
RESEARCH ARTICLE

LDIAED: A lightweight deep learning algorithm

implementable on automated external

defibrillators

Fahimeh NasimiID
☯, Mohammadreza YazdchiID

☯*

Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

☯ These authors contributed equally to this work.

* yazdchi@eng.ui.ac.ir

Abstract

Differentiating between shockable and non-shockable Electrocardiogram (ECG) signals

would increase the success of resuscitation by the Automated External Defibrillators (AED).

In this study, a Deep Neural Network (DNN) algorithm is used to distinguish 1.4-second seg-

ment shockable signals from non-shockable signals promptly. The proposed technique is

frequency-independent and is trained with signals from diverse patients extracted from MIT-

BIH, MIT-BIH Malignant Ventricular Ectopy Database (VFDB), and a database for ventricu-

lar tachyarrhythmia signals from Creighton University (CUDB) resulting, in an accuracy of

99.1%. Finally, the raspberry pi minicomputer is used to load the optimized version of the

model on it. Testing the implemented model on the processor by unseen ECG signals

resulted in an average latency of 0.845 seconds meeting the IEC 60601-2-4 requirements.

According to the evaluated results, the proposed technique could be used by AED’s.

Introduction

Cardiac Arrest (CA), which refers to the abrupt and cessation of adequate circulation, can

affect anyone at any time. 30000 CA’s occur outside of hospitals across the UK each year, and

currently, fewer than 10% of these cases survive; however, with speedy emergency treatment,

chances of survival would increase by 80% [1]. Cardiopulmonary resuscitation (CPR) and

Automated External Defibrillators (AED) shocks given within the first four minutes are crucial

for survival [2, 3]. Defibrillation is a common treatment for life-threatening ventricular tachy-

arrhythmia such as Ventricular Fibrillation(VFib) and Ventricular Tachycardia (VT) [4, 5].

VFib and VT rhythms both represent disorganized electrical conduction which originates in

the ventricles [6]. Defibrillation delivers a medicinal dose of electrical current to the heart with

a device called a defibrillator. This electrical current depolarizes an acute mass of the heart

muscle, ends the arrhythmia and allows normal sinus rhythm to be re-established by the

body’s natural pacemaker in the sinoatrial node of the heart. Accurate detection of VFib and

VT, known as a shockable signal, is crucial in using defibrillators.

Recently, various automated shockable signal detection algorithms based on machine learn-

ing (ML) techniques have been proposed. These algorithms consist of preprocessing ECG
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signals, extracting the features (attributes) from the preprocessed signals, selecting the subset

of essential features and feeding them to the classifiers. The main advantage and disadvantages

of ML techniques is low complexity and high time consumption and low accuracy, respec-

tively. Deep learning techniques have a lot of benefits for arrhythmia detection. One of the

main benefits of these techniques is that they perform the feature extraction automatically,

resulting in the increasing of accuracy compared to ML techniques. However, state-of-the-art

techniques need to be improved to meet the IEC 60601-2-4 requirements [7].

As mentioned earlier, timely and accurate detection of shockable signals is crucial, so it is

advantageous to design and implement systems that help laypersons in applying the proper

treatment at the legal time. Hence, the goal of this work is to use a deep learning model to

make a shockable versus other non-shockable signal classifications and implementing the opti-

mized model on the desirable processor of an AED.

The LDIAED method was applied to several ECG arrhythmias to assess the capability of

this technique to detect shockable signals. The proposed LDIAED algorithm implemented in

an AED analyzes the heart rhythm and distinguishes VT/VFib from other rhythms without

the need for extensive preprocessing or feature extraction of raw electrocardiogram signals

with higher than 99% accuracy and in less than 0.85 ms.

The main contribution of this study is the proposal of a lightweight CNN technique to

detect shockable signals sampled with any frequency without the need for pre-processing and

implementing the optimized model on the dedicated processor.

In the rest of this paper, after a brief review of related work in the literature review section,

a description of VT/VFib signals is given in morphology of shockable signals section. After

that, some challenging issues related to the implementation step are provided. The methodol-

ogy section describes the proposed scheme, and simulation and results section presents an

evaluation of the proposed work and compares it with several state-of-the-art techniques. In

the end, the implementation of the model on the processor is presented and results were

acquired.

Literature review

For accurate diagnosis of shockable signals, it is highly desirable to have optimized and accu-

rate automated arrhythmia detection algorithms. In the following text, we discuss a few most

promising existing automated algorithms designed to differentiate between shockable signals

and other signals [8]. Automated algorithms fall into two categories, non-AI techniques and

AI-based techniques. In [9], to develop the detection system, many electrocardiogram signals

have been analyzed by using Gabor wavelet transform (GWT). Detection performances for

all combinations of spectrum feature parameters are evaluated and valuable spectrum fea-

tures for ECGs are extracted. In AI-based techniques, ML algorithms are used to detect

shockable signals. In 2016 Figuera et al. computed a set of 30 VF-detection features related to

temporal, spectral, time-frequency and complexity features. These features are then fed to

state-of-the-art ML algorithms with built-in feature selection capabilities to determine the

optimal feature subsets and finally detection of shockable rhythms [10]. Nguyen et al.

extended a set of two features such as Count2 and VF-filter Leakage measure (Lk) to use sup-

port vector machine (SVM) model. Then, they supplemented five more features based on a

binary genetic algorithm [11]. Sharma et al. used the fuzzy, Renyi and sample entropies from

various wavelet coefficients and fed them to SVM classifier for automated classification [8].

Authors in [12] used Digital Taylor-Fourier transform (DTFT) to decompose the ECG signal

into various oscillatory modes. The magnitude and phase difference (PD) features are evalu-

ated from the mode Taylor-Fourier coefficients of ECG signal and finally least square
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support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) ker-

nels are employed for the detection and classification of VT versus VFib, non-shockable ver-

sus shockable and VFib versus non-VFib arrhythmia episodes. The proposed algorithm in

[13] consists of K-nearest neighbor classifier and an optimal set of 36 features, which are

extracted from original ECG using modified variational mode decomposition technique. In

[14], a fixed frequency range empirical wavelet transform (FFREWT) filter-bank is intro-

duced for the multiscale analysis of ECG signals. The modes which were evaluated using

FFREWT of ECG signals are used as input to a deep convolutional neural network for the

detection of shockable ventricular cardiac rhythms. In [15], they proposed a method based

on ensemble empirical mode decomposition to decompose the ECG signal and classified

with decision tree classifier and SVM for discriminating the VT/VFib conditions using infor-

mative ranked features. In [16], the signal is decomposed with the wavelet transform, empiri-

cal mode decomposition and variable mode decomposition approaches and twenty-four

features are extracted to form a hybrid model from a window of 5 second length. Acharya

et al. have proposed an 11-layer convolutional neural network model for automated differen-

tiation of shockable and non-shockable ventricular rhythms [17]. The study in [18] was to

assess the feasibility of feeding two-dimensional (2D) time-frequency maps of electrocardio-

gram (ECG) segment into deep convolutional neural network to automatically detect shock-

able signals with emphasis on optimizing the convolutional neural network model and

shortening the analysis segment. The objective of [19] was to apply a deep-learning algo-

rithm using convolutional layers, residual networks, and bidirectional long short-term mem-

ory to classify shockable versus non-shockable signals in the presence and absence of CPR

artifact components associated with the mechanical activity of compressions and ventilation

of the heart.

The final goal of the mentioned techniques is implementing the algorithm on AEDs, so

recently, researchers are trying to design lightweight algorithms or optimize the existing classi-

fication techniques. Authors in [20] proposed a real-time arrhythmia discrimination algorithm

using time domain analysis technique and ported it to FPGA and fabricated the AED proto-

type. Moura et al. in a complete study, managed to develop a mobile application to assist the

diagnosis of different arrhythmias and quantized and implemented their proposed CNN

classification algorithm [21]. Sparkfun Edge Apollo 3 (a low-power microcontroller board

designed specifically for long battery life) used as the portable hardware for the implementa-

tion of the classification technique designed by [22]. Authors in [23]employed a novel Knowl-

edge Distillation (KD) method to uniquely compress a baseline DNN model to achieve

significant compress gain and also pruned and quantized the compressed model to implement

it on wearable ECG devices. In more related work, authors in [24] used identified peaks and

heart rates as input features to two hierarchical SVM classifiers to separate VFib, VT and nor-

mal signals. Finally, the Raspberry pi board is used as a hardware platform to embed the pro-

posed algorithm into an AED system.

Morphology of shockable signals

A healthy heart is usually controlled by electrical signals which start in the sinoatrial node

often called heart’s natural pacemaker; then it moves down to the atrioventricular node. This

signal makes the ventricles contract and move the blood along. When the electrical signals in

the ventricles move the wrong way; the situation is called VT. The disordered heartbeats stop

the heart chambers from properly filling with blood. In some cases, this situation can lead to

Vfib, which causes very rapid and uneven heartbeats. Vfib and VT are life-threatening cardiac

signals that result in inefficient ventricular contractions. A pulseless VT is when a ventricular
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contraction is so quick that the heart could not be refilled, resulting in an unnoticeable pulse.

In both cases, body tissues do not receive sufficient blood flow. Although VFib and VT have

different pathological phenomena and ECG morphology, the Advanced Cardiac Life Support

(ACLS) managements of both are essentially the same. ACLS responses to VFib and pulseless

VT within a hospital will probably be performed using a cardiac monitor and a manual defi-

brillator. Thus, the ACLS provider must read and analyze the rhythm. Due to human faults, it

is better to use automated defibrillators. As it can be seen in Fig 1A, rules for VFib include a

bizarre shape of the QRS complex (disorganized electrical activity), a rapid heart rate, no P

waves and no PR interval [25]. Rules for VT usually include regular R-R intervals(not always),

an undetermined atrial rate; ventricular rate between 150 and 250 beats per minute and QRS

complexes are not preceded by P waves as in Fig 1B. The PR interval is not measured since this

is a ventricular rhythm, and the QRS complex lasts for more than 0.12 seconds. The QRS will

usually be wide and bizarre and it is typically challenging to see a separation between the QRS

complex and the T wave [26].

Fig 1. Shockable ECG signals. A: An example of a VFib ECG signal (top). B: An example of a VT ECG signal

(bottom).

https://doi.org/10.1371/journal.pone.0264405.g001

PLOS ONE A lightweight deep learning algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0264405 February 25, 2022 4 / 12

https://doi.org/10.1371/journal.pone.0264405.g001
https://doi.org/10.1371/journal.pone.0264405


Challenging issues in model implementation

Treating out-of-hospital cardiac arrests is highly challenging due to their unpredictability, the

urgency of intervention and high sensitivity requirement in the detection of life-threatening

arrhythmias [27]. Furthermore, if defibrillation is performed during the first minute of col-

lapse, the survival rate is as high as 90% [28]. When defibrillation is postponed, survival rates

decrease to approximately 50% at five minutes, approximately 30% at seven minutes, approxi-

mately 10% at 9 to 11 minutes, and approximately 2% to 5% beyond 12 minutes [29].

According to the mentioned reports, the implemented model on the AED processor only

has less than one minute time to correctly detect the shockable signal to reach the survival

rate of 90%. Moreover, the sensitivity of the implemented model should be above 90%

according to IEC 60601-2-4 requirements. In consequence, the main challenges in AEDs are

the detection time and the accuracy of the shockable signal and specificity of non-shockable

signal detection.

Methodology

Different techniques are being used in AED’s. Machine learning and deep learning techniques

are the most excellent state-of-the-art techniques that are active in those devices. DNNs have

proven that they can recognize patterns and learn useful features from ECG signals without

the need for preprocessing or feature extraction techniques. The methodology used in this

work is based on a lightweight deep learning algorithm. In our work, to train and evaluate

the model, we used three databases and categorized those ECG signals into two classes, shock-

able and non-shockable (normal, paced, atrial fibrillation and etc.). As shown in Fig 2, our

approach is novel in using a 9-layer network in an end-to-end manner simultaneously dis-

criminating between shockable signals and non-shockable ones, all of which are enabled by

our dataset. In the proposed technique, to achieve a high classification performance no prepro-

cessing of ECG data such as Fourier or wavelet transforms is done.

We extracted numerous 1024 sample ECG’s containing shockable and non-shockable sig-

nals to construct the training and test dataset. We used a convolutional DNN to differentiate

between shockable and non-shockable signals, which take the raw ECG data as input and puts

one prediction out every 256 samples. In various automated systems, different segment sizes

(10s,8s,6s,5s and 2s) are used for shock or non-shock advice. The short segment size is always

desirable for fast inference. In this work, we used the segment size of 256 samples equal to 0.9s

or 1.4s (250 Hz or 360 Hz). It is important to note that although we used a short size, our clas-

sification results are better than previous works. To find the best configuration of hyperpara-

meters which will give us the best accuracy we used the grid search technique. There are two

kind of hyperparameters in DNNs which need to be tuned before the training phase, hyper-

parameters related to network structure (dropout rate, network weight initialization and

activation function) and hyperparameters related to training algorithm like, learning rate,

momentum, batch size and number of epochs [30]. In our work, we found the best number of

hidden layers and neurons manually. In this technique the starting point of the search was the

work done in [31]. We continued reducing the number of layers until the accuracy began to

decrease. We utilized shortcut connections similar to the residual network architecture to

make the optimization of such a network manageable. The network consists of 6 residual

blocks with the maximum of two convolutional layers per block. The convolutional layers in

this network extract features with 32 filters of a width of 16, and the stride of filters alternate

between four and one. Grid search technique for finding the best choice for batch size and

number of epochs resulted in 32 and 100 respectively. This technique suggested Adam optimi-

zation algorithm to update network weights iteratively in the training phase. The learning rate,
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one of the most important hyperparameter was tuned to 0.001 and was reduced by a factor of

10 when the set loss stopped improving for two successive epochs. For adapting the network

weight initialization, all of the available techniques where evaluated by grid search technique

and “he_normal” was chosen. To adopt the pre-activation block design, normalization and a

rectified linear activation layer are used before each convolutional layer. To tune the dropout

hyperparameter a range between 0.0 and 0.9 was selected for the grid search algorithm and

after searching, 0.2 was chosen to avoid overfitting. After building and tuning the hyperpara-

meters of the model, the training subset of the datasets is used to train the model and at the

end, the model with the lowest error (highest accuracy) is used for evaluation.

To estimate the skill of the proposed model on unseen data, 10-fold cross validation

approach is used. This approach divides the set of 16062 segments into 10 groups of approxi-

mately equal size. The first fold is treated as a test set and the method is fit on the remaining

nine folds; finally the accuracy is averaged over all test groups [32].

Simulation and results

Dataset

The data utilized in this work were obtained from three sources; namely, MIT-BIH database

[33], MIT-BIH Malignant Ventricular Ectopy Database(VFDB) [34] and a database for ven-

tricular tachyarrhythmia signals from Creighton University (CUDB) [35, 36]. The information

regarding the databases used in this study is presented in the table below.

Fig 2. Deep Neural Network architecture.

https://doi.org/10.1371/journal.pone.0264405.g002
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Performance evaluation metrics

As one could see in Table 1 the classes are imbalanced, so to combat this problem, different

metrics in addition to accuracy have been used to give a more accurate result [37]. To compare

the LDIAED technique with the state-of-the-art techniques, we calculated the Accuracy (Acc)

(Rate of correct classifications), Sensitivity (Se) (ability to correctly identify shockable

rhythms), Specificity (Sp) (ability to recognize non-shockable rhythms) and F_1 score (the

measure of the model’s accuracy) from the confusion matrix for test records.

Acc %ð Þ ≜
TP þ TN

TN þ TPþ FPþ FN
� 100%:

Se %ð Þ ≜
TP

TP þ FN
� 100%:

Sp %ð Þ ≜
TN

TN þ FP
� 100%:

F 1 ≜
2TP

2TPþ FP þ FN

Above, a True Positive (TP) is an outcome in which the model correctly predicts the shock-

able signals, True Negative (TN) is an outcome in which the model correctly predicts other

non-shockable signals. A False Positive (FP) is an organized or asystole that has been incor-

rectly classified as a shockable rhythm and a False Negative (FN) is a VF or VT associated with

the cardiac arrest that has been incorrectly classified as non-shockable signal.

Experimental results and discussion

Timely detection of shockable signals is crucial; hence, it is of utmost importance to capture

the shockable signal within a short duration of ECG signal [14]. In this study, a novel CNN-

based algorithm for the automated detection of shockable and non-shockable ECG episodes is

presented. We managed to reduce the complexity (number of layers) of the algorithm by

73.5% compared to the state-of-the-art model used in [31] and keep the sensitivity and speci-

ficity of the detection algorithm above the boundary needed by IEC 60601-2-4 requirements

[7]. The LDIAED technique can detect shockable signals with a sensitivity of 96.13% and can

detect other non-shockable signals with a specificity of 99.64%. The fraction of good predic-

tions, which refers to the accuracy of the model, is 99.1%. As shown in the confusion matrix

demonstrated in Table 2, from 1606(test partition) segmented ECG’s collected from the men-

tioned databases, only 12 segments are misclassified. From these 12 segments, seven segments

belong to the shockable class, misclassified as non-shockable signals. As mentioned in [38],

not advising shock for a patient with shockable signal might lead to their death, but fortu-

nately, in this study, the rate of this kind of misclassification is only 3.87%. A quick review of

Table 1. Used databases.

DATABASE frequency(Hz) NUM of shockable rhythms NUM of other non-shockable rhythms

MIT − BIH 360 0 6587

VFDB 250 1239 4192

CUDB 250 669 3375

https://doi.org/10.1371/journal.pone.0264405.t001
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this kind of misclassification unveiled that this misclassification entirely appears to be very

sensible. In many cases, lack of anatomical considerations, movement artifacts, limited signal

length, or having a single lead limited the derivation that could be concluded from the data,

making it challenging to certainly reveal whether the annotating cardiologists and/or the algo-

rithm was correct.

LDIAED method segmented the 1024-sample ECG into four 256-sample segments to cap-

ture the shockable signals. Algorithm performance is evaluated by its sensitivity and specificity

and is compared with other techniques collected in Table 3. It becomes clear that the LDIAED

method outperforms the state-of-the-art techniques without the need for preprocessing or fea-

ture engineering and is above the IEC requirements. The main point of this study is that the

LDIAED CNN model can advise shock or non-shock for a short ECG signal in two seconds by

using a lightweight CNN. The other novelty of our work is in the using of three diverse data-

bases with different frequencies consisting of a total of 16062 ECG segments (1908 shockable

and 14154 non-shockable) to train and test the model.

Hardware implementation of the proposed algorithm

To use the proposed model in practice, this model must be loaded in a dedicated processor to

be used in an AED. Raspberry Pi, the intended processor, is a low-cost, tiny desktop computer

that is ideal for programming. With its controllable input-output pins, sensors and other hard-

ware can be read out and controlled very easily. The raspberry pi has ARMv6 700 MHz single-

core processor, a VideoCore IV GPU, and 512MB of RAM and it uses an SD card for its oper-

ating system and data storage.

Table 2. Confusion matrix.

True Class

shock nonshock

Predicted Class shock TP = 174 FP = 5

nonshock FN = 7 TN = 1420

https://doi.org/10.1371/journal.pone.0264405.t002

Table 3. State-of-the-art deep learning methods used for automated detection of shockable ECG signals.

Author/Year Performance Used Databases

Okai et al. [9]/2020 AUC = 0.967 AHADB, MITDB, CUDB

Nuguyen et al. [11]/2018 Acc = 95.9%, Sp = 96.8%, PPV = 87.6% MITDB, CUDB

Sharma et al. [8]/2020 Acc = 98.9%, Se = 99.08%, Sp = 97.11%, AUC = 0.99,

F_1 = 0.994

MITDB,CUDB

Tripathy et al. [12]/2018 Acc = 89.81%, Se = 86.38%, Sp = 93.97% CUDB,VFDB

Hai et al. [13]/2021 Acc = 99.2%, Se = 96.7%, Sp = 99.7% CUDB,VFDB

Panda et al. [14]/2020 Acc = 99.03% CUDB,VFDB

Mohanty et al. [15]/2021 Se = 97.94%, SP = 99%, Acc = 98.69% CUDB,VFDB

Sabut et al. [16]/2021 Acc = 99.2%, Se = 98.8%, Sp = 99.3% CUDB,VFDB

Acharya et al. [17]/2018 Acc = 93.2%, Se = 95.32%, Sp = 91.04% MITDB,CUDB,VFDB

Lai et al. [18]/2020 Acc = 98.82%, Se = 95.05%Sp = 99.43% MITDB,CUDB,VFDB,

AHADB

Hajeb et al. [19]/2021 Se = 95.21%, Sp = 86.03% CUDB,VFDB,SDDB

Proposed Acc = 99.1%, Se = 96.13%, Sp = 99.64%, F_1 = 0.996 MITDB,CUDB,VFDB

IEC 60601-2-4 requirements

[7]

Se> 90%, Sp> 95% —–

https://doi.org/10.1371/journal.pone.0264405.t003
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To run the proposed model on raspberry pi, a set of tools called tensorflow lite is used.

These tools support diverse language, have high performance, support multiple platforms and

are optimized for on-device machine learning. With these tools the proposed model is con-

verted to a special efficient portable format identified by the .tflite file extension. This conver-

sion reduces the size of the model and increases the speed of inference that enables tensorflow

lite version of the model to execute efficiently on devices with limited compute and memory

resources. In the proposed work to reduce the model size more, different optimizations such

as quantization are applied before conversion. Quantization reduces the precision of the num-

bers used to represent a model’s parameters, which by default are 32-bit floating-point num-

bers. Optimization and conversion reduced the model size and latency with minimal or no

loss in accuracy [39]. After loading the tensorflow lite model on the raspberry pi minicom-

puter, predictions according to the inputs are done.

As shown in Table 4, different quantizations are applied to the model. Post-training float16

quantization converts model weights to 16-bit floating-point values and post-training dynamic

range quantization converts model weights to 8-bit precision.

Evaluating the proposed model with unseen ECG segments on the server-side results in an

accuracy of 99.1%. The model size before any optimization and conversion was 1.551 MB.

Optimization and conversion, as seen in the table below, result in smaller model sizes and

faster computation, making this model suitable for AED’s. As it is expected, the accuracy of

the different optimized versions of the proposed model, are identical to the accuracy of the pri-

mary model or have a slight loss, but as a great effort, the size of the model reduces significantly

compared to the primary model. So according to the results shown in the table below, the best

model suitable for implementing on raspberry pi is the post-training dynamic range quantiza-

tion plus conversion version of the model, which has the smallest size and the same latency

and nearly the same accuracy compared to other versions.

Conclusion

The applied algorithm presented in this study managed to detect shockable arrhythmias and

differentiate them from non-shockable signals in a 1.4-second ECG signal with an automated

method. The privilege of the proposed technique is its lightweight end-to-end learning proce-

dure that combines feature extraction with the classifier. The proposed algorithm meets the

IEC60601-2-4 requirements. When the device reached a shock or no shock decision, the accu-

racy was high, with 96.13% sensitivity for shockable rhythms and 99.64% specificity for other

non-shockable rhythms.

Another outstanding endeavour of this study is the implementation of the optimized ver-

sion of the proposed classification method on the raspberry pi minicomputer as a part of an

AED. Evaluating the implemented model on the raspberry pi by unseen segments resulted in

an average detection time of 0.845 seconds and accuracy of 98.9which meets the IEC60601-2-4

requirements. Considering the lightweight proposed model, real-time feature and the accuracy

of the implemented model, it is concluded that the proposed technique outperforms state-of-

the-art techniques, and could be used in commercial AEDs.

Table 4. Effect of different quantization techniques on model inference.

Quantization technique Accuracy Latency(ms) size

Post-training float16 quantization 99.1% 0.832 252 kB

Post-training dynamic range quantization 98.9% 0.845 142 kB

Default(no optimization) 99.1% 1.444 473 kB

https://doi.org/10.1371/journal.pone.0264405.t004
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