27) = 12.77, p, 0.0001).
Reaction times for cross-modal trials were also signifi-
cantly slower than unimodal trials (cross-modal: b = 241,
t(27) = 4.08, p,0.0001). Rotation of a stimulus between
sample and match also significantly slowed responses
(b =306, t(27) = 5.12, p, 0.0001). Interactions between the
modality and rotation factors also proved significant. The
interaction between cross-modality and rotation was
highly significant (b = �180, t(27) = 3.01, p, 0.005), which
corroborates the performance results presented above,
again suggesting that the effects of rotation are less pro-
nounced for cross-modal comparisons compared with
within-modal comparisons. A significant interaction be-
tween the cross-modal contrast and the degree of rota-
tion (90° vs 180°) conditions (b = �182, t(72) = 2.62,
p=0.01) indicates that the 90° rotation slows responses
for the within-modal condition but not the cross-modal
condition. We also observed a significant interaction be-
tween the type of within-modal trial (visual/VV or haptic/
HH) and any rotation (b = �620, t(27) = 2.59, p=0.012) as
well as the degree of rotation (b = �571, t(72) = 2.06,
p, 0.05). We note that, although these interactions sug-
gest that the visual and haptic within-modal comparisons
are differentially affected by stimulus rotation, their inter-
pretation is made difficult by the large difference in overall
reaction time between the VV and HH conditions (see
Discussion).

Change in performance over time
The present study was designed to produce steady-

state performance for analysis. To that end, we provided
enough training and a large enough stimulus set so as
to minimize any improvement in performance over the
course of the experiment. Comparing the performance
(d9) between the first 50 and last 50 trials for each condi-
tion and each participant confirmed little if any improve-
ment during the experimental session. In the VV task, d9
went from 3.44 to 3.38 on average (paired t test, p=0.79),
in the HH task, d9 went from 1.49 to 1.59 (paired t test,
p=0.71). In the cross-modal condition, d9 went from 1.35
to 1.27 (paired t test, p=0.64).

Predicting behavior based on shapemetrics
The behavioral differences observed on the same task

in different modalities led us to model the behavior to bet-
ter understand the critical features of shapes participants
used to complete this task and to compare these critical
features for both visual and haptic shapes. To this end,
we chose eight “shape metrics” (Fig. 5), which provide a
variety of methods for quantifying the similarity between
two shapes. Based on these shape metrics, we could
then predict whether two shapes were likely to be con-
flated. By comparing the success of these various shape
metrics in predicting behavior in each modality condition,

we can gain insight into how shapes are evaluated by vi-
sion and touch. Details of each of these shape metrics are
provided in Materials and Methods.
Figure 6 shows the performance of each model in fitting

behavior for each of the four conditions. For within-modal
visual comparisons, the single metric that best predicts
behavior is the distribution of curvature. This metric sim-
ply catalogs the various angles that compose a given
shape without regard for the spatial relationships between
those angles. Similarly, for VH trials (comparing a haptic
shape on the current trial with the visual shape seen on
the previous trial), distribution of curvature is once again
the best metric. For HV trials, the Hausdorff distance and
intersection over union (@optimal) were most informative.
The Hausdorff distance is a simple and extremely sparse
description of the differences between shapes, represent-
ing the maximum of all minimum distances between
points on a pair of shapes. If two shapes can be oriented
such that their boundaries nearly overlap, the Hausdorff
distance is small. However, if one of the two shapes has a
large protrusion, but the shapes are otherwise identical,
the Hausdorff distance is large. Intersection over union is
the ratio of overlapping to nonoverlapping areas shared
between two shapes. Finally, behavior on within-modal
haptic trials is best described by the compactness metric.
We can think of this metric as a measure of the area of the
concavities of a shape (e.g., a circle is very compact be-
cause there are no concavities, whereas a starfish shape
would not be compact). Considering the physical limita-
tions inherent in the manual evaluation of an object, it is
not so surprising that concavities are particularly salient in
haptic exploration.
For a clearer sense of how well these metrics predict

behavior, Figure 6 (bottom) shows the relationship be-
tween the shape difference (according to the best metric
for that condition) and the performance of participants. It
is important to note here that the best metric was not cho-
sen according to which metric produces the strongest
correlation, but rather according to which best predicts
the choice of the participant on a trial-by-trial basis.
Nevertheless, there is a clear, nearly monotonic, relation-
ship in each condition in the expected direction: shapes
that are more dissimilar according to a similarity metric
are more likely to be labeled different by a participant
(Pearson’s r; VV: r=0.84, p=0.002; VH: r=0.94, p=
0.0001; HV: r=0.69, p=0.026; HH: r=0.90, p=0.0004).
Although the trend is less pronounced in the VV condition,
likely because of the near ceiling performance, the corre-
lation is still highly significant. In all cases, performance
for the most dissimilar shapes is nearly perfect. Figure 6B
also shows the performance of the metrics when com-
bined (red). Using AIC to “punish” models with added
complexity, we found that the optimal models for each of
the two within-modal conditions were best fit by combina-
tions of two metrics, while each of the cross-modal condi-
tions were best fit using combinations of three metrics. In
all cases, these multimetrics were better able to predict
behavior even after accounting for the added factors,
though this does not necessarily result in a stronger corre-
lation coefficient. For VV trials, the best multimetric was a
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combination of curvature and intersection over union,
while for HH, it was compactness and hull area.
Interestingly, for both VH and HV, the exact same
three-factor multimetric was best: the combination of
aspect ratio, curvature, and Hausdorff distance.
Three of the metrics described here were each calcu-

lated using two different methods, described here as
@optimal and @actual. The intuition here is that we do not
know a priori if behavior in this one-back matching task is
better modeled by assuming participants are performing
mental rotation (as they should, they were instructed to
ignore rotation) or not. Ideally, participants would have a
perfect recall of the shape presented on the previous trial
and would have the ability to compare that shape with the
shape presented on the current trial at all possible orienta-
tions and evaluate the similarity at each of those orienta-
tions. If there is any possible orientation where the shapes
are a match, then the response is same; otherwise differ-
ent. However, we know that mental rotation abilities are
imperfect (Shepard and Metzler, 1971; Gauthier et al.,
2002; Fig. 4), so it may be that performance is highly de-
pendent on the exact orientation at which those shapes
happen to be presented. If they happen to be oriented, for
example, such that they both have a protrusion on top,
they may be labeled same, while if those same shapes are
presented with protrusions on opposite sides, they may
be labeled different. Metrics that assess the similarity be-
tween two shapes at the optimal alignment that maxi-
mizes their similarity are labeled @optimal, while metrics
that assess similarity at the actual orientations in which
they were presented are labeled @actual.
Interestingly, we found a clear difference between with-

in-modal and cross-modal conditions in terms of whether
they were better fit by @actual or @optimal metrics (Fig.
7). Within-modal behavior was better described by @ac-
tual metrics, and cross-modal behavior was better de-
scribed by @optimal metrics. This implies that mental
rotation is costly or difficult when comparing shapes within
the same modality but simple or even automatic when
comparing shapes across modality. This provides inde-
pendent confirmation supporting the results presented
above (Fig. 4) and reported previously (Lacey et al., 2009).

Figure 5. Shape comparison metrics. The metric “area” is the
area encompassed by a shape. Convex hull area is the area en-
compassed by a boundary enclosing the shape with only

continued
convex turns. Compactness is the quotient of the area to the
convex hull area. Distribution of angles represents all the angles
that can be said to compose a given shape given a certain
spread over which those angles are calculated. Turning function
is a complete representation of a given shape using the tangent
and length of each line segment composing that shape. This re-
formatting simplifies the comparison of shapes by being size
and translation invariant. For explanatory purposes, an example
shape is shown with color-coded sections. Aspect ratio (@opti-
mal) is the largest ratio of length to width of a rectangle enclos-
ing a shape. Intersection over union (@optimal) is the optimal
overlap that can be achieved by overlaying one shape with an-
other. The Hausdorff distance (@optimal) is the maximum of all
minimum distances between all points on one shape and all
points on another shape, optimized by rotating one shape rela-
tive to the other to find the smallest possible Hausdorff distance
for a given pair of shapes.
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Characterization of active exploration
We also sought to determine whether the way partici-

pants touch shapes differs based on experimental condi-
tion (Fig. 8). Using the six touch sensors embedded in
each shape, we quantified “dwell time” (the duration of
each touch of a touchpad indicating how quickly the hand
moves around the object), “unique pads touched” (how
many of the six pads are touched on a given trial), “simul-
taneous pads touched” (how many pads are touched at
any given moment, corresponding to the number of fin-
gers being used), and “total pad touches” (the number of
the six pads that were touched in the trial, an estimate of
how much effort is spent on exploring a shape). No differ-
ences were found in dwell time, unique pads touched, or
simultaneous pads touched between the HH and VH con-
ditions, suggesting the basic strategy of how a shape is
explored does not depend on the modality with which it is
being compared. The only difference was found in the
number of total pad touches, with more pad visits found
in the VH condition [mean pad visits per trial: HH, 12.1;
VH, 12.5; Kolmogorov–Smirnov (K-S) test, p=0.009].
Interestingly, this difference in total pad touches between
VH and HH conditions resulted almost entirely from the
specific condition where the same haptic shape was pre-
sented consecutively (i.e., “match” trial) at the same ori-
entation, corresponding to the relatively quick reaction
times in this condition (Fig. 4, HH column, 0 change in
angle). We conclude that people explore haptic objects

Figure 6. A, Performance for each similarity metric for each condition. The horizontal axis is the difference between the AIC of each
individual metric and the best metric for that condition. Vertical dashed green lines indicate the threshold for what can be consid-
ered no different from the best model, while vertical dashed red lines indicate the boundary for metrics that can be considered no
different from chance. B, Behavioral performance on nonmatch trials correlates with the similarity of those shapes according to the
most successful metric for that condition (optimal single, black). As the difference between two shapes increases, the probability
that a participant will correctly label them as “nonmatch” increases. In all four conditions, the use of additional factors significantly
improved predictive performance, although not necessarily leading to an increase in the correlation seen here. The optimal multi-
metric for VV and HH used two factors, while the optimal multimetric for HV and VH used three factors.

Figure 7. Within-modal versus cross-modal differences in be-
havior. Change in AIC between @optimal and @actual metrics
show that within-modal behavior (conditions VV and HH) is bet-
ter described by metrics that do not assume mental rotation
(i.e., @actual metrics), while cross-modal behavior (conditions
VH and HV) is better described by metrics that do assume men-
tal rotation (i.e., @optimal metrics).
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the same whether comparing them to a previously pre-
sented haptic or visual shape, but that, as this compari-
son is more challenging, more time is spent carrying out
that exploration.
To compare this with the visual behavior, we evaluated

dwell time (i.e., intersaccade interval) and the number of
saccades per trial. Similar to the results for haptic explo-
ration, the biggest differences were seen in the amount of
time exploring (mean saccades per trial: VV, 3.22; HV,
5.27; K-S test, p=8e-47), again corresponding to differ-
ences in reaction time (Fig. 4). However, there was also a
significant difference in the dwell time at each saccadic
location, with participants making more frequent sac-
cades in the HV condition (mean dwell time: VV, 405ms;
HV, 366ms; K-S test, p=1e-5).

Finally, we asked whether participants use targeted ex-
ploration to focus on areas of a shape with more curvature
or whether exploration appears more uniformly distrib-
uted (Fig. 9). We used a Monte Carlo approach (details in
Materials and Methods) to estimate the predicted touches
of each touchpad if haptic exploration were random and
then compared that to actual touches of those touchpads
(we would not expect an equal number of touches for each
of the six touchpads because not every pad is the same
length or equally accessible to a finger). We found
that, in both HH and VH conditions, the location of
touches was not random, but instead there was a sig-
nificant relationship between the length of time partici-
pants inspect a given touchpad and the amount of
curvature in that area (Pearson’s correlation; HH: r= 0.32,
p=4e-8; VH: r= 0.28, p= 1e-6), suggesting that partici-
pants intentionally focus on exploring areas of high cur-
vature that may contain more distinctive or “diagnostic”
features.

Discussion
In this study, human participants performed a one-back

shape comparison task where they were presented with a
continuous stream of shapes and asked to report whether
the currently presented shape was the same as the previ-
ously presented shape. Shapes were presented either on
a computer monitor (visual) or by a robotic arm to the par-
ticipants’ left hand (haptic). Though our specific paradigm
and the manner of presentation of physical objects were
novel, we did confirm previous results found in visual–
haptic research (Bülthoff and Edelman, 1992; Newell
et al., 2001; Lacey et al., 2007, 2009; Andresen et al.,
2009), showing that orientation is important when com-
paring shapes within a modality but not when comparing
shapes across modalities. This increases our confidence
that the results shown here are broadly applicable for vis-
ual–haptic research using different stimuli and different
presentation methods.

Figure 9. Regions with more curvature are touched more than
expected based on Monte Carlo simulation. In both VH trials
(left) and HH trials (right), touchpads with more curvature are
touched more than would be expected by chance, whereas
touchpads covering straighter portions of a shape are touched
less than would be expected by chance. This indicates that par-
ticipants specifically target areas of high curvature for manual
exploration. Each point represents one touchpad on one shape.
Line is the linear best fit. Pearson’s correlation. HH: r = �0.32,
p=4e-8; VH: r=0.28, p=1e-6.

Figure 8. Statistics of haptic and visual exploration across
all trials and participants. A, Haptic exploration of shapes is
remarkably consistent regardless of condition. Participants
spent the same amount of time touching each portion of the
shape (“dwell time”), touched the same proportion of the
shape (“unique pads touched”), and touched the same propor-
tion of the shape at once (“simultaneous pads touched”). The
only difference is found in the duration of exploration, leading
to more touches in the VH condition (total pad touches; K-S
test, p= 0.009). B, Similarly with visual exploration, the biggest
difference between conditions is that participants spend more
time looking around the shape in the HV condition (K-S test,
p= 8e-47). Interestingly, the dwell time at each saccade end
point is significantly shorter in the HV condition than in the VV
condition (K-S test, p= 1e-5).
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The primary new findings in the present study are that
(1) performance in this shape-matching task is predictable
based on simple metrics that quantify the dissimilarity be-
tween shapes, and (2) that the metrics that best predict
behavior depend on the presentation modality. For exam-
ple, the best metric for predicting a within-modal visual
comparison is very different from the best metric for pre-
dicting behavior on a within-modal haptic comparison.
This does not appear to result from simple differences in
spatial acuity between the senses but rather from funda-
mental differences in the way shapes are processed.
These results may seem to contradict a recent study

by Tabrik et al. (2021). In that study, a great deal of simi-
larity was found between the chosen shape metrics and
the self-reported measures of perceptual similarity in
both within-modal visual and within-modal haptic com-
parisons (different groups of participants were used for
these tasks, so no cross-modal comparisons were pos-
sible). A number of differences between that study and
the present study could explain the discrepancy. First, it
may be that self-report of perceived shape similarity on a
7-point scale is different from the “revealed perceptual
similarity” obtained in the present study, where we ana-
lyze which shapes are confused for other shapes. For ex-
ample, a participant may assess that two shapes are
very similar to each other overall and yet the small differ-
ence could be quite salient such that they would never
be confused for each other. Second, the Tabrik et al.
(2021) study used shapes that were generated by evolv-
ing eight shapes from each of two related initial shapes
using digital embryo algorithms. Because the shapes
were all part of the same family, that may have encour-
aged the evaluation of shape differences on a given set
of dimensions that best describe the differences in that
specific shape family but would not necessarily describe
differences in independently generated shapes. Third,
the Tabrik et al. (2021) study allowed participants to ma-
nipulate the shapes (physically in the haptic condition,
virtually in the visual condition), whereas the present
study did not. This raises the interesting possibility that
active manipulation of a shape may alter the perceived
similarity between shapes.
One difference between the within-modal and cross-

modal tasks used here is that of task switching. That is, in
VV and HH conditions, each trial is in the same modality
as the previous one and thereby requires the same physi-
cal and cognitive processes. The cross-modal task de-
mands a constant switching between modalities from trial
to trial. It is possible that this task switching leads to a sig-
nificant increase in cognitive load and thereby impairs
performance compared with what would otherwise be ex-
pected. Using a same–different task structure where each
block is only VH or HV comparisons rather than the one-
back task used here may lead to improved performance.
Although there is still a constant switching of modality re-
quired, there is more consistency in that the participant is
repeatedly asked to compare the current visual stimulus
to a remembered haptic stimulus and vice versa in sepa-
rate blocks. The lack of difference in performance (Fig. 3)
between cross-modal and HH trials suggests that any

increase in task-switching demand is minimal, and we be-
lieve the differences between VV and HV performance is
better explained by the VV condition simply being funda-
mentally easier in this task, which also explains why VV
performance is much better than HH, neither of which re-
quire task switching.
The shapes used in the present study were two-dimen-

sional for visual presentation and extruded two-dimen-
sional shapes for haptic presentation. As opposed to
more complex three-dimensional stimuli, this allows for
greater control of the available stimulus information to the
participant and more inherent similarity between the two
modalities (e.g., the back of an object is not visible but
can be touched). Although we are unaware of any reason
to assume that more complex three-dimensional stimuli
would yield a different result, we also cannot rule that out.
It is important to note that the metrics used here to

quantify differences between shapes can be used predic-
tively. That is, it should be possible to intentionally create
shape sets that are difficult to differentiate visually or hap-
tically. Furthermore, it should be possible to create stimu-
lus sets that are difficult to differentiate haptically but easy
to differentiate visually, and vice versa. Some previous
work in this area has used post hoc analyses of behavior
to group shapes by similarity, but did not provide a means
of directly predicting perceived similarity in the absence
of behavioral results (Huang, 2020). We sought here to
develop models that are more readily interpretable and
can thereby provide greater intuition (Rudin et al., 2021).
It is also important to emphasize that object familiarity

may play a role in the extent to which different brain
areas are involved in visual and haptic object recogni-
tion. Previous work (Deshpande et al., 2010; Lacey et al.,
2010) has indicated that the networks involved in haptic
object recognition are similar to visual object recognition
only when the shapes are familiar. This may also explain
the results found in the study by Tabrik et al. (2021)
where shapes were likely more familiar and greater simi-
larity was found between visual and haptic processing
compared with the present study. Further work will seek
to determine the extent to which stimulus familiarity im-
pacts which metrics best to predict human behavior.
Finally, this work suggests something about shape

processing in the brain, more generally. Our initial hy-
pothesis was that, to the extent that haptic object rec-
ognition recruits visual cortical areas for processing
object shape, the same properties that are important
for differentiating visual shapes should be important
for differentiating haptic shapes. For example, visual
shape recognition is thought to rely on combining the
activity of neurons in visual cortex sensitive to local
curvature (Riesenhuber and Poggio, 1999; Serre et al.,
2005; Yau et al., 2009; Pasupathy et al., 2020). This
would predict that two different shapes with similar local
curvature would be easily confused. If haptic shape rec-
ognition uses the same pathways, we would expect local
curvature similarities to also contribute to mistakes of
haptic shape recognition, particularly if we allow for dif-
ferent definitions of “local” based on the lower acuity of
haptic versus visual perceptions (i.e., measuring local
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curvature over various distances that should be opti-
mized based on fingertip size). This does not appear
to be the case. Rather, the metrics that work well for
predicting haptic–haptic shape comparison appear
fundamentally different from those that work well for
predicting visual–visual shape comparison. This sug-
gests that pathways for within-modal haptic shape
processing may exist somewhat independent of visual
processing. While these pathways have not yet been
fully discovered, the device developed in this study for
presenting haptic objects could be used to explore
these circuits more systematically than has been pos-
sible in previous studies.
The finding that behavior in the cross-modal condi-

tions is best fit by models that combine three metrics,
while behavior in the within-modal conditions is best fit
by models that combine only two metrics, further bol-
sters the view that processing across modalities is fun-
damentally different from processing within modality.
The observed increase in complexity required to explain
behavior may reflect an increase in complexity of the net-
works involved and the need for interactions between
these, which can perhaps be short-circuited for within-
modal comparisons, most notably in the absence of ro-
tation. Further work, particularly using electrophysiology
and neuroimaging techniques, should prove useful in
elucidating the areas that are involved in these varying
shape recognition scenarios.
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