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The outcome of allogeneic hematopoietic cell transplantation (allo-HCT) largely depends
on the development and management of graft-versus-host disease (GvHD), infections,
and the occurrence of relapse of malignancies. Recent studies showed a lower incidence
of chronic GvHD and severe acute GvHD in patients receiving naive T cell depleted grafts
compared to patients receiving complete T cell depleted grafts. On the other hand, the
incidence of acute GvHD in patients receiving cord blood grafts containing only naive T
cells is rather low, while potent graft-versus-leukemia (GvL) responses have been
observed. These data suggest the significance of naive T cells as both drivers and
regulators of allogeneic reactions. The naive T cell pool was previously thought to be a
quiescent, homogenous pool of antigen-inexperienced cells. However, recent studies
showed important differences in phenotype, differentiation status, location, and function
within the naive T cell population. Therefore, the adequate recovery of these seemingly
innocent T cells might be relevant in the imminent allogeneic reactions after allo-HCT.
Here, an extensive review on naive T cells and their contribution to the development of
GvHD and GvL responses after allo-HCT is provided. In addition, strategies specifically
directed to stimulate adequate reconstitution of naive T cells while reducing the risk of
GvHD are discussed. A better understanding of the relation between naive T cells and
alloreactivity after allo-HCT could provide opportunities to improve GvHD prevention,
while maintaining GvL effects to lower relapse risk.

Keywords: allogeneic hematopoietic cell transplantation, naive T cells, graft versus host disease, graft versus
leukemia, alloreactivity
INTRODUCTION

Allogeneic hematopoietic cell transplantation (allo-HTC) is an intensive, but potentially curative
treatment for refractory hematologic malignant disorders, and life-threatening, non-malignant
diseases, such as primary immune deficiencies and inborn metabolic disease. Complications
associated with this therapy, such as graft rejection, acute or chronic graft-versus-host-disease
(aGvHD and cGvHD respectively), infections, and disease relapse are life-threatening and limit allo-
HCT success. T cell reconstitution after allo-HCT plays an important role, as T cell numbers
org June 2022 | Volume 13 | Article 8935451

https://www.frontiersin.org/articles/10.3389/fimmu.2022.893545/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.893545/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.893545/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:S.Nierkens-2@prinsesmaximacentrum.nl
mailto:S.Nierkens-2@prinsesmaximacentrum.nl
https://doi.org/10.3389/fimmu.2022.893545
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.893545
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.893545&domain=pdf&date_stamp=2022-06-20


Dekker et al. Naive T Cells in Alloreactivity
associate with the occurrence of relapse in malignant disease and
the outcome of GvHD responses (1–7). The effect of T cell
reconstitution on outcome after allo-HCT seems dependent on a
delicate balance between overly active, unwanted responses to
‘self’ and building productive immunity against relapsed disease.

Transplantation with T cell depleted (TCD) grafts results in
lower GvHD incidence and graft rejection, but also leads to
delayed immune reconstitution (IR) and thereby increases risk of
disease relapse and viral infections (2, 3, 8–11). Recently, new
evidence has highlighted the importance of specifically naive T
cells in GvHD and graft-versus-leukemia (GvL) responses after
allo-HCT; transplantation with naive TCD grafts significantly
reduced the chance of developing cGvHD and severe aGvHD
(12, 13), while allowing faster IR and lower disease relapse
compared to patients receiving complete TCD grafts (12–14).
The knowledge about naive T cell reconstitution after allo-HCT
is, however, remarkably scarce and the precise mechanisms and
role for naive T cells in alloreactivity needs to be elucidated in
more detail.

In this review, we will provide an overview from recent
literature on the heterogeneity and composition of the naive T
cell population in different graft types and discuss their role in
allogeneic reactions associated with GvHD and GvL after allo-
HCT. Furthermore, possible naive T cell-targeted strategies to
enhance allo-HCT outcome will be suggested. More knowledge
about the underlying mechanisms of naive T cells in
alloreactivity after allo-HCT will allow us to gather insights in
how to prevent adverse reactions such as GvHD, while
maintaining GvL responses to prevent leukemia relapse.
NAIVE T CELL RECONSTITUTION
AFTER ALLO-HCT

Naive T cells differentiate from thymocytes in the thymus and
are a heterogenous pool of T cells that have not yet encountered
their cognate antigen (14–17). Thymocytes arise from
hematopoietic stem cells (HSCs) in the bone marrow (BM),
after which they migrate to the thymus where positive and
negative selection takes place. Following transformation into a
mature T cell, naive T cells migrate to the periphery and are
called recent thymic emigrants (RTEs). RTEs are characterized
by the surface expression of CD31, CR1 and CR2 (18), the
production of IL-8, and high levels of T cell receptor excision
circles (TRECs) (19). TRECs are generated during T cell receptor
(TCR) gene rearrangements in the thymus, have a low
intracellular degradation and do not replicate, thus can serve
as a reliable marker for thymic output (20). In addition, RTEs
have upregulated expression of TLR1 and appear to increase IL-8
production and upregulate CD45RO and CCR4 upon ligand
stimulation (16), indicating that they are susceptible to innate
stimuli. More mature naive T cells lower the production of IL-8
and express the lymphoid homing receptors CCR7 and CD62L,
which are responsible for their continuous circulation between
secondary lymphoid organs and the blood via the lymphatic
Frontiers in Immunology | www.frontiersin.org 2
system. Although the exact compartmentalization is tissue- and
age-dependent, naive T cells are also widely distributed in non-
lymphoid tissues, and some cells are suggested to hardly even
recirculate through the blood (16, 21, 22). It is thought that tissue
residency supports naive T cell maturation and long-term
maintenance (22). However, the role of the tissue niche needs
further investigation. Upon encounter and interaction with their
cognate antigen, naive T cells will expand and differentiate into
different types of effector and memory T cells in a matter of days.
Recent studies on single-cell transcriptomics show that the
differentiation of naïve T cells to central memory (CM), then
effector memory (EM), and finally CD45RA+ EM (EMRA) T
cells is accompanied by upregulation of chemokine and cytokine
genes (23–26). A phenomenon also shown in innate T cells (27),
and tissue resident T cells (28). Especially after HCT, single-cell
sequencing of naïve T cells would provide important insight in
the role of naïve T cells in GvHD and GvL.

A large and diverse TCR repertoire is of great importance for
the formation of an adequate immune response against newly
encountered pathogens. Normally, both thymic production and
homeostatic peripheral expansion (HPE) of naive T cells are
responsible for the TCR repertoire diversity and size of the
naive T cell pool after allo-HCT (29, 30). During the first few
months after allo-HCT, the lymphopenic state of the patient
results in cytokine- and antigen-driven proliferation of graft-
derived (naive) T cells for compensation, which can lead to the
expansion of certain T cell clones at the expense of others (31–33),
significantly limiting TCR diversity. Thymic function is needed to
restore TCR repertoire diversity, however, the thymus is
drastically damaged due to cancer treatment and HCT-
conditioning. It generally takes 6-12 months for the thymus to
regenerate and restore thymopoiesis, and reconstitution to
reference levels and restoration of the TCR repertoire may
require years (30, 34). A limited TCR repertoire after allo-HCT
has been linked to worse survival chances (35, 36), and adequate
naive T cell reconstitution might, therefore, be of clinical
importance after transplantation (Figure 1).

Early naive T cell reconstitution after allo-HCT highly
depends on the number of naive T cells transferred with the
graft (35, 37–39). Different types of allo-HCT grafts contain
different frequencies of naive T cells; cord blood (CB) contains
almost no memory T cells and CB-derived grafts, therefore,
consist of a significantly larger fraction of naive CD4+ and
CD8+ T cells than peripheral blood (PB-) and BM-derived
grafts (40). Besides higher frequencies of naive T cells, the fast
reconstitution of naive T cells after CBT might be a result of the
highly proliferating fetal naive CD4+ T cells present in CB grafts
(41, 42). This might explain why early naïve T cell counts are
generally higher after cord blood transplantation (CBT)
compared to bone marrow transplantation (BMT) and
peripheral blood stem cell transplantation (PBT) (35, 37–39).
In turn, PB and BM grafts contain higher frequencies of effector,
central and terminally differentiated memory T cells due to the
interaction with many antigens encountered during the life time
of the donor (43). Notably, the neonatal naive T cell
compartment differs in composition compared to the adult
June 2022 | Volume 13 | Article 893545
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naive T cell compartment in BM and PB, which is extensively
reviewed by van den Broek et al. (16). While naïve CB T cells
recapitulate fetal ontogeny, naïve T cells after BMT resemble
naïve T cells from peripheral blood (42). These fetal naive T cells
in CB grafts seem to mediate a stronger anti-leukemic effect
compared to adult naive T cells, and are poised to become
regulatory T cells (41). The enhanced TCR signaling in CB
naïve T cells is an important mechanism for the rapid CD4+ T
cell restoration after CBT, as well as their strong GvL effect (41).
Naïve T cells in G-CSF-mobilized PB and -BM grafts might be
less functional, and more tolerogenic, since G-CSF-treatment
was shown to induce immunologic tolerance and negatively
affect T-cell functionality (44).

Next to early naïve T cell recovery, late recovery via
thymopoiesis might also be different when starting with fetal-
compared to adult stem cell sources. It is known that fetal and
adult HSCs give rise to thymocytes with distinct gene signatures
(41), indicating that thymopoiesis might be different after CBT
and BMT/PBT. Indeed, the differentiation of donor-derived
lymphoid progenitors in the thymus is faster after CBT
compared with PBT and BMT, and a broader TCR repertoire
diversity is present up to 3 years after CBT (35, 45). Thymic output
increases similarly following PBT and BMT (34, 46), although
higher naive T cell numbers have been reported early and later
after transplantation in recipients of G-CSF-mobilized PB grafts
compared with recipients of BM grafts (47). Importantly, it should
be noted that thymopoiesis is significantly influenced by age, viral
reactivation, immunosuppressive drugs and alloreactive donor T
cells against host thymic epithelium (34, 45, 46, 48, 49).

The different naive T cell pool between graft sources, together
with differences in patient characteristics, may lead to a
differential naive T cell composition after allo-HCT. This
Frontiers in Immunology | www.frontiersin.org 3
possibly affects the type of immune response generated upon
various types of triggers and may play a crucial role in both
GvHD and GvL. Most studies show that graft-derived naive T
cells are strongly related to GvHD risk (50, 51), although host
tissue-resident T cells are also described to play a role (52). Naive
T cells derived from thymopoiesis later after transplantation are
less likely to induce alloreactivity, as they undergo selection in
the patient’s thymus. Together, it would be valuable to better
understand the function of naive T cells and to monitor naive T
cell heterogeneity after allo-HCT.
NAIVE T CELLS IN GVHD

GvHD is one of the major complications after allo-HCT,
associated with high morbidity and mortality risks, accounting
for approximately 15% of deaths (53). Acute GvHD and chronic
GvHD differ in clinical presentation, time of onset after
transplantation and pathogenesis (54). Incidences vary between
20-60%, depending on specific patient characteristics and
treatment protocols (55–57). It is thought that naive T cells
play a major role in the development of both acute and chronic
GvHD (12, 58), although the exact mechanisms remain elusive.

Acute GvHD has long thought to be mediated by donor T
cells, which are activated by host antigen presenting cells (APCs)
in the setting of an inflammatory environment and typically
occurs in the first few months after transplantation (54, 59).
However, recent evidence points towards a previously
overlooked role of host tissue-resident T cells. These cells are
able to survive HCT-conditioning and are not only present in the
skin and the gut during aGvHD but are also activated, suggested
to be a result of donor APCs (52). Since transplantation with
FIGURE 1 | Levels of naive T cells before and after allo-HCT. Before transplantation, levels of recipient naive T cells drastically drop due to conditioning regimens,
radiation and serotherapy. In the first few months after allo-HCT, after an ultimate low, lymphopenia induced HPE of donor-derived naive T cells will increase levels of
naive T cells. After 6-12 months, thymopoiesis will start to be restored and production and release of RTEs leads to an increase in TCR diversity. Acute GvHD may
develop early after allo-HCT, while chronic GvHD may occur later after transplantation. GvL responses contribute to the prevention of disease relapse later after allo-
HCT. In the table markers associated with a naive CD3+ T cell phenotype are summarized, and their function is shortly described.
June 2022 | Volume 13 | Article 893545
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naive TCD grafts does not reduce aGvHD incidence but does
reduce severity of the disease (12), suggests that both donor and
host T cells may be required for severe aGvHD. Upon activation,
alloreactive effector memory T cells cause tissue damage to target
tissues, such as the gastrointestinal tract, liver, skin, or thymus,
by direct cytotoxicity or cytokine-mediated injury (4, 60). The
question remains if the effector memory T cells measured in
blood of patients are directly derived from the graft and
proliferate upon encounter of an alloantigen, or that these cells
are differentiated from graft-derived naive T cells that recognized
allo-antigens and initiated an allogeneic reaction. This difference
is important and should be considered when studying the
possible role of naive T cells and effector memory T cells in
alloreactivity after allo-HCT.

Some studies suggest that naive T cells are even more potent
in the induction of aGvHD and cause a more severe type
compared to memory T cells (56, 61–63), especially because
naive T cells are the most potent inducers of alloreactive
responses in vitro (50, 51, 64). An explanation for this could
be that naive T cells have a high TCR repertoire diversity and a
high proliferative capacity, resulting in an increased potential of
recognizing allogeneic antigens presented by host APCs and
initiating alloreactive immune responses. In line with this, high
quantities of CD4+ naive T cells in allografts correlated with a
higher incidence of aGvHD after transplantation (58).
Additionally, aGvHD being associated with lower counts of
CD4+ naive T cells in the peripheral blood suggests that graft-
derived naive T cells became activated in the process of aGvHD
(58). Fujii et al. demonstrated that successful treatment of
aGvHD by infusion of human BM mesenchymal stem cell-
derived extracellular vesicles in mice was mediated by
suppression of the functional differentiation of naive T cells to
effector T cells (65). These results suggest that graft-derived naive
T cells can recognize allogeneic antigens and subsequently
induce a potent alloreactive immune response by expansion
and differentiation to effector memory T cells (62–65).
Notably, homing to secondary lymphoid organs might be
essential for the induction of aGvHD by naive T cells, as
blocking of lymphoid homing receptors or the entry of
lymphoid organs almost fully abolishes aGvHD in mice (66).

In chronic GvHD, persistent tissue injury and early post-
transplant inflammation due to aGvHD and conditioning can
result in enhanced antigen presentation by APCs and thereby
activation of allo-reactive naive T cells (67). In addition, thymic
damage due to alloreactive responses in aGvHD and as a result of
the conditioning are thought to be responsible for a diminished
naive regulatory T cell output and a defective negative selection
of auto-reactive naive T cells after allo-HCT, which may
contribute to the formation of allo-reactive responses as seen
in cGvHD (49, 68–71). This underlines the importance to further
clarify the role of naive T cell reconstitution in GvHD. Currently,
clinical trials are being conducted to further evaluate naive TCD
peripheral blood stem cell grafts. Recently reported data on three
phase-II clinical trials showed very low rates of cGvHD and a
decreased incidence of serious aGvHD in the HLA-matched
HCT setting, similar to complete TCD grafts (12, 13), with no
Frontiers in Immunology | www.frontiersin.org 4
apparent increase in relapse rates and an improved immune
reconstitution compared to complete T cell depletion (12, 13,
72–74). However, it should be noted that the observed outcome
in recipients of naive TCD PB stem cell grafts cannot directly be
translated to other graft sources. The outcomes of PBT and BMT
are rather similar, however, recipient transplanted with CB grafts
already showed reduced GvHD rates compared to PBT/BMT
(75, 76). Since CB grafts almost completely consist of naive T
cells, this suggests the presence of phenotypic differences in the
naive T cell pool between graft sources. Specifically, fetal CD4+

naive T cells contain the propensity to adopt a regulatory T cell
phenotype upon stimulation, thereby supporting tolerance to
self, and potentially foreign, antigens (41).
NAIVE T CELLS IN GVL

The curative potential of allo-HCT therapy in leukemia patients
is predominantly regulated through alloreactivity, mediated by
donor T cells directed at residual malignant cells. The first study
on the cure of leukemia after total body irradiation and allo-HCT
was published in 1956, and important insights into underlying
processes were reported in a landmark study from the
International Bone Marrow Transplant Registry in 1990 (77,
78). Interestingly, they showed that usage of TCD grafts, and
grafts derived from identical twins, both resulted in a reduced
GvL response (78). Accordingly, it was concluded that GvL is
mediated by donor T cells and is dependent on the existence of
histocompatibility differences between donor and recipient (68,
78). Moreover, it was shown that both CD8+ and CD4+ T cell
subsets are involved in GvL reactions by direct target killing of
tumor cells due to the recognition of antigens presented by
MHCI and MHCII respectively (69, 79). Outcomes of patients
transplanted with naive TCD grafts confirm an important role
for donor T cells in GvL; usage of complete TCD grafts resulted
in increased relapse rates (13, 68, 69, 78), while the recipients of
naive TCD grafts show encouraged relapse-free survival rates
(12, 72–74). Moreover, acute leukemia patients with minimal
residual disease receiving a haplo-HCT with ATG and G-CSF,
had a significantly delayed recovery of naïve T cells compared to
that of HLA-matched sibling donor recipients (80–82). However,
the cumulative incidence of relapse was lower after haplo-HCT.
This suggests that other lymphocyte subsets may play a role in
GvL in recipients of naive TCD and haploidentical grafts.

Effector memory T cells might mediate GvL effects without
causing GvHD (62, 76, 83–85). Effector memory T cells are
short-lived, possess reduced cytokine production capabilities
after allo-HCT, and seem to have a lower threshold for
activation of GvL effects than for induction of GvH responses
in murine models (83, 84). This might be due to the requirement
of a sustained and high-magnitude T cell response for GvHD,
and not for GvL, that effector memory T cells can not generate.
Another explanation may be linked to their localization; effector
memory T cells have excellent access to leukemia cells in blood,
bone marrow, and spleen without expression of additional
inflammatory signals (79), while GvH responses are thought to
June 2022 | Volume 13 | Article 893545
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be initiated in secondary lymphoid tissue, i.e. sites that are easily
accessible for naive T cells but not for effector memory T cells
due to their lack of lymphoid homing receptors CD62L and
CCR7 (86).

Interestingly, CBT, in which the graft almost exclusively
contains naive T cells, show high GvL potential in
combination with reduced relapse risk, without increased
GvHD incidence compared to BMT/PBT (75, 87). CB-derived
T cells exhibit exceptional learning capacity, high anti-virus
properties, and powerful anti-leukemic activity (88–90).
Furthermore, within two years after CBT, a higher TCR
repertoire diversity can be observed compared to BMT/PBT
(35, 91). The intrinsic differences of CB-derived naive T cells
compared to other graft types is largely unknown and of high
interest for future investigation. One possible explanation is that
fetal naive CB T cells are skewed to give rise to other T cell
lineages compared to adult naive T cells (41). This emphasizes
the importance of in-depth phenotyping of naive T cells derived
from different graft types to study their role in IR and the
development of GvHD and GvL after allo-HCT. This might
provide implications for the depletion of naive T cells from BM
or PB grafts, leading to a reduced GvHD risk without hampering
GvL responses. CB-derived naive T cells are more tolerogenic
and unmanipulated CB grafts might thus protect against
alloreactive responses and contribute to an improved
immune reconstitution.
NAIVE T CELL-BASED MARKERS TO
PREDICT ALLO-HCT OUTCOME

Several studies report a correlation of increased levels of naive T
cells with the onset of cGvHD (58, 92, 93). Bohmann et al.
described that both the proportion of naive cells among CD4+ T
cells and absolute CD4+ naive T cell counts predict the onset of
clinical symptoms of cGvHD (93). In addition, the absolute level
of activated CD8+ effector memory T cells was shown to predict
onset of aGvHD (4), showing the possible predictive value of
naive T cells. However, given their lymphoid homing properties,
the naive T cells present in the circulation might not be
representative for the total naive T cell compartment. Future
research into peripheral tissues may reveal specific niches for
naive T cell maintenance and functional differentiation, which
might improve understanding of the heterogenic naive T cell
pool and their contribution to alloreactivity in the reconstituting
immune system after allo-HCT. To achieve this, there is a need
for harmonization and standardization of both the assessment
methods and the markers used for naive T cell characterization.
When naive T cell subsets and pool composition measurements
can be compared between different transplantation centers, naive
T cells can further be studied and validated as a predictive
marker for GvHD.

In a study by Thus et al., a tool was developed to predict
minor histocompatibility antigen mismatches and their
correlation with patient survival and adverse events in different
Frontiers in Immunology | www.frontiersin.org 5
transplantation settings. Predicted Indirectly ReCognizable HLA
Epitopes (PIRCHE) were used to predict donor T cell mediated
recognition of mismatched-HLA derived peptides following allo-
HCT, with peptides presented on HLA-I as PIRCHE-I score, and
peptides presented on HLA-II as PIRCHE-II score. Those scores
were correlated with patient survival, disease relapse and
complication development (94). In BMT, low PIRCHE I and
PIRCHE II scores in donor-recipient mismatch resembled
similar allo-HCT outcomes as 10/10 matched grafts. However,
in CBT, a high PIRCHE I and low PIRCHE II score in donor-
recipient mismatch increased GvL responses without changing
GvHD risk (94). This might lead to a new donor-recipient
matching strategy in CBT to further enhance its GvL effects.
Nevertheless, the mechanisms behind the different behavior of
naive T cells in CBT compared to BMT and PBT remain elusive
and more research into the heterogeneity and function of naive T
cells is necessary to unravel this controversy.
NAIVE T CELL-BASED STRATEGIES TO
IMPROVE ALLO-HCT OUTCOME

Some centers are successfully using T cell depleted grafts to reduce
GvHD risk. Despite initial success, complications, such as
increased disease relapse and viral reactivation have emerged,
caused by delayed or absent early T cell reconstitution after allo-
HCT (2). Recent efforts are focused on improving T cell
reconstitution by personalized dosing, timing and duration of
immunosuppressive drugs used in allo-HCT. Commonly used
drugs shown to affect (naive) T cell reconstitution are serotherapy
(anti-thymocyte globulin; ATG) (1, 10), fludarabine (95) and
steroids (96). Importantly, significantly smaller naive T cell
numbers post-HCT are present when ATG is administered prior
to transplantation (97), while naive T cell transferred with the graft
survive posttransplant cyclophosphamide (98). A randomized
phase 2 clinical trial (Trial no. NL4836) studied the effect of
ATG dosing based on weight and absolute lymphocyte counts pre-
HCT. CD4+ T cell reconstitution and event free survival were
improved in the individualized dosing group without affecting the
incidence of graft failure and GvHD (99). Fludarabine exposure is
also highly variable between patients in current dosing regimens.
Optimizing fludarabine exposure in individual patients, using
weight and renal function, might thus be of clinical relevance in
allo-HCT (95). The pharmacokinetic/pharmacodynamic
relationship of steroids in allo-HCT is currently investigated in
our center (NL8703). If such a relationship exists, a clinical trial to
study personalized dosing might show improved immune
reconstitution and outcome after allo-HCT.

Since naive T cells show higher alloreactive capacity and are
more potent inducers of GvHD compared to effector memory T
cells (51, 61, 62, 83, 100–102), depleting naive T cells from BM or
PB grafts (and not CB grafts) might be a strategy to prevent
GvHD without delaying T cell reconstitution (103). Bleakley et
al. proved the feasibility of creating naive TCD PB stem cell grafts
and its safety in allo-HCT (12). Although the incidence of
June 2022 | Volume 13 | Article 893545
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aGvHD was not reduced, a remarkably low rate of cGvHD (9%)
was observed in patients receiving naive TCD grafts, compared
to cGvHD rates after complete TCD HCT (19%) or T cell-replete
HCT (40-63%) (12, 104, 105). Additionally, memory CD4+ and
CD8+ T cell numbers recovered much earlier, and no significant
increase in disease relapse was observed after naive TCD grafts
relative to patients that received complete TCD grafts (12, 14).
Furthermore, viral reactivations in patients receiving naive TCD
grafts were comparable with T cell-replete grafts, and other
serious infections were rare (12, 106). These results are
comparable to recent data on three prospective phase-II
clinical trials that showed low rates of severe aGvHD and an
exceptionally low rate of cGvHD (7%), with no associations with
increased relapse rates or serious infections (13). Two other
phase I clinical trials also show the feasibility of memory only- or
naive TCD donor lymphocyte infusions and its association with
a low incidence of GvHD (72, 73). However, these studies were
single-arm first in-human clinical trials, so no formal
comparisons of survival were conducted. A prospective
randomized controlled clinical trial is currently being
performed to directly compare naive TCD PB grafts with
standard unmanipulated grafts (NCT03779854). In addition,
another multicenter trial focusses on the comparison of naive
TCD PB grafts with complete TCD PB grafts, PBT with post-
HCT cyclophosphamide and PBT with tacrolimus and
methotrexate to study whether naive T cell depletion directly
reduces cGvHD (NCT03970096). Nevertheless, in combination
with pre-clinical data, naive TCD grafts show great potential in
prevention of GvHD without delaying IR and hampering GvL
responses in allo-HCT.

Thymic regeneration, thereby recovering TCR repertoire
diversity (107), may take months to years, leaving patients
susceptible for infections and viral reactivation with increased
morbidity and mortality risk (26, 108). Strategies to enhance the
restoration of thymic function after allo-HCT are therefore of
high interest, as extensively reviewed by Velardi et al. (109).
Exogenous administration of keratinocyte growth factor (KGF),
IL-7 or IL-22 in (pre-)clinical studies has shown to be beneficial
in the rejuvenation of thymic function and thereby contribute to
improved thymopoiesis, enhanced naive T cell recovery,
expansion of the RTE pool and increased TCR repertoire
diversity (110–115). In addition, thymosin-a1 administration
in allo-HCT recipients was shown to be safe in a phase I/II
clinical trial and resulted in increased T cell numbers together
with earlier appearance of pathogen-specific T cell responses
(116). However, the success of those therapies will partly depend
on the degree of damage to the thymus caused by intensity of
allo-HCT conditioning and additional complications. Again, this
emphasizes the importance of personalized conditioning and
treatment in allo-HCT to reduce the risk of thymic damage.
Moreover, when thymic function can be restored early after
transplantation, de novo production of naive T cells will
contribute to a high TCR repertoire diversity and thus high
antigen specificity, thereby support a long-lasting functional
immune recovery (35).
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CONCLUSIONS AND FUTURE DIRECTIONS

Current insights show that the naive T cell compartment consists
of a heterogenic population of T cells highly involved in GvHD
and GvL responses after allo-HCT. The naive T cell pool
contains the most diverse collection of TCRs, which is of great
importance for the formation of adequate immune responses
against newly encountered pathogens. Together with the
capacity of naive T cells to promptly switch to effector
phenotype and proliferate upon antigen encounter, this high
TCR repertoire diversity potentiates the naive T cell pool for
GvL. On the other hand, TCR diversity might be responsible for
the recognition of allo-antigens and contribute to GvHD risk.
Naive T cells derived from distinct graft types, such as CB versus
BM and PB, show a different behavior regarding GvHD risk and
GvL effect, and might thus have an intrinsic difference in the
balance between GvHD and GvL alloreactivity. The differences
between CB-derived and BM/PB-derived naive T cells need to be
further explored and their role in alloreactivity needs to be
elucidated. For this, the recent advances in tracking naïve T
cells for single cell sequencing using natural barcoding, would be
of major interest to better understand their role in GvHD and
GvL effects (117). Moreover, factors that suppress GvHD might
also limit the GvL potential of naive T cells, such as
corticosteroids, conditioning with ATG, and naive T cell
depletion in BMT/PBT approaches. Importantly, GvL
responses by other lymphocyte populations might also be
suppressed by GvHD treatment and prophylaxis. Therefore,
individualized conditioning, evaluating the effect of steroid
exposure, next to application of PIRCHE for donor selection,
would be of interest for future study to potentiate naive T cell
GvL function without exacerbating GvHD. Furthermore,
harmonization and standardization of naive T cell
characterization and monitoring between transplantation
centers would help to further identify the role of naive T cells
in GvHD development and relapse risk. More knowledge about
the full composition of the naive T cell pool after allo-HCT can
possibly function to better predict and understand alloreactivity.
This might provide opportunities to better prevent GvHD
reactions, while remaining GvL effects to lower relapse risk
after allo-HCT.
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