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Abstract

The ways in which embryo development can vary across individuals of a population

determine how genetic variation translates into adult phenotypic variation. The

study of developmental variation has been hampered by the lack of quantitative

methods for the joint analysis of embryo shape and the spatial distribution of

cellular activity within the developing embryo geometry. By drawing from the

strength of geometric morphometrics and pixel/voxel-based image analysis, we

present a new approach for the biometric analysis of two-dimensional and three-

dimensional embryonic images. Well-differentiated structures are described in

terms of their shape, whereas structures with diffuse boundaries, such as emerging

cell condensations or molecular gradients, are described as spatial patterns of

intensities. We applied this approach to microscopic images of the tail fins of larval

and juvenile rainbow trout. Inter-individual variation of shape and cell density was

found highly spatially structured across the tail fin and temporally dynamic

throughout the investigated period.

Introduction

Despite the rapidly growing knowledge of the mechanisms underlying

embryological development, little is known about how development varies across

the individuals of a population. The variational properties of development

determine how genetic and environmental variation translate into phenotypic

variation in postnatal and adult individuals [1–8]. In turn, the population pool of

phenotypic variation is the substrate for natural selection and, hence, a major

determinant of organismal evolution [8, 9]. The lack of quantitative studies of
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developmental variation has impeded the long-expected connection of develop-

mental biology with the formal core of evolutionary theory. In addition, modeling

developmental variation is key for understanding the multifactorial etiology of

many diseases. Genetic and environmental factors that alter the pattern of

developmental variation may increase the probability of individuals to pass a

threshold towards pathological development [10, 11].

The study of developmental variation has been hampered by the difficulties of

measuring the geometry of developing embryos jointly with the spatial patterns of

tissue formation and cellular activity. Yet an integrated understanding of organ

formation and evolutionary change requires the coordinated study of gene

expression, cellular activity, and organismal geometry [1, 7, 12]. In this paper, we

present a novel approach that integrates geometric morphometrics and pixel- or

voxel-based image analysis into a combined biometric method, allowing for the

joint analysis of embryological shape and spatial patterns of tissue properties. For

a demonstration, we apply this approach to a set of two-dimensional microscopic

images of the tail fins of rainbow trout, but the approach can equally be applied to

other imaging and staining methods as well as to three-dimensional images

obtained from embryonic specimens [13, 14].

Geometric morphometrics is the state-of-the-art method for biological shape

analysis [15–19]. It is based on the representation of homologous point locations,

curves, and surfaces by landmarks and semilandmarks (two- or three-dimensional

measurement points). Semilandmarks are points on curves or surfaces for which

the exact position along the curve or surface cannot be determined using

anatomical criteria. They are estimated in the course of the analysis, establishing

geometric homology within the sample [20, 21]. The careful – usually manual –

setting of the landmarks and semilandmarks, based on criteria of anatomical

homology, leads to biologically interpretable estimates of means and variances

and allows for an effective visualization of such statistical results as actual shapes

or shape deformations [15]. However, this limits the application of geometric

morphometrics to structures that are present and clearly visible in all individuals

of the studied sample. With this method it is not possible to investigate the

emergence or loss of structures, which is characteristic for embryological

development. Nor does standard geometric morphometrics permit the assessment

of structures with unclear boundaries, such as cell condensations or molecular

gradients.

Statistical image analysis based on the gray values or color values of image

elements (two-dimensional ‘‘pixels’’ or three-dimensional ‘‘voxels’’) is frequently

used in medical imaging [22–24]. The variety of image analysis methods differ,

among other aspects, in the way images are registered in order to yield

correspondence across the compared pixels or voxels. Usually, the registration is

an automatic or non-label based (without manual specification of points or

curves), non-affine (non-linear) transformation that minimizes some measure of

overall dissimilarity across the images [23, 25]. Shape differences between

individuals are often considered as nuisance rather than signal and hence are not

explicitly estimated. These kinds of approaches have proven powerful for object
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classification and computer vision, but the imperfect registration of the

boundaries of homologous anatomical structures in different individuals may lead

to sample averages and variance patterns that are not biologically meaningful [26].

For example, an average of well-delineated structures tends to have fuzzy

boundaries, so that this average may no longer represent an actual anatomical

structure. The variance of gray values or color values typically is concentrated at

the misaligned edges of structures.

In the new method we term Geometric Morphometric Image Analysis (GMIA),

we take advantage of the strengths of both approaches. It consists of two steps that

represent two complementary ways in which developmental differences typically

are described in biology. For structures with sharp boundaries, such as organs,

bones, and other well-differentiated tissues, morphological variation is described

in terms of variation in the shape and in the relative position, size, and orientation

of these structures. Structures with diffuse boundaries, such as emerging cell

condensations or molecular gradients, instead are described as spatial patterns of

intensities or directions (scalar or vector fields) within the organism or within

selected organs.

GMIA thus starts with a careful, manual or semi-automatic representation of

homologous, well-defined anatomical point locations, curves, and surfaces by the

assignment of a dense set of landmarks and semilandmarks. The positions of the

semilandmarks are estimated by the sliding landmark algorithm, which minimizes

the ‘‘bending energy’’ of the thin-plate spline interpolation, a measure of local

form difference, between the specimens and their sample average [20, 21, 27]. The

image registration consists of two steps. First, the landmark configurations are

superimposed by Generalized Procrustes Analysis (a least squares-based rigid

registration plus scaling; [28]), which standardizes for variation in overall

position, scale, and orientation. The coordinates of the registered landmarks and

semilandmarks, the so-called Procrustes shape coordinates, parameterize the

shape of the digitized structures. Second, the actual images are all registered to the

sample average shape of the landmark configurations by another use of the thin-

plate spline interpolation [27]. In these registered images, the anatomical

structures (point locations, curves, and surfaces represented by landmarks and

semilandmarks) thus have exactly the same shape in all specimens, and the spaces

in between the landmarks are interpolated as ‘‘smoothly’’ as possible (minimizing

the integral of the squared second derivatives; see Methods section for details). In

the vicinity of the aligned anatomical structures, the registered pixels are likely to

represent homologous tissue locations within the sample. Depending on the

actual imaging and staining methods, the gray values or RGB values (the values of

red, green, and blue color channels) of these pixels represent the tissue properties

of the imaged structures.

This approach yields two complementary sets of data: (1) the Procrustes shape

variables, describing variation of well-differentiated anatomical structures, and (2)

the texture of the registered images (i.e., the pixel or voxel values), representing

variation in the spatial distribution of imaged tissue properties. Statistics and
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resulting visualizations can be computed separately for shape and texture, and also

jointly for both.

This two-step approach resembles the separate parameterization of shape and

‘‘shape-free’’ texture in active appearance models and related techniques, which

have found wide application in face recognition and some areas of medical

imaging [29, 30]. But while active appearance models are aimed at identifying or

classifying objects from images that display variation in viewpoint, lighting, and

other conditions, geometric morphometric image analysis is a biometric method

for the joint analysis of shape and tissue properties in a biological context.

To illustrate this approach, we use a sample of 20 larval and juvenile specimens

of rainbow trout (Oncorhynchus mykiss), seven of them fixed at 21 days post

fertilization (dpf), eight at 40 dpf, and five at 56 dpf. All specimens were stained

in the same way with Mayer’s hematoxylin and were stored in 75% glycerol.

Microscopic images, prepared under identical conditions, were taken of the tail

fins or their corresponding precursors (see Methods section for details).

Hematoxylin stains the cell nuclei, hence the color intensity in the microscopic

images is taken to correspond with local cell density. We recorded the two-

dimensional coordinates of four anatomical landmarks and 95 semilandmarks on

each specimen in order to quantify the shape of the developing fin fold, the

notochord, and the musculature (Fig. 1).

Materials and Methods

Staining and imaging

Our sample consists of 20 rainbow trout specimens (Oncorhynchus mykiss) from

the zoological collection of the University of Vienna. The fish were collected from

one hatchery in the year 2000. Specimens were euthanized by overdose of MS222,

fixed in buffered formalin, and stored in 70% ethanol. Seven of them were fixed at

21 days post fertilization (dpf), eight at 40 dpf, and five at 56 dpf. In 2013, the

specimens were transferred into distilled water before they were stained with

Mayer’s hematoxylin for 10 minutes. After keeping them in tap water for

15 minutes, they were transferred to a Scott Solution (tap water, sodium

bicarbonate, magnesium sulfate) for 10 minutes, and then again rinsed in tap

water for 10 minutes. The stained specimens were stored in 75% glycerol. The tail

fins of all specimens were photographed with a Leica MZ16F stereomicroscope.

All images were taken under identical light conditions and standardized specimen

orientation with a 56 magnification (see S1, S2, S3 Figures). All use of trout

specimens are in compliance with EU guidelines for the treatment of vertebrate

animals in laboratory research (DIRECTIVE 2010/63/EU on the protection of

animals used for scientific purposes). No specific ethical approval was necessary

for the use of these collection specimens.
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Landmarks

We recorded 4 anatomical landmarks and 95 semilandmarks on each of the 20

images (Fig. 1) using the software TPSdig (James Rohlf). The anatomical

landmarks represent the tip of the notochord, the posterior end of the anal fin,

and the two points where the dorsal and ventral outlines of the musculature meet

the outline of the notochord. The semilandmarks represent the outlines of the

notochord, the musculature, and the fin fold.

The positions of the semilandmarks along their corresponding curves were

computed by the sliding landmark algorithm [15, 20, 21, 31], which iteratively

‘‘slides’’ the semilandmarks along tangents to the curve in order to minimize the

bending energy of the thin plate spline (TPS) function between each individual

and the sample average configuration. The tangent to the curve at each landmark

was estimated by a vector connecting the two neighboring landmarks. The TPS

function between two sets of landmarks is a non-affine interpolation that maps

the landmarks exactly and the in-between space as ‘‘smoothly’’ as possible by

minimizing the integral (in all two or three dimensions) of the squared second

derivatives, a quantity referred to as bending energy [15, 27].

In most applications of the sliding landmark algorithm, the curves start and end

with anatomical landmarks that constrain the sliding of the semilandmarks. As the

curves in our application were all open, we computed the average landmark

configuration only once and iteratively slid the semilandmarks against this

average. This guaranteed convergence to a non-degenerate mean shape.

Fig. 1. Landmark configuration. Tail fin of a 21 dpf O. mykiss specimen with four anatomical landmarks
(black points) and 95 semilandmarks (white points). The anatomical landmarks represent the tip of the
notochord (1), the posterior end of the anal fin (2), and the two points where the dorsal and ventral outlines of
the musculature meet the outline of the notochord (3, 4). The semilandmarks represent the outlines of the
notochord, the musculature, and the fin fold. These landmarks were digitized on microscopic images of 20 O.
mykiss specimens, seven of them fixed at 21 dpf, eight at 40 dpf, and five at 56 dpf.

doi:10.1371/journal.pone.0115076.g001
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Shape analysis

The 20 configurations of landmarks and semilandmarks were superimposed by

Generalized Procrustes Analysis [18, 28]. Thereby the configurations are translated

to a common origin (the centroid – the coordinate-wise average of each

configuration – is sent to the origin of the coordinate system), scaled to unit

centroid size (square root of summed squared distances between every landmark

and their centroid), and iteratively rotated to minimize the sum of squared

distances among the homologous landmarks. The resulting Procrustes shape

coordinates only describe the shape of each landmark configuration because

variation in position, scale, and orientation was removed by the Procrustes

registration. The Euclidean distance (square root of summed squared differences)

between two sets of shape coordinates approximates the Procrustes distance, a

measure of shape difference between the corresponding landmark configurations

[16, 18].

Group mean shapes are estimated by averages of the shape coordinates. A low-

dimensional ordination of shape space was computed by a between-group

principal component analysis [32], which is an orthogonal projection of the

individual shapes on the principal components of the group means. The between-

group PCs thus constitute an orthonormal basis that optimally (in a least-squares

sense) represents the Procrustes distances between the group mean. This

technique typically leads to a better group separation than ordinary PCA and does

not have the problems associated with discriminant analysis [32]. Shape

differences between group means are visualized by thin-plate spline deformation

grids [15]. These deformation grids are computed by applying the TPS

interpolation between the two mean shapes to the vertices of a regular grid that is

superimposed onto the template configuration [15, 18, 27].

Texture analysis

All images were registered to the sample mean shape based on the measured

landmarks and semilandmarks by using the thin-plate spline interpolation [27]. In

the registered images, the structures digitized by landmarks all have the same

shape within the sample, and the space in between the landmarks is interpolated

by minimizing the bending energy of the TPS function. The pixels of the

registered images hence are assumed to represent corresponding anatomical

structures. In order to avoid empty image elements (in areas of expansion) or

overlapping pixels (in areas of compression), the images were subject to backward

warping (also referred to as unwarping) instead of forward warping. In the

typology of image registration techniques devised by Maintz & Viergever [23] this

is an intrinsic (landmark-based), non-affine (or curved), local, semi-automatic,

monomodal, intersubject registration with directly computed transformation

parameters.

Mean cell density was computed as the average of the RGB values of the

registered images, computed separately for every color channel of every pixel. For

calculating group mean differences and variances of image texture, we
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transformed the RGB values of each pixel into a scalar value by using the average

of the RGB values of each pixel. This average corresponds to the brightness of the

pixel and was interpreted as cell density in our application. Group mean

differences and variances of image texture (cell density) were visualized by color

maps. As for shape, the pattern of individual and group mean differences in

texture were ordinated by between-group principal component analysis. Principal

components of images are also referred to as eigenimages in the image analysis

literature [24, 33] and are least-squares ordinations of the Euclidean distances

between the image textures.

Joint analysis of shape and texture

Group mean shape and mean texture were jointly visualized by unwarping the

average texture to the corresponding average shape. Group mean differences for

both shape and texture were displayed by superimposing a TPS deformation grid

and a color map of texture differences.

A joint ordination analysis of shape and texture is not possible via PCA because

the scaling of the pixel values relative to the shape coordinates is ambiguous.

While both shape and texture can be separately equipped with a Euclidean metric

(but see also [34]), the arbitrary scaling between shape and texture prevents the

use of a common Euclidean metric. To approach a common ordination of shape

and texture, we instead used a two-block partial least squares analysis (PLS

[35, 36]). PLS yields two linear combinations (each with squared coefficients

summing up to 1), one for shape and one for texture, that have the maximum

possible covariance. When scaling the two linear combinations via major axis

regression so that they also correspond in magnitude, the combined scaled

coefficient vectors can be interpreted as a common factor of joint variation (for

details see [37]). After projecting both shape and texture in the subspaces

perpendicular to these vectors, a second pair of vectors can be computed in the

same way, and similarly for further dimensions. We used the first two dimensions

of such a scaled PLS analysis to represent the joint variation of shape and texture.

All analyses and visualizations of shape and texture were computed in

Mathematica 9.0 (Wolfram Research Inc., Champaign, IL, USA)

Results

After estimating the semilandmark positions and superimposing the configura-

tions by Generalized Procrustes Analysis, the resulting shape coordinates were

averaged for each of the three age groups in order to estimate the age-specific mean

shapes. Fig. 2a illustrates how the average size of the fin fold and the musculature

increased relative to the notochord, and how the fin changed from a rounded to a

more triangular shape.

After registering all images to the same shape, texture can likewise be averaged

for the three age groups in order to estimate age-specific image texture, which, in
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our case, represents the spatial pattern of average cell density. While no fin rays

were visible at 21 dpf, they were partly formed at 40 dpf, and were extended

towards anterior at 56 dpf (Fig. 2b). The structures measured by (semi)landmarks

– the outlines of the fin fold, the musculature, and the notochord – necessarily are

perfectly registered. Note, however, how well the fin rays are registered by the TPS

interpolation, even though they were not measured by landmarks (compare these

averages with the individual images in S1, S2, S3 Figures).

In Fig. 2c, the average image textures are warped to the corresponding average

shape, allowing for the joint visualization of age-specific average shape and

average cell density.

The differences between the age groups, i.e., the developmental transformations,

can explicitly be visualized by superimposing a thin-plate spline deformation grid,

depicting developmental shape change, and a color map that represents increase

or decrease of cell density. For this purpose, the full color information for each

pixel was reduced to brightness (average of the RGB values). The higher the cell

density (number of projected stained cell nuclei), the darker the pixel will appear

and the lower the brightness will be. Fig. 3a shows the transformation from a

rounded to a more triangular fin shape between 21 dpf and 40 dpf, which was

associated with an average increase of cell density in the fin fold and a decrease of

cell density in the musculature and the notochord. Between 40 dpf and 56 dpf,

average cell density decreased in the musculature, the notochord, and also in

between the fin rays, while density increased inside the fin rays (Fig. 3b).

Fig. 2. Averages of fin shape, cell density, and both together. Average fin shape (first row), average cell
density (second row), and average fin shape together with average cell density (third row) for each of the three
age groups (the three columns). The structures measured by (semi)landmarks – the outlines of the fin fold, the
musculature, and the notochord – are perfectly registered, but note also how precisely the fin rays, which
emerge at 40 dpf, are registered by the TPS interpolation, even though they are not measured by landmarks.

doi:10.1371/journal.pone.0115076.g002
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The spatial pattern of individual variation of cell density is also visualized via a

color map (Fig. 4). Clearly, variation in cell density was not uniform across the

tail fin and differed between the age groups. This reflects different ongoing

developmental processes with varying degrees of canalization. At 21 dpf, the

variance in cell density was mainly located in the fin fold, whereas cell density in

the notochord and in the musculature was relatively similar in all individuals

(Fig. 4a). At 40 dpf, variation had increased in the musculature and, after the fin

rays had formed, cell density was more variable in between fin rays than within the

fin rays (Fig. 4b). At 56 dpf, variance of cell density in the musculature had

reduced again, whereas variation in between the fin rays had increased. Note that

due to the precise registration, variance is located within the assessed structures,

not at their boundaries.

The multivariate pattern of individual differences can be assessed by an

ordination analysis that yields a low-dimensional diagram in which the distances

between the individuals approximate a certain measure of multivariate

(dis)similarity. The shape metric typically used in geometric morphometrics is

Procrustes distance (approximated by the Euclidean distance between the sets of

shape coordinates [16]). As a metric for image texture, we likewise used the

Euclidean distance between the sets of RGB values [33], even though other

metrics, e.g. based on mutual information, are equally possible.

We used a between-group principal component analysis [32] to ordinate the

multivariate shape differences among the specimens (Fig. 5a). In the scatter plot

of the first two between-group principal components (PCs), each symbol

represents one individual, and the distance between two symbols approximates

the magnitude of overall shape difference between the respective individuals. The

first two PCs represent the shape distances among the three group means exactly

and account for 91% of total variation between the 20 individual shapes. The

shape features corresponding to the two axes are visualized by reconstructed

shapes along the corresponding axis locations. The scatter plot shows that –

Fig. 3. Visualization of average shape change together with average change of cell density. (A)
Between 21 dpf and 40 dpf and (B) between 40 dpf and 56 dpf. The deformation grid shows how the shape of
the fin changed from a rounded to a more triangular shape during both periods. Changes of cell density are
represented by the color map. From 21 to 40 dpf, cell density increased (blue) in the fin, whereas it decreased
(red) in the musculature and the notochord. From 40 to 56 dpf, cell density increased in the fin rays and
decreased in between.

doi:10.1371/journal.pone.0115076.g003
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despite considerable individual variation – the three age groups differed in average

fin shape and were even separated without individual overlap. The groups differ

along PC 1, mainly representing the relative size increase of the fin fold, associated

with a shape change from a rounded to a triangular shape. More of these changes

had occurred between 21 dpf and 40 dpf as compared to the second period. The

second principal component, representing the shape of the fin fold independent of

its size, appeared considerably more variable at 21 dpf as compared with the two

later stages.

Fig. 5b shows the first two between-group principal components of the

registered images, which account for 58% of individual variation in image texture

(cell density) and for all the variation between the three group means. In the

scatter plot, the symbols represent individuals and the distances between them

approximate the magnitude of overall difference in texture. As for shape, the age

groups were clearly separated with regard to the spatial pattern of cell density.

Within the three age groups, the individuals varied mostly along PC1, which

resembles the average differences between 21 dpf and 40 dpf: a shift of cell density

from the musculature and the notochord towards the fin fold, along with the

formation of fin rays.

Fig. 5c provides a joint ordination of both shape and image texture, based on a

scaled partial least squares analysis (see Methods section). The visualizations along

the corresponding axes hence comprise differences in fin shape as well as in cell

density.

Quantitative developmental studies, such as our example, typically are

exploratory; statistical tests of the usual null-hypotheses do not bear much

biological relevance here. However, as already obvious from the ordination

analyses, permutation tests indicated significant group mean differences in shape

as well as in image texture between the age groups (P,0.0013 for each of the

pairwise comparisons, using the Euclidean distance between group means as test

statistic).

Fig. 4. Individual variation in cell density. The spatial pattern of variation in cell density is shown by a color map for each age group. (A) 21 dpf, (B) 40 dpf,
(C) 56 dpf. Variation in cell density was not uniform across the tail fin and differed between the age groups. At 21 dpf, the variance was concentrated in the
fin fold, whereas cell density was very similar across all individuals in the notochord and in the musculature. At 40 dpf and 56 dpf, variance between the fin
rays was higher than variance of cell density in the fin rays.

doi:10.1371/journal.pone.0115076.g004
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Discussion

Population models in evolutionary theory, genetics, and epidemiology are based

on quantitative representations of phenotypic and genetic variation. Yet variation

in embryological development and growth – the processes translating genetic

variation into phenotypic variation – is still poorly understood. In fact, it has

Fig. 5. Principal component analyses. Principal component analyses of (A) fin shape and (B) cell density,
as well as (C) a joint ordination of both fin shape and cell density based on a scaled partial least squares
analysis [37]. Each symbol in the scatter plots corresponds to one individual, and the distance between
individuals approximates the overall amount of shape difference or difference in cell density. The axes of
these plots correspond to patterns of shape change, to patterns of change in cell density, and to a combination
of both, respectively. These patterns are visualized by reconstructed shapes and cell density patterns along
the axes that correspond to the limits of variation occurring in the sample (approximately 3 standard deviations
from the mean).

doi:10.1371/journal.pone.0115076.g005
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rarely been addressed empirically. Nevertheless, it has been argued on theoretical

grounds that the properties of development assume a major role in shaping

phenotypic variation within and across populations [1–8]. For example, the vast

amount of genetic variation is assumed to be ‘‘funneled’’ and structured by the

limited number of possible developmental pathways into a much lower-

dimensional pattern of phenotypic variation [2, 38]. Strong developmental

constraints on the expression of genetic variation may even cause phenotypic

stasis [39]. Already in the mid-20th century, C. H. Waddington [40] emphasized

the importance of developmental canalization for buffering genetic and

environmental variation and the accumulation of cryptic genetic variation, but the

actual molecular and developmental mechanisms underlying canalization are still

not well understood. The pivotal role of the pattern of developmental variation in

humans has recently been adopted by the ‘‘Developmental Origin of Health and

Disease’’ paradigm [10, 11].

The study of developmental variation has been hampered by difficulties with

the quantification of embryological traits. Our morphometric approach combines

the strengths of geometric morphometrics and pixel- or voxel-based image

analysis. Well-defined tissue structures are described by the shape of their

boundaries, whereas diffuse spatial patterns, such as cell condensations or

molecular gradients, are described as scalar fields that are extracted from the

texture of the registered images. We demonstrated how to separately analyze

embryological shape and image texture (cell density), and we also outlined a

strategy for their joint analysis. The anatomical structures are perfectly registered

by our method and, hence, group averages of anatomical structures have well-

defined boundaries. Variance in image texture is concentrated within the

structures, not at their misaligned boundaries [26]. This separate parameteriza-

tion of shape and image texture resembles the approach in active appearance

models and related techniques [29, 30], but the biometric strategy originates from

geometric morphometrics [18, 41] and statistical parametric mapping in voxel-

based image analysis [22, 24].

In our application of GMIA we analyzed two-dimensional microscopic images.

The method can equally be used with other imaging methods, including 3D

imaging such as confocal microscopy and micro-CT [13, 14, 42]. Most

importantly, it can also be applied to staining methods more specific than the

hematoxylin used in our study. Other developmental techniques, such as in situ

hybridization or antibody staining, can also be combined with GMIA and will

permit the statistical analysis of spatial patterns of gene expression within a

population of developing embryos.

Several components of the GMIA approach, most notably the registration of the

images in between the landmarks, were based on the TPS interpolation. This

algorithm has proved powerful in multiple morphometric contexts, and it worked

excellently for registering the fin rays in our application. But the algorithm

originated in material physics [27] and may not be optimal in all biological

contexts. Likewise, the way in which we transformed RGB values and differences
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between RGB values into scalar values worked well for our images, but it may

need adjustment for other staining and imaging techniques.

By applying GMIA to a sample of rainbow trout tail fins, we were able to

demonstrate how average fin shape and average cell density changed within a

period of 35 days. These changes include the emergence of the fin rays as novel

tissue structures between 21 and 40 dpf, a process associated with a general shift

of cell density from the musculature to the fin fold (Figs. 2 and 3). Inter-

individual variation of cell density was highly spatially structured and temporally

dynamic throughout the investigated period (Fig. 4; compare also [43]). For

example, the average increase of cell density within the fin fold between 21 and

40 dpf was accompanied by a reduction (canalization) of variation in cell density

in the fin fold and with a temporary increase of variation in the musculature.

Between 40 and 56 dpf, variation in the musculature decreased again. The

ordination analyses (Fig. 5) demonstrate that the individuals clearly separated

between the age groups, even though this separation was more pronounced for

shape than for cell density. Within the limits of the small sample, these analyses

further indicate that variation along PC2 of shape (i.e., rounded versus triangular

shape of the fin fold, independent of its relative size) canalized within the observed

age range, whereas no such general trend was apparent for cell density.

In order to verify these results, we produced histological sections along the

frontal plane for one fish of each age class. Between 21 and 40 dpf, the tail fin

became thicker and the density of mesenchymal cells increased. Also, the number

of mucous glands increased. The myotomes decreased in width relative to the

notochord. This corresponds well to our results of increasing (projected) cell

density in the fin fold and decreasing density in the musculature. Between 40 and

56 dpf, the relative thickness of the myotomes increased again, associated with an

increase of visible muscle fibers by approximately 50%. The fin rays and the in-

between connective tissue were well differentiated at 40 and 56 dpf. Again, this is

represented by our results (Fig. 3).

Highly variable embryonic structures, resulting from variation in the onset,

tempo, or mode of developmental processes, are particularly responsive to

environmental or genetic disturbances and, hence, are promising candidates for

experimental studies. These loci of developmental variation constitute the pattern

of phenotypic variation that is subject to natural selection during development

and adulthood. But because tissues differ in their degrees of canalization, variation

generated at early developmental stages is not equally maintained during later

stages and may induce different evolutionary dynamics (see also [44, 45]).

GMIA presents itself as a powerful biometric tool for studying variation in

organismal shape in concert with variation in the spatial patterns of various tissue

properties. This approach may foster research in an emerging field of biomedical

science, the study of developmental variation, which, at the same time, is central

to any formal connection between evolutionary and developmental biology. More

generally, the inherent strategy underlying GMIA can be used to study the

statistical properties of various scalar fields, vector fields, or even tensor fields

embedded within in the geometries of different organisms. This includes color

Geometric Morphometric Image Analysis
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patterns, such as in butterfly wings or in human facial skin, or even biomechanical

properties, such as the distribution of stress and strain in samples of adult or

subadult individuals (e.g., [46, 47]). This capacity of GMIA – the combined

registration of variation in embryonic shape, gene expression, and physical

properties of cell and tissue masses – can foster the integration of developmental

biology and EvoDevo with the population genetic account of evolutionary theory.

It may thus provide an important element of an expanded formal framework, or

an Extended Synthesis [8] of evolutionary theory.

Supporting Information

S1 Figure. Images of the 21 dpf specimens.

doi:10.1371/journal.pone.0115076.s001 (TIF)

S2 Figure. Images of the 40 dpf specimens.

doi:10.1371/journal.pone.0115076.s002 (TIF)

S3 Figure. Images of the 56 dpf specimens.

doi:10.1371/journal.pone.0115076.s003 (TIF)
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