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A B S T R A C T   

Maritime accidents frequently lead to severe property damage and casualties, and an accurate and 
reliable risk prediction model is necessary to help maritime stakeholders assess the current risk 
situation. Therefore, the present study proposes a hybrid methodology to develop an explainable 
prediction model for maritime accident types. Based on the advantages of selective ensemble 
learning method, this study pioneers to introduce a two-stage model selection method, aiming to 
enhance the predictive accuracy and stability of the model. Then, SHAP (Shapley Additive Ex-
planations) method is integrated to identify effective mapping associations of seafarers’ unsafe 
acts and their risk factors with the prediction results. The results demonstrate that the model 
developed achieves good prediction performance with an accuracy of 87.50 % and an F1-score of 
84.98 %, which benefits stakeholders in assessing the type of maritime accident in advance, so as 
to make proactive intervention measures.   

1. Introduction 

Maritime accidents are the unexpected and abnormal events of ships, often resulting in casualties and property losses [1]. Maritime 
safety has been a concern for maritime authorities since the beginning of shipping [2]. Depending on the characteristic of maritime 
accident, various types of maritime accident are defined. According to China Maritime Safety Administration (MSA) [3], there are six 
main maritime accident types, which are collision, grounding, sinking, contact, fire/explosion, and wind. To prevent maritime ac-
cidents, numerous endeavors have been made to devise countermeasures for improving maritime safety [4]. For instance, Interna-
tional Maritime Organization (IMO) proposed International Convention on Standards of Training, Certification and Watchkeeping for 
Seafarers (STCW Convention) and the International Safety Management Code (ISM Code), which promoted maritime safety from the 
perspective of seafarer training and management. However, maritime accidents are the results of coupling complex and uncertain risk 
factors [5], for this reason, the growth and breakthrough in maritime safety research have been relatively slow compared to the 
frequency of accidents [6,7]. Therefore, even minor improvements in maritime accident prevention would have a great positive impact 
on safety operation. 

Numerous investigations have been devoted to analyzing the causes of accidents in the industry, ultimately pointing to unsafe acts 
as the leading causes of accidents [8,9]. The importance of controlling seafarers’ unsafe acts was recognized by the international 
shipping industry as early as the 1970s [5], due to the general belief that maritime accidents are the direct result of seafarers’ unsafe 
acts, which has been confirmed by several studies [10]. For instance, Wróbel [11] claimed that unsafe acts were responsible for 80 % of 
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maritime accidents, facilitating increased studies in this field [12,13]. After examining 540 maritime accident reports, Lan et al. [14] 
pointed out that different types of maritime accident include specific seafarers’ unsafe acts. The main differences of unsafe acts be-
tween collisions and groundings are resource management deficiencies, communication failures, decision errors, skill-based errors, 
and violations [15]. Chauvin et al. [16] stated that decision errors were the typical causes of ship collisions, which was also confirmed 
by Graziano et al. [17]. Meanwhile, Yıldırım et al. [15] identified that bridge resource management deficiencies were the most 
frequent errors and prerequisites for the groundings. Therefore, developing prediction model of maritime accident types using sea-
farers’ unsafe acts may be an effective way to prevent maritime accidents in advance. 

Machine learning (ML) provides an effective method for solving multivariate, nonlinear and complex problems, and is widely 
utilized in several fields for risk prediction [18,19]. It has been suggested that ML would perform better than traditional statistical 
models [20]. In the transportation field, ML has been employed to predict the likelihood [21] and the severity of accidents [22,23]. 
However, in the maritime domain, ML has received little attention for risk prediction [24], while most studies focus on the causation 
analysis of ship accidents. For instance, Qiao et al. [5] employed artificial neural network (ANN) to assess human factors contribute to 
maritime accidents, and suggested that unsafe preconditions and unsafe supervision are the two primary considerations for human 
factors analysis, especially supervision failures by shipping companies and ship owners. Bye and Aalberg [25] applied the multinomial 
logistic regression model to identify risk indicators associated with groundings and collisions based on the Automatic Identification 
System (AIS) data and ship accident data in Norwegian waters. The results indicated that ship type and poor visibility would increase 
the likelihood of ship accidents. In addition, a novel research area is the development of anomaly detection models using ship traffic 
data and machine learning for real-time monitoring of ship risks [26]. Rawson et al. [27] developed extreme gradient boosting 
(XGBoost) model, random forest (RF) model, support vector machines (SVM) model, and logistic regression (LR) model to monitor the 
risk of maritime navigation under adverse weather conditions. Although the potential of ML in risk prediction has been recognized, 
relevant research in the field of maritime safety is still limited. 

Ensemble learning is a significant research direction in the field of machine learning, which makes prediction results more reliable 
and accurate by combining several simple learners [28,29]. It could greatly enhance the generalization ability of the model and 
decrease computational errors created by a single ML model. Bagging and Boosting are two classical homogeneous ensemble learning 
algorithms, for example, random forest is a Bagging-based ensemble learning algorithm that aggregates the outputs from numerous 
decision trees to generate a final prediction result [30]. In contrast, Stacking ensemble learning algorithm uses heterogeneous learners 
to develop several independent models in parallel, on top of which the meta-learner is developed to achieve the aggregation of final 
results [31]. Compared with homogeneous ensemble learning algorithms, Stacking algorithm improves the diversity of models and 
could further enhance the generalization of models. Although ensemble learning models are advantages in conducting risk prediction, 
the prediction speed of ensemble models decreases significantly as the number of individual learner increases. Additionally, ensemble 
models may not always achieve satisfactory performance due to the involvement of several individual learners with poor performance 
[32]. As a result, Zhou et al. [33] proposed the concept of selective ensemble learning, suggesting that removing the individual learner 
with poor performance and selecting only some of them to build the ensemble models could obtain better prediction performance and 
improve the model generalization ability. Selective ensemble learning, a new ML technique with outstanding performance and 
promising future, has not been explored in the domain of maritime safety. 

On the other hand, the explanation of prediction models is critical for stakeholders to extract relevant risk factors and implement 
appropriate management responses. Explain ability is not yet clearly defined from a mathematical perspective, but exists in the form of 
a theoretical concept. Miller [34] defined explain ability from a non-mathematical perspective as the extent to which people can 
understand the reasons of model decisions. Currently, the commonly used explanation approach is based on the model’s own char-
acteristics for model explanation. For example, Zhu et al. [19] used eight machine learning algorithms to construct a severity pre-
diction model for construction accidents respectively, and then utilized Random Forest algorithm to assess the impact of different 
factors on accident severity, and the results showed that emergency management and safety training played an important role in the 
severity of construction accidents. Similarly, Xu and Luo [35] used Random Forest algorithm to construct an early warning model for 
air traffic controllers’ unsafe acts, and pointed out that operational capability, technical environment, insufficient supervision, and 
mental state were more important in predicting errors, whereas insufficient supervision, organizational climate, and organizational 
processes were more important in predicting violations. However, model-based explanation methods cannot reveal the detailed in-
teractions between the influencing factors. As a result, post-hoc machine learning model interpretation methods such as Local 
Interpretable Model-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP) have gained many attentions. Among 
them, LIME could only be used to analyze the influence of single factor on the prediction results, and SHAP could explain the potential 
correlation between factors. In addition, SHAP is able to visualize the detailed relationship between the prediction results and the 
influencing factors [36]. Kim and Kim [37] predicted the hazard level of extreme hot weather based on Random Forest algorithm, and 
by introducing SHAP method, demographic, socio-economic, and climatic sectors were identified as the most contributing factors to 
the prediction process. Yang et al. [38] used Extreme Gradient Boosting (XGBoost) and SHAP method to explore the relationship 
between built environment factors and the spatial distribution of truck crashes. The results showed that demographics, land use and 
road network factors were highly correlated with the spatial distribution of truck crashes. 

With the aim of developing an explainable prediction model for maritime accident types, a two-stage selective ensemble learning 
integrated with SHAP method is proposed. Specifically, the present study develops multiple heterogeneous individual learners and 
optimizes the hyperparameter using random search and grid search. Then, on the basis of Stacking ensemble learning, a two-stage 
selective ensemble learning method is proposed to build prediction model of maritime accident types from the perspective of 
model accuracy and diversity. Through the model performance evaluation and robustness test, the accuracy, stability and general-
ization ability of the model developed are examined. Moreover, SHAP method is integrated to identify the effective mapping 
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association and the association strength between the model prediction results and seafarers’ unsafe acts, which provide useful ref-
erences for maritime risk assessment and tailored prevention of maritime accidents, so as to enhance the reliability of maritime 
operations. 

The remainder of the present study is structured as follows. In Section 2, the proposed methodology is described. In Section 3, data 
source and the application of the proposed methodology are presented. Finally, Section 4 provides the discussion and Section 5 gives 
the conclusions. 

2. Methodology 

Fig. 1 illustrates the flowchart of the proposed methodology, in which selective ensemble learning is introduced to select individual 
learners based on the two-stage principle of diversity and accuracy, and Stacking-based ensemble learning method is adopted to 
develop the prediction model of maritime accident types. 

2.1. Stacking ensemble learning method 

Stacking utilizes the idea of hierarchical fusion to aggregate individual learners by meta-learner to improve model performance. To 
avoid over fitting problems, meta-learner is usually chosen as a simple-structured single machine learning model, therefore, this study 
selects SVM as the meta-learner. Stacking ensemble learning method consists of 2 main layers, and layer 1 consists of N heterogeneous 
base learners. First, the original dataset is separated into training set and test set, and the training set is K-fold divided. Then, the base 
learners in the layer 1 are trained for K times, and train the meta-learner by using the output of layer 1 as the input of layer 2. Finally, 

Fig. 1. The flowchart of the proposed methodology.  
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the meta-learner outputs the final prediction results. Stacking ensemble learning integrates the outputs of multiple heterogeneous 
learners to improve overall prediction performance and model generalization. Fig. 2 illustrated the process of stacking ensemble 
learning method. 

2.2. Individual learners 

In the present study, seven machine learning algorithms are determined to develop heterogeneous individual learners, including 
multinomial logistic regression (MLR), support vector machine (SVM), back propagation neural network (BP), K-nearest neighbour 
(KNN), classification and regression tree (CART), random forest (RF), and extreme gradient boosting (XGBoost). These algorithms are 
chosen because they have been applied in other transportation domains and have demonstrated good predictability. In addition, 
selective ensemble learning using individual learners with different structures could enhance generalization ability of the model 
developed. These seven machine learning algorithms are briefly described below. 

Logistic regression is a statistical method for modeling the probability of a binary dependent variable. It assumes a linear rela-
tionship between the log odds of the dependent and independent variables. It has been applied in maritime risk assessment [39]. When 
response variables have more than two levels, MLR as the extension of logistic regression is utilized, and assumes that the categories of 
the dependent variables are completely independent. MLR predicts a different logistic regression model for every dummy variable, and 
every model has an individual collection of regression coefficients and intercepts. , which can be compared with the reference category 
to obtain results that predict the likelihood of success of the variable in that category [40]. 

Back Propagation (BP) neural network constructs complex relationships by introducing nonlinear transformations, belong to the 
commonly used neural network structures trained by back propagation [30]. Without disclosing the mathematical functions in 
advance, a BP network is capable of learning and storing a vast array of input-output pattern mapping interactions. Its learning strategy 
aims to minimize the sum of squared errors of the network by back propagating continuously adjusted weights and deviations using the 
fastest descent method. The output layer, hidden layer, and input layer make up BP neural network structure. This study constructs the 
single hidden-layer BP neural network model, which is split into two stages. The first stage is the forward propagation of the signal 
from the input layer through the hidden layer and finally to the output layer. The second stage is the backward propagation of the error 
from the output layer to the hidden layer and finally to the input layer, adjusting the weights and deviations from the hidden layer to 
the output layer and from the input layer to the hidden layer. The formula for forward propagation is expressed as Equation (1). 

f (x)=F

(
∑n

i=1
(wixi)+ b

)

(1)  

where w and b are the weights and deviations of neurons. 
Meanwhile, SVM is a popular algorithm that uses kernel methods to efficiently process nonlinear data. It has the ability to handle 

nonlinear data and good classification accuracy [19]. The algorithm uses the optimal hyperplane to divide the data into several classes. 

Fig. 2. The process of stacking ensemble learning method.  
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The hyperplane is essentially chosen to increase classification accuracy by taking into account the maximum margin of the closest 
point. If the training instances are denoted as (xi, yi) where i = 1,2,…N, N represents the number of instances, yi indicates the category 
of instances xi in the training set. The Lagrange multiplier is used to compute the boundary function for the maximum margin by the 
pairwise formula as Equation (2). 

Min L=
∑N

i=1
ai −

1
2
∑N

i=1

∑N

j=1
yiyjaiajk

(
xi, xj

)
s.t. ai ≥ 0; ∀i and

∑N

i=1
ai = 0 (2) 

KNN is one of the most straightforward classification algorithms. It achieves high classification accuracy in less computation time 
and solves the scalability problem [41]. All adjacent data points of the test tuple are identified and the distance between the training 
and test tuple is calculated using the Euclidean distance, which is defined by Equation (3), where Xi and Yi (i = 1, 2, …,N) are the 
attributes of two samples/instances X and Y. The tuple with the minimum distance is then identified and the majority class label of the 
K nearest training tuples is assigned to it as the prediction class. 

d(X, Y)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Xi − Yi)2

√

(3) 

CART is a powerful decision tree algorithm with the capacity to manage both categorical and continuous variables. The purpose of 
the algorithm is to split the dataset into two parts based on impurity measures, such as the Gini index. The Gini index of nodes can be 
expressed as Equation (4). 

Gini(t) = 1 −
∑p

j=1

(
n(j|t)
n(t)

)2

(4)  

where p is the number of classes of response attributes. The number of records in node t that belong to class j is indicated by A, while the 
total number of records in node t is indicated by B. The maximum impurity value of Gini index is 0.5 when each class is equally 
distributed. If the data in each class is equally distributed, the maximum impurity value of Gini index is 0.5. If there is a single class, the 
minimum impurity value of the Gini index is zero. The weighted average of Gini index for the descending nodes is computed as in 
Equation (5), to identify the attributes of the split 

Gini(t)split =
n(tL)
n(t)

Gini(tL) +
n(tR)
n(t)

Gini(tR) (5)  

where tL and tR denote the left and right child nodes of node t. The minimized attribute Gini(t)split is regarded as the root node and is 
selected for splitting. The recursive tree growth mechanism divides this root node into two branches. To avoid overfitting in this 
growth phase, CART employs pruning based on a minimal cost complexity criteria. The cost (Ca(T)) of this pruning is allocated to each 
subtree, i.e., Ca(T) = R(T) + aL(T), where R(T) and L(T) denote the ratio of training data misclassified by the tree T and the number of 
leaves T in the tree, respectively, and where a(a≥ 0) is the complexity parameter. Reducing Ca(T) is the aim of cost-complexity based 
pruning. When every leaf node in every branch of the tree has a projected class identified, the tree growth process eventually comes to 
an end. 

RF is a tree-based ensemble classification algorithm that consists of a set of decision trees and uses bagging method to aggregate the 
decision trees [35]. It is simple to use and can handle over fitting problems. There are two primary stages in the construction of the RF 
model: the forest generating phase and the decision phase. Firstly, the random forest creates n CART by randomly dividing the training 
samples into n samples. After that, a majority vote is used to decide the ultimate classification outcome based on the classification of 
each individual decision tree. 

With the use of different regularization strategies and management of the tree’s complexity, XGBoost can generate results with 
increased accuracy [42]. Regression and classification issues can be resolved with the help of the built boosting trees through to its 
sophisticated methodology, which incorporates parallel tree boosting. Furthermore, the main element contributing to XGBoost’s 
superiority is the learning process’s goal function. A regularization term and a loss function make up the objective function. The 
regularization term limits the model’s complexity and prevents overfitting; therefore the loss function computes the differences be-
tween each estimate and the actual value. Additionally, in order to minimize the objective function, XGBoost applies a second-order 
Taylor expansion on the loss function. As a result, the robust structure not only allows for quick computational processing but also 
more reliable outputs. 

Each algorithm contains multiple hyperparameters that could be utilized to optimize model accuracy. Random search and grid 
search are two typical hyperparameter optimization methods, and both of them have strengths and weaknesses. Random search 
method selects hyperparameters randomly from the search space and tests the accuracy of the corresponding combinations by a 
performance estimation strategy, while grid search method is an exhaustive search method, in which the possible values of each 
hyperparameter are arranged and combined from the search space and evaluated by a cross-validation method to obtain the optimal 
learning algorithm. In the present study, the strengths and weaknesses of these two methods are complemented by first narrowing the 
hyperparameter search using random search and then adjusting the hyperparameters using grid search, combined with 10-fold cross- 
validation and 100 iterations to identify the set of hyperparameters with the best prediction accuracy. 
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2.3. Selective ensemble learning 

Selective ensemble learning is the process of providing the learner selection phase between individual learners’ development and 
aggregation. Through theoretical and experimental validation, selective ensemble learning has the potential to enhance the model’s 
generalization performance, expedite prediction times, reduce overfitting problem, and minimize storage requirement [32]. After 
determining the individual machine learning algorithm and optimizing the hyperparameters on the training set to develop multiple 
individual learners with good prediction ability, the set of individual learners L is formed. Then, the selection of base learners for 
Stacking ensemble model is carried out to obtain the set of base learners E. In the present study, a two-stage selective ensemble method 
is proposed by considering the accuracy and diversity of models, and the steps are as follows: 

S1: Remove the individual learners whose prediction accuracy does not exceed 75 %. The purpose is to avoid the negative impact of 
underperforming individual learners. 

S2: Select the initial base learner E1 from the set of individual learners L, and move it to the set of base learners E. The initial base 
learner is required to select the individual learner with the best prediction performance, taking into account the four-evaluation 
metrics: Accuracy, Precision, Recall, and F1-score. 

S3: Select the second base learner E2 from the set of individual learners L, and move it to the set of base learners E. The second base 
learner is required to select individual learner that diverges the most from E1, taking into account the two-diversity metrics: Q statistics 
and the double failure (DF). 

S4: Select the third base learner E3 from the set of individual learners L, and move it to the set of base learners E. The third base 
learner is required to select the individual learner that diverges the most from the Bagging-based ensemble model constructed by E1 
and E2. 

S5: The process is repeated until L is reorganized into an alternative sequence in E. 
S6: The top pre-defined individual learners that can optimize the prediction performance of the Stacking ensemble model are 

selected as the base learners. 

2.3.1. Performance evaluation metrics 
Confusion matrices are commonly used to evaluate the classification results of a test set by summarizing the learner results. Based 

on the confusion matrix, four typical evaluation metrics: accuracy, precision, recall, and F1-score can be computed to evaluate the 
predictive performance of the model. Table 1 shows an example of the confusion matrix to help understand the basic meaning of these 
metrics. Each column and row of the matrix represents a prediction class and an observation class, respectively. For example, N11 
indicates the number of data that actually belongs to class 1 and the predicted outcome is also class 1, and N12 indicates the number of 
data that actually belongs to class 1 and the predicted outcome is class 2. 

Accuracy is defined as the ratio of correctly predicted observations to the total observations (TN), which can be expressed as 
Equation (6). 

Accuracy=
∑3

i=1Nii
TN

(6) 

Precision is defined as the ratio of correctly predicted observations in the given class to all prediction observations in the same class, 
the precision value of class 1 is calculated by Equation (7), and the overall precision can be expressed as Equation (8) 

Precision1 =
N11

∑3
i=1Ni1

(for class 1) (7)  

Precision=

(
N11

∑3
i=1Ni1

+
N22

∑3
i=1Ni2

+
N33

∑3
i=1Ni3

)
/

3 (8) 

Recall is defined as the ratio of correctly predicted observations under a given class to all reference observations in that class, the 
recall value of class 1 is calculated by Equation (9), and the overall recall can be expressed as Equation (10). 

Recall1 =
N11

∑3
j=1N1j

(for class 1) (9)  

Table 1 
Confusion matrix of three classes.    

Prediction  

Class 1 Class 2 Class 3 

Reference Class 1 N11 N12 N13 

Class 2 N21 N22 N21 

Class 3 N31 N32 N33  
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Recall=

(
N11

∑3
j=1N1j

+
N22

∑3
j=1N2j

+
N33

∑3
j=1N3j

)
/

3 (10) 

F1-score is an indicator calculated from recall and precision, which is expressed as Equation (11). 

F1 − score=
2 × Precison× Recall
Precison+ Recall

(11)  

2.3.2. Diversity measures 
The diversity measure is used to measure the diversity degree of individual learners in one ensemble learning model. By comparing 

10 diversity measures, Kuncheva and Whitaker [43] recommended the use of Q statistic based on ease of interpretation, moreover, the 
double failure (DF) was also suggested as a complement measure. Therefore, in the present study, Q statistic and double failure (DF) 
are employed for diversity measure. The lower the value of both, the more diversity there is between each pair of learners. The overall 
DF and Q statistic values of the model can be obtained by calculating the average of DF and Q-statistic values between each pair of 
learners. 

Before introducing DF and Q statistic, it is necessary to introduce the following content: suppose there are n base learners, Li and Lj 

(i, j= 1,2, ..., n, i∕= j) are two different learners, N11 (N00) is the number of samples for which both learners Li and Lj classify correctly 
(incorrectly), and N10 (N01) represents the learner Li (Lj) classifies correctly while the learner Lj (Li) classifies incorrectly, as shown in 
Table 2. 

The Q statistic between two learners Li and Lj can be defined as Equation (12). 

Qij=
N11N00 − N10N01

N11N00 + N10N01 (12) 

From Equation (12), it can be seen that if both learners classify correctly or incorrectly, indicating N10= N01 = 0, then Qij = 1, in 
the case, the degree of diversity between Li and Lj is the lowest; In contrast, if both learners obtain different results on the same sample, 
that is, N11 = N00 = 0, then Qij = − 1, and the degree of diversity is the highest in this case. 

The DF focuses on the sample that both learners Li and Lj misclassify, which is defined as Equation (13). 

DFij=
N00

N
(13) 

If Li and Lj always misclassify at the same time, the larger N00, the larger DFij, and the lower the accuracy and diversity between the 
two learners. 

2.4. Shapley Additive Explanations 

In the practical application of machine learning models, it is not usually limited to improving the performance of the model 
developed, but exploring the reasons for the formation of the model’s results, which could help to optimize the model’s performance as 
well as to better understand the model itself. 

Shapley Additive Explanations (SHAP) is a new method of model explanation that combines global and local explanations with the 
use of Shapley values in game theory [44]. For a subset of risk factors S ⊆ F (where F represents the set of all the risk factors). Two 
models are trained to extract the impact of factor i. The first model fS∪{i}(xS∪{i}) is trained with factor i, while another model fS(xS) is not 
trained with factor i. The difference in the output of the model fS∪{i}(xS∪{i}) − fS(xS) is calculated for each possible subset by S ⊆ F \ {i}
[36], which is expressed as Equation (14). 

∅i=
∑

S ⊆ F \ {i}
|S|!(|F| − |S| − 1)!

|F|!
fS∪{i}

(
xS∪{i}

)
− fS(xS) (14)  

3. Dataset and methodology application 

3.1. Dataset 

Official maritime accident investigation reports are widely recognized as a reliable source that can obtain objective and 
comprehensive information about the maritime accidents [45]. The present study collected 555 maritime accidents occurring from the 
range of 2011–2020 on the official website of 7 maritime investigation organizations (listed in Table 3). The collected maritime 

Table 2 
Combination of classification results of two learners.   

Lj correct Lj incorrect 

Li correct N11 N10 

Li incorrect N01 N00  

H. Lan et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e30046

8

accident reports contain the five most frequently occurring types of maritime accident, namely collision, grounding, sinking, contact, 
and fire/explosion. 

In order to ensure that the maritime accident reports involved seafarers’ unsafe acts, this study initially screened the collected 
maritime accident reports and removed the maritime accidents that were entirely due to objective factors such as environmental 
factors and ship factors. Finally, 476 human-related maritime accident investigation reports were used for further analysis, and the 
fundamental statistical data of accident reports are displayed in Fig. 3. 

In the study of Lan et al. [14], a theoretical framework for analyzing unsafe acts involved in maritime accidents was developed. 
With the help of the framework, this study explored the 476 accident reports and extracted 31 seafarers’ unsafe acts and 44 risk factors. 
Then, Microsoft Excel 2013 software was used to construct a dataset including the identified factors. The descriptive statistic infor-
mation of seafarers’ unsafe acts and their risk factors in the dataset are shown in Table 4. For the 0/1 variable, Table 4 only shows the 
frequency when the variable is 1. It can be found that Failure to maintain proper lookout (U17) has the highest frequency (48.32 %) in 
seafarers’ unsafe acts level, followed by Failure to determine the risk (U31) and Failure to take effective collision avoidance action 
early (U25). In organizational influence layer, Insufficient education and training (O3) has the highest frequency, reaching 30.88 %, 
followed by Poor competence (O5). Then, Inadequate safety management (S4) occurs most frequently (41.81 %) in unsafe supervision 
layer, and Lack of safety awareness (P10) occurs most frequently (13.66 %) in precondition for unsafe acts layer. 

3.2. Individual learner development 

The methodology proposed is conducted by R software using the “mlr3” package. Hyperparameter optimization of ML algorithms is 
essential for improving prediction accuracy and avoiding over fitting and under fitting problems. First, this study utilizes random 
search method combined with 10-fold cross-validation and 100 iterations for a large range of hyperparameter optimization search. 
According to the process: the dataset is split to 10 subsets, and then each subset is selected in turn as the validation set, and the other 9 
subsets are employed as the training set. Within the specified range (the second column of Table 5), a set of hyperparameter is 
randomly selected to construct 10 models, and the performance of the hyperparameter sets is measured according to the model ac-
curacy. The above process is iterated 100 times, and the hyperparameter set with the highest model accuracy is output, and the results 
are shown in the third column of Table 5. On this basis, the search range of hyperparameters is narrowed down, and the hyper-
parameters are refined and tuned using grid search and 10-fold cross-validation to obtain the final set of hyperparameters for indi-
vidual model development, and the results are shown in the fourth column of Table 5. 

The dataset is divided randomly into test set (20 %) and training set (80 %). The seven individual learners are developed with the 
optimal hyperparameters, and form the individual learner set L (L = { MLR,BP,SVM,KNN,CART,RF,XGBoost}). The model perfor-
mance based on test set is provided in Fig. 4. It can be found that RF model achieves the highest predictive accuracy of 85.42 %, 
followed by the SVM model, with an accuracy of 82.29 %. 

Table 3 
Maritime investigation organizations reviewed in the study.  

Maritime investigation organization Abbreviation Country 

Maritime Safety Administration of People’s Republic of China MSA China 
Marine Accident Investigation Branch MAIB United Kingdom 
United States National Transportation Safety Board NTSB United States 
Australian Transport Safety Bureau ATSB Australia 
Swedish Accident Investigation Board SHK Sweden 
Korean Maritime Safety Tribunal KMST South Korea 
Japan Transport Safety Board JTSB Japan  

Fig. 3. Statistics of maritime accident reports examined in the study.  
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Table 4 
Descriptive statistics of seafarers’ unsafe acts and their risk factors.  

Classification Variable Observation Frequency 

Organizational 
influence 

Insufficient device (O1) 1-available; 0-unavailable 13.24 % 
Lack of operation certificate (O2) 1-available; 0- unavailable 2.73 % 
Insufficient education and training (O3) 1-available; 0- unavailable 30.88 % 
Insufficient manning (O4) 1-available; 0- unavailable 15.97 % 
Poor competence (O5) 1-available; 0- unavailable 23.53 % 
Poor information transmission of the company 
(O6) 

1-available; 0- unavailable 1.05 % 

Lack of standardization (O7) 1-available; 0- unavailable 12.39 % 
Unsafe supervision Lack of route plan review (S1) 1-available; 0- unavailable 1.89 % 

Lack of supervision and guidance (S2) 1-available; 0- unavailable 29.41 % 
Navigation beyond the authorized areas (S3) 1-available; 0- unavailable 6.09 % 
Inadequate safety management (S4) 1-available; 0- unavailable 41.81 % 
Insufficient maintenance (S5) 1-available; 0- unavailable 11.13 % 
Inappropriate route plan (S6) 1-available; 0- unavailable 4.20 % 
Cargo defect (S7) 1-available; 0- unavailable 5.25 % 
Fail to correct the mistakes (S8) 1-available; 0- unavailable 2.73 % 
Ignore rules and regulations (S9) 1-available; 0- unavailable 4.41 % 

Precondition for 
unsafe acts 

Poor communication between ships (P1) 1-available; 0- unavailable 13.03 % 
Poor communication (ship-shore) (P2) 1-available; 0- unavailable 2.52 % 
Poor team communication (P3) 1-available; 0- unavailable 13.03 % 
Insufficient utilization of bridge resources (P4) 1-available; 0- unavailable 5.04 % 
Inadequate preparation (P5) 1-available; 0- unavailable 1.26 % 
Poor physical condition (P6) 1-available; 0- unavailable 0.42 % 
Poor emotional state (P7) 1-available; 0- unavailable 1.26 % 
Stress (P8) 1-available; 0- unavailable 0.21 % 
Alcohol/Drugs (P9) 1-available; 0- unavailable 1.05 % 
Lack of safety awareness (P10) 1-available; 0- unavailable 13.66 % 
Lack of situational awareness (P11) 1-available; 0- unavailable 5.46 % 
Distraction (P12) 1-available; 0- unavailable 5.88 % 
Fatigue (P13) 1-available; 0- unavailable 7.35 % 
Over-confidence (P14) 1-available; 0- unavailable 0.84 % 

Environmental 
factors 

Device failure (E1) 1-available; 0- unavailable 4.83 % 
Flooding (E2) 1-available; 0- unavailable 5.04 % 
Season (E3) 1-spring; 2-summer; 3-autumn; 4-winter 1:29.20 %; 2:20.38 %; 3:25.00 %; 

4:25.41 % 
Time (E4) 1-day; 2-night 1:41.18 %; 2:58.82 % 
Ship type (E5) 1-cargo ship; 2-container; 3-tanker; 4-pas-

senger ship; 5-fishing vessel; 6-others 
1:45.17 %; 2:8.61 %; 3:9.45 %; 
4:4.41 %; 5:9.03 %; 6:23.32 % 

Gross tonnage (E6) 1-≤1000t; 2-1001-5000t; 3-5001-10000t; 4- 
>10000t 

1:33.41 %; 2:32.53 %; 3:9.17 %; 
4:24.89 % 

Ship length (E7) 1-≤100; 2->100 1:61.40 %; 2:38.60 % 
Ship age (E8) 1-≤10; 2->10 1:49.49 %; 2:50.51 % 
Complex navigation environment (E9) 1-available; 0- unavailable 22.48 % 
Busy traffic (E10) 1-available; 0- unavailable 22.06 % 
Poor visibility (E11) 1-available; 0- unavailable 16.81 % 
Strong wind and waves (E12) 1-available; 0- unavailable 7.56 % 
Tidal current effects (E13) 1-available; 0- unavailable 6.51 % 
External management (E14) 1-available; 0- unavailable 3.57 % 

Seafarers’ unsafe acts Inadequate handover (U1) 1-available; 0- unavailable 1.68 % 
Failure to use protective equipment (U2) 1-available; 0- unavailable 2.94 % 
Failure to keep navigational equipment on 
working state (U3) 

1-available; 0- unavailable 2.31 % 

Insufficient manning on bridge (U4) 1-available; 0- unavailable 8.82 % 
Failure to take safety measures in restricted 
visibility (U5) 

1-available; 0- unavailable 0.42 % 

Failure to perform safety duties during 
berthing (U6) 

1-available; 0- unavailable 3.36 % 

Drinking/Alcoholism (U7) 1-available; 0- unavailable 2.31 % 
OOW falls asleep on duty (U8) 1-available; 0- unavailable 4.20 % 
Violation of operational procedures (U9) 1-available; 0- unavailable 4.62 % 
Failure to check the course and position 
(OOW) (U10) 

1-available; 0- unavailable 5.04 % 

Failure to check the planned route in time 
(OOW) (U11) 

1-available; 0- unavailable 1.47 % 

Steering error (duty sailor) (U12) 1-available; 0- unavailable 0.42 % 
Insufficient use of navigational equipment 
(U13) 

1-available; 0- unavailable 7.35 % 

(continued on next page) 
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3.3. Selective ensemble model development 

Based on the two-stage selective ensemble learning method proposed in Section 2, the present study considers both model accuracy 
and diversity among the established individual learners, and selects some of them as base learners for Stacking ensemble learning. The 
base learners are selected using the following procedure: 

S1: Remove the individual learners whose prediction accuracy does not exceed 75 %. The prediction accuracy of the KNN model is 
73.96 %, which does not exceed 75 %, so it is removed from the set of individual learners L to avoid the negative impact of poorly 

Table 4 (continued ) 

Classification Variable Observation Frequency 

Over-reliance on navigational equipment 
(U14) 

1-available; 0- unavailable 2.10 % 

Failure to exhibit proper light and shape (U15) 1-available; 0- unavailable 2.10 % 
Failure to make proper sound and light signals 
(U16) 

1-available; 0- unavailable 9.24 % 

Failure to maintain proper lookout (U17) 1-available; 0- unavailable 48.32 % 
Failure to control the ship position (U18) 1-available; 0- unavailable 13.03 % 
Improper selection of anchoring position 
(U19) 

1-available; 0- unavailable 1.68 % 

Improper emergency response measures (U20) 1-available; 0- unavailable 16.81 % 
Ignore alarm signals or warnings (U21) 1-available; 0- unavailable 0.42 % 
Failure of seafarers to follow best practices 
(U22) 

1-available; 0- unavailable 1.26 % 

Failure to execute the planned route (U23) 1-available; 0- unavailable 1.89 % 
Unsafe speed (U24) 1-available; 0- unavailable 20.17 % 
Failure to take effective collision avoidance 
action early (U25) 

1-available; 0- unavailable 27.94 % 

Failure to follow the rules in special waters 
such as narrow channel (U26) 

1-available; 0- unavailable 17.86 % 

Failure to follow the rules in sight of one 
another (U27) 

1-available; 0- unavailable 21.22 % 

Failure to follow the rules in restricted 
visibility (U28) 

1-available; 0- unavailable 4.41 % 

Vigilance negligence (U29) 1-available; 0- unavailable 7.77 % 
Failure to determine the impact of 
environment on ship maneuvering (U30) 

1-available; 0- unavailable 11.13 % 

Failure to determine the risk (U31) 1-available; 0- unavailable 31.09 %  

Table 5 
Hyperparameter optimization results.  

Algorithm Hyperparameters space Random search Grid search 

MLR Max. number of iterations: 1-200 21 21 
BP Max. number of iterations: 1–500; Number of neurons in the hidden layer: 5-20 46; 10 40; 10 
SVM Cost:0.1–10; gamma: 0–5; kernel: linear, polynomial, radial, sigmoid 0.73; 0.0253; radial 0.8; 0.023; radial 
KNN K:1-20 12 12 
CART Min. number of branch nodes: 1–20; Max. depth: 1-20 9; 16 10; 17 
RF Number of features: 2–10; Number of trees: 10–1000; Max. depth: 1-20 5; 608; 14 7; 596; 12 
XGBoost Max. depth: 1–8; gamma: 0–5; Min. child weight: 1–6; subsample: 0.5–1 8; 1.34; 1.15; 0.939 10; 1.3; 1.11; 0.8  

Fig. 4. The prediction performance of the individual learners.  
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performing individual learners. As a result, L = { MLR,BP,SVM,CART,RF,XGBoost}; 
S2: Select the initial base learner from the set of individual learners L. In Fig. 4, RF model provides the best prediction performance 

with a prediction accuracy of 85.42 % and an F1-score of 81.23 %, which has a good generalization ability. Therefore, the RF model is 
selected as the initial base learner E1. As a result, L = { MLR,BP,SVM,CART,XGBoost},E = {RF}; 

S3: Select the second base learner from the set of individual learners L. The Q statistics and DF values between the remaining 
individual learners in L and E1 are calculated separately, and the results are shown in the third row of Table 6. The Q statistics and DF 
values between the SVM model and the RF model are the smallest. Therefore, the SVM model is chosen as the second base learner E2. As 
a result, L = {MLR,BP,CART,XGBoost},E = {RF,SVM}; 

S4: Select the third individual learner from the set of individual learners L. The Q statistics and DF values between the remaining 
individual learners in L and the Bagging-based ensemble model of E1 and E2 are calculated separately, and the results are shown in the 
fourth row of Table 6. The Q statistics and DF values between the XGBoost model and the Bagging-based ensemble model of RF and 
SVM are the smallest. Therefore, the XGBoost model is selected as the third base learner E3. As a result, L = { MLR,BP,CART},E = {RF,
SVM,XGBoost}; 

S5: The process is repeated until L is reorganized into an alternative sequence in E. The results of Q statistics and DF values during 
the process are shown in Table 6. Finally, E = {RF,SVM,XGBoost,MLR,CART,BP}; 

S6: The top pre-defined individual learners that can optimize the prediction performance of the Stacking ensemble model are 
selected as the base learners. In the present study, the effects of individual learners on Stacking ensemble model are calculated 
separately by the order of individual learners in E = {RF,SVM,XGBoost,MLR,CART,BP}, and the results are illustrated in Fig. 4. The 
model performance reaches optimal when the first three individual learners (RF, SVM, and XGBoost) are selected for integration. 
Therefore, RF, SVM and XGBoost are selected as the base learners to develop the prediction model for maritime accident types. 

Fig. 5, it can be found that the accuracy of the Stacking ensemble learning model is 87.50 % and the F1-score is 84.98 % when the 
first three individual learners (RF, SVM, and XGBoost) are selected for integration. Compared with the optimal individual learner RF, 
the accuracy of the selective ensemble learning model increased by 2.08 % and the F1-score improved by 3.75 %, which indicates that 
integrating multiple individual learners could enhance the prediction performance of the model. However, when all the individual 
learners are integrated, the prediction performance is not satisfactory, with an accuracy of 82.29 % and an F1-score of 76.11 %, which 
reveals the overfitting problem caused by too many individual learners, and the poor performance of some individual learners affects 
the reliability of the ensemble learning model. Therefore, in practical applications, Stacking ensemble learning model with the first 
three individual learners could help to improve the predictability of maritime accident types. The proposed two-stage selective 
ensemble learning method reduces the size of integration by eliminating redundant individual learners, so as to further improve the 
performance of the ensemble learning model. 

3.4. Performance evaluation 

To visually demonstrate the predictive performance of Stacking ensemble learning model developed, a comparative analysis is 
conducted with eight other prediction models, including three ensemble models and five single machine learning models. The five 
single machine learning models are MLR, SVM, BP, KNN, and CART, and the three ensemble models are RF, XGBoost, and the Bagging 
ensemble model of RF, SVM, and XGBoost. The comparison results of model performance are shown in Fig. 6. 

Fig. 6 shows that among five single machine learning models, the SVM model has the best prediction performance (accuracy is 
82.29 % and F1-score is 80.80 %), followed by the MLR model (accuracy is 81.25 % and F1-score is 76.21 %) and the CART model 
(accuracy is 80.21 % and F1-score is 76.81 %). The KNN model performs less well, with an accuracy of 73.96 %. For the three ensemble 
models, the RF model achieves the greatest predictive performance (accuracy is 85.42 % and F1-score is 81.23 %) and exceeds all the 
single machine learning models, which indicates that the ensemble models generally outperform single machine learning models. 
However, the prediction performance of XGBoost outperformed only the KNN and BP models, indicating that the overall integrated 
model may perform worse than single machine learning models, which is similar to the results of selective ensemble learning described 
above. The prediction model developed in this study reaches 87.50 % accuracy and 84.98 % F1-score, which is higher than the other 
models. The results reveal that the prediction model developed could obtain high accuracy and great generalization ability, which 
would be effectively used for maritime accident type prediction. 

To better evaluate the model prediction performance, the result of confusion matrix is provided in Fig. 7. It can be seen that there is 
no misclassified sinking accident record, which means that the model could effectively predict sinking accidents. Fig. 8 also reflects 

Table 6 
Q statistics and DF values between the individual learners.  

Model Q statistics DF values 

SVM XGBoost MLR CART BP SVM XGBoost MLR CART BP 

RF model 0.9103 0.9677 0.9774 0.9507 0.9330 0.1250 0.1354 0.1458 0.1354 0.1345 
Bagging-based model of RF and SVM  0.8780 0.9889 0.9633 0.9771  0.1146 0.1458 0.1354 0.1458 
Bagging-based model of RF, SVM, XGB   0.8842 0.9103 0.9330   0.1146 0.1250 0.1345 
Bagging-based model of RF, SVM, XGB, MLR    0.8919 0.9379    0.1250 0.1354 
Bagging-based model of RF, SVM, XGB, MLR, 

CART     
0.9346     0.1563  
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similar result, the prediction precision of sinking accidents reaches 100 %, followed by collision accidents (94.00 %), grounding 
accidents (83.33 %) and fire/explosion accidents (83.33 %). However, the recall rate of contact accidents is relatively poor, with a 
recall of 66.67 %, indicating that some contact accidents are incorrectly predicted as other types. The confusion matrix shows that 4 
contact accidents are misclassified into collision, grounding as well as fire/explosion accidents. It is worth noting that the dataset 
analyzed in the present study is collated manually, and any subjective issues may contribute to the misclassification. 

3.5. Robustness test 

After evaluating the model performance, the robustness should be examined. In the present study, the robustness of the nine models 

Fig. 5. The effect of individual learners on the stacking ensemble model.  

Fig. 6. The comparison results of model performance.  

Fig. 7. Confusion matrix of maritime accident types.  
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mentioned above is validated using the strategy proposed by Sarkar et al. [41]. The dataset is split into training set and test set by five 
different random seeds (1 %, 2 %, 3 %, 5 %, and 10 %), and then 10-fold cross-validation is measured for each of the five training sets. 
As shown in Fig. 9, the predictive performance of the model developed in the present study is relatively stable with high robustness 
under different conditions. 

3.6. Model explanation analysis 

To illustrate the contribution and importance of input features on various maritime accident types, the SHAP method is adopted to 
interpret and analyze the prediction model developed. The SHAP values are obtained by R software using the “shapper” package, the 
computational time is approximately 1320 s. Fig. 10 provides the ranking of feature importance, and the variables with lower feature 
importance are combined. Also, Fig. 10 clarifies the positive and negative effects of each input feature on the target variables. The 
scatter points in the figure indicate the different Shapley values of the feature variables, the color represents the high (yellow) and low 
(purple) values of the feature variables, and the density of the points indicates their distribution in the data set. 

As shown in Fig. 10 (a), failure to maintain a proper lookout (U17) has the greatest effect on predicting collision accidents, and the 
higher the Shapley values, the higher the probability of collisions. Then, followed by failure to take effective collision avoidance action 
early (U25) and failure to follow the rules in sight of one another (U27), similarly, the probability of collision accidents increases with 
increasing feature values. These three features with great effects for predicting collision accidents are all belong to seafarers’ unsafe 
acts, which also reflects that unsafe acts are the primary factors contributing to the occurrence of collisions. In contrast, environmental 
factors (strong wind and waves, and flooding) have negative impact on the occurrence of collisions, that is, the probability of collision 
accidents increases with decreasing feature values. In addition, ship type (E5) and ship age (E8) also have negative impact on the 
occurrence of collisions. 

The results of the feature importance for grounding accidents are shown in Fig. 10 (b). The top five features that have significant 
effect on predicting grounding accidents are all belong to seafarers’ unsafe acts. Among them, failure to maintain a proper lookout 
(U17), failure to take effective collision avoidance action early (U25) and violation of operational procedures (U9) have negative 
impact on the occurrence of grounding accidents, thus the probability of grounding accidents increases with decreasing feature values. 
Failure to check the course and position (OOW) (U10) and Insufficient use of navigational equipment (U13) have positive impact on 
the occurrence of grounding accidents, indicating that the higher the feature values, the higher the probability of grounding accident. 
Similar to collisions, strong wind and waves (E12) and flooding (E2) also have significant effect on predicting grounding accidents, 
however, strong wind and waves (E12) have positive impact on the occurrence of grounding accidents, that is, the probability of 

Fig. 8. Prediction performance by different type of maritime accident.  

Fig. 9. Robustness test of the nine models.  
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Fig. 10. Feature importance for different type of maritime accident.  
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grounding accidents increases with increasing feature values. At the unsafe supervision level, lack of route plan review (S1) and 
inappropriate route plan (S6) play a positive role in predicting the occurrence of grounding accidents, and when these two risk factors 
occur, the probability of causing grounding accidents is higher. Additionally, ship type (E5) has negative impact on grounding ac-
cidents, indicating that the probability of grounding accidents increases with decreasing feature values. 

The results of the feature importance for contact accidents are shown in Fig. 10 (c), and the most important feature is still failure to 
maintain a proper lookout (U17), followed by failure to control the ship position (U20). However, they have negative effect on pre-
dicting the occurrence of contact accidents. In addition to seafarers’ unsafe acts, environmental factors also play an important role in 
contact accidents. Among them, strong wind and waves (E12) and flooding (E2) have negative impact on the occurrence of contact 
accidents, indicating that the probability of contact accidents increases with decreasing feature values. Tidal current effect (E13) and 
device failure (E1) have positive impact on the occurrence of contact accidents, indicating that the probability of contact accidents 
increases with increasing feature values. In addition, ship type (E5) has positive impact on the occurrence of contact accidents. 

The feature importance results for sinking accidents are shown in Fig. 10 (d). The top two important features are strong wind and 
waves (E12) and flooding (E2), both of which are environmental factors and have positive effect on predicting the occurrence of 
sinking accidents. Then, failure to control the ship position (U20) and lack of safety awareness (P10) play an important role in the 
occurrence of sinking accidents. In addition, ship type (E5) and ship age (E8) have positive impact on the occurrence of sinking ac-
cidents, that is, the probability of sinking accidents increases with increasing feature values. Meanwhile, gross tonnage (E6) and season 
(E3) have negative impact on the occurrence of sinking accidents, indicating that the probability of sinking accidents increases with 
decreasing feature values. 

The feature importance results for fire/explosion accidents are shown in Fig. 10 (e). The most important feature is violation of 
operational procedures (U9), and the higher the feature values, the higher the probability of fire/explosion accidents. At the unsafe 
supervision level, insufficient maintenance (S5) has positive effect on predicting fire/explosion accidents, indicating that the proba-
bility of fire/explosion accidents increases with increasing feature values. In term of environmental factors, device failure (E1), 
flooding (E2), and strong wind and waves (E12) have negative effect on predicting fire/explosion accidents, the probability of fire/ 
explosion accidents increases with decreasing feature values. In addition, lack of safety awareness (P10) and lack of situational 
awareness (P11) have important impact on predicting the occurrence of fire/explosion accidents. 

4. Discussion 

The prediction model of maritime accident type developed in the present study achieves great model performance for two main 
reasons. One of the reasons is that the model developed utilize the special structure of the Stacking model and the base learners in-
tegrated are based on heterogeneous machine learning algorithms. As a result, each algorithm has its own optimization criteria and 
classification strategy that allows describing the distribution patterns of the dataset in multiple perspectives. Aggregating individual 
learners constructed using these different algorithms may produce better predictive results than single machine learning models. On 
the other hand, conventional ensemble learning models aggregate all individual learners without being able to examined the quality of 
individual learners. Consequently, this study proposes a two-stage principle for model selection, which removes some poorly per-
forming individual learners and selects only three high-variance and high-quality individual learners to form the first layer of the 
Stacking ensemble model, which is the essential reason why the model developed could obtain sufficiently good prediction results. 

The performance benefits of the prediction model developed in the present study can also be reflected in the literature related to 
maritime safety. For instance, Lan et al. [46] developed a prediction model for the severity of maritime accidents with an accuracy of 
80 % utilizing random forest, which is 7.5 % less accuracy than the prediction model developed in the present study, further high-
lighting the superiority of the two-stage selective ensemble learning method proposed. The results of model explanation analysis 
revealed that “unsafe acts” level played a greater role in predicting the type of maritime accidents compared to the other levels. 
However, Chen et al. [47] defined “precondition for unsafe acts” level as the primary contributor to the occurrence of maritime ac-
cidents (34.8 %), and hardware failure was the top risk factor in the level. In addition to differences in the target variables, one possible 
reason is that advances in science and technology have reduced hardware failure, while unsafe acts are more difficult to control due to 
the uncertainty. Additionally, some studies concluded that ship age [48] and ship type [48,49] could be associated with ship accident 
severity. Similarly, these factors are also identified as the factors that influencing the prediction of maritime accident types. 

The results prove that the type of maritime accident occurred are not random, but have potential patterns and could be detected. 
Based on the results, some safety management recommendations are provided. (1) Shipping companies are suggested to establish the 
seafarers’ unsafe act checklist for different type of maritime accident and arrange in descending order of importance. Based on this 
checklist, shipping companies could develop tailored safety education and training, and seafarers on board could conduct self- 
inspection and mutual supervision. (2) Shipping companies are suggested to formulate targeted education and training programs in 
accordance with the seafarers’ unsafe act checklist and conduct regular navigation safety operation assessments. Meanwhile, based on 
the effect of ship type, gross tonnage, ship age and other ship factors on the prediction of maritime accidents, differentiated education 
and training contents are implemented for seafarers on different ships. For example, it is recommended to strengthen the training of 
professional collision avoidance knowledge for seafarers working on cargo ships and container ships with an age of less than ten years. 
(3) Shipping companies are advised to carry out regular and random inspections for the implementation of the safety management 
system on board, strengthen the daily supervision and management of the ship, and ensure long-term and effective supervision of the 
seafarers. In addition, safety management personnel on board should assume the responsibility of supervising and guiding seafarers in 
safe operations, ensuring that route plans are properly designed and reviewed, and correcting failures in a timely manner to minimize 
the occurrence of ship groundings. (4) With the support of computer vision and Internet of Things, it is recommended to develop a 
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monitoring and early warning platform based on the seafarers’ unsafe act checklist, so as to realize real-time accurate monitoring of 
typical seafarers’ unsafe acts. At the same time, the prediction model of maritime accident types developed in the present study also 
provides technical support for the realization of the monitoring and early warning of seafarers’ unsafe acts to a certain extent. 

Although the prediction model developed has many advantages, several limitations need to be highlighted. First, the dataset used 
in the present study is collated manually, and any subjective issues may affect the model performance. Meanwhile, this study only 
focuses on the five types of maritime accident since there is limited available data of unsafe acts involved in maritime accidents, which 
may affect the practicality of the prediction model in some extent. Therefore, it is necessary to collect and collate data carefully on 
other maritime accident types in future studies, and the approach of uncertainty quantification could adopt the method proposed by 
Abbaszadeh Shahri et al. [50]. Furthermore, this study lacks objective data on accidents such as flags, general location, etc. Future 
studies are suggested to update data and combine accident report data with AIS data, Lloyd’s Register data, inspection reports, etc. may 
find useful results for predicting maritime accidents. With the amount of data increases, deep learning techniques, such as smart 
sustainable intelligent transportation systems [51], cognitive-radio-based internet of things networks [52], and visual perception and 
environment mapping algorithms [53] could be introduced for maritime accident prediction in further studies. Additionally, SHAP 
also has drawbacks, and other post-hoc explanation methods could be used for the same object. Therefore, future studies are suggested 
to compare the model explanation results obtained by different methods, and the problem about additivity constraints, explanations as 
contrastive statements, marginal contributions also should be discussed. 

5. Conclusions 

Without the prediction of risk factors at sea, maritime authorities could only make safety management measures passively to 
prevent maritime accidents. Even if traditional statistical methods are able to conduct risk prediction, it remains a challenge to ensure 
the accuracy and stability of the prediction model. To address this safety issue, the present study utilizes machine learning techniques 
to develop prediction model with explanations for maritime accident types. The purpose is to predict the types of maritime accident 
accurately and reliably, and provide useful references for maritime risk assessment and tailored preventions of different types of 
human-related maritime accidents, so as to improve the reliability of maritime operations. The main contributions of the present study 
are as follows. 

(1) The present study proposes a two-stage selective ensemble learning method to develop the prediction model of maritime ac-
cident types. The model developed achieves good prediction performance with an accuracy of 87.50 % and an F1-score of 84.98 
%. Compared with the general ensemble model with all the individual learners, the proposed method eliminates the redundant 
individual learners, avoids the over fitting problem, and improves prediction performance. Additionally, through the perfor-
mance comparison and robustness test with eight common machine learning models, the prediction model developed shows 
better accuracy and stability.  

(2) The present study integrated SHAP method with selective ensemble learning to make the prediction model with explanation, 
which could clarify the effective mapping association and the association degree between the model prediction results and 
seafarers’ unsafe acts. 

The present study adopts unsafe acts of seafarers and their risk factors to predict the types of maritime accident, and introduces 
selective ensemble learning method to reduce the possibility of single machine learning models misclassifying and falling into local 
optimal solutions, so as to improve the prediction accuracy and stability of the model developed, which provides a new way to evaluate 
maritime safety quickly, accurately and reliably. Moreover, the model developed is explainable due to SHAP method, indicating that 
the model is able to identify seafarers’ unsafe acts and their risk factors playing significant role in predicting the types of maritime 
accident, which helps stakeholders involved to develop tailored and proactive countermeasures to prevent the occurrence of maritime 
accidents. In addition, as the methodology is unbiased, it could be used in other industries in which human factors serve a significant 
role in accidents. Coal mines, railroads and aviation are possible candidates to employ the methodology proposed. 
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